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Hydrodynamically induced aggregation of two
dimensional oriented active particles†

Roee Bashan and Naomi Oppenheimer *

We investigate a system of co-oriented active particles interacting only via hydrodynamic and steric

interactions in a two-dimensional fluid. We offer a new method of calculating the flow created by any

active particle in such a fluid, focusing on the dynamics of flow fields with a high-order spatial decay,

which we analyze using a geometric Hamiltonian. We show that when the particles are oriented and the

flow has a single, odd power decay, such systems lead to stable, fractal-like aggregation, with the only

exception being the force dipole. We discuss how our results can easily be generalized to more

complicated force distributions and to other effective two-dimensional systems.

Out-of-equilibrium ensembles, both biological and artificial,
are often suspended in a fluid. Many times, these active
systems have lower dimensions.1–3 A prominent example is a
cell membrane—an effective two-dimensional (2D) fluid in
which both passive and active proteins are immersed.4 Active
membrane proteins act as either rotary proteins, such as ATP
synthase,5,6 or as shakers—particles that are not self-propelled
but apply active forces on the membrane due to conformational
changes, polymerization, or reorganization.7 Artificial 2D sys-
tems are also widespread, such as active colloids driven by a
chemical reaction,8–10 by light11,12 or by an external magnetic
field.13 Particle dynamics can be dominated by complex inter-
actions (e.g. by electrostatics, capillary forces or an external
field),14,15 or by purely hydrodynamic flows.16–20 In all the
above systems, understanding the connection between flow
and structure is crucial.

The flow created by an active particle can be described by a
multipole expansion (similar to electrostatics). Far away from
the particle, the leading order of the flow, the stokeslet, is given
by the total force the particle applies. Closer to the particle,
higher multipole contributions start to dominate. First, the
force dipole, which could be divided to the rotlet,5,21–24 and the
stresslet.25–28 Closer still, the quadrupolar term is significant,
then the octopole, and so forth.29,30 Thus, by first finding the
effect of a single point-force, the so-called Green’s function of
the problem, we can derive the general flow response. This
procedure applies even when there is no net force, in which
case the higher orders dominate at larger distances.

In this work, we explore the dynamics of suspended particles
in a 2D viscous fluid in which particles are all oriented along
the same direction and interact only via the flow they create at
their boundary and steric interactions. We review how the
multipole terms mentioned above are often calculated from
the stokeslet, but then, we focus on improving the common
procedure, making higher-order terms easier to use and calcu-
late. We show that, in many cases, namely for all terms of the
multiple expansion with an odd power decay, the dynamics
could be described by a Hamiltonian. This Hamiltonian is
geometric in nature, with the conjugate variables being xi and
yi, the position of the ith particle. Phase-space in such cases
corresponds to configurational-space. Thus, by limiting possi-
ble paths in phase-space we can determine the steady-state
distributions such active particles can take. We prove that, in
many cases, particles aggregate. In particular, in all far-field
limits, which are dominated by a single multipole term with an
odd power decay, the only exceptions being the rotlet and the
stresslet. We corroborate our findings by simulating particles
that interact by an octopolar force distribution. Fig. (1) illus-
trates our key finding: a pure multipole force distribution
leads to particle aggregation. Moreover, we claim that our
findings can be applied to more general 2D cases—both for
calculating high-order interactions in more complex fluids, and
for understanding their resulting dynamics in many-particle
ensembles.

The Reynolds number of a flow, Re = rUL/m, is the ratio
between the inertia of the fluid and the viscous forces in its
flow, where r is the fluid’s density, m is its viscosity, U is the
characteristic velocity and L the characteristic length. For
microswimmers in biological systems, the Reynolds number
is small, as the characteristic lengths are microscopic. In the
low Reynolds number limit, the inertia is thus negligible, and
the flow velocity v(r) (where r = (x,y) is the 2D position vector) is
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governed by the Stokes equations,

rp ¼ mr2vþ f

r � v ¼ 0;

(
(1)

where f is an external force. From now on, we will work in
unitless notation where m = 1. The flow due to a point force, the
stokeslet, also termed the Oseen tensor in 2D,31 is given by

G2D
ij ¼

1

4p
� log

r

r0
dij þ

rirj

r2

� �
; (2)

where r = |r|, and r0 is a normalizing constant, e.g. the size of
the system (it is insignificant for our purposes since it does not
appear in higher order terms). This solution is the Green’s
function of the Stokes equations and can be used to calculate
the flow due to any force distribution. However, an exact
calculation is generally difficult, and, when particles are far
apart, unnecessary. Instead, one often approximates the flow in
powers of r using a Taylor expansion of G2D, giving a solution of
the form,

v = F�G + D2 : rG +� � �+ DNJNr#N�1G +� � � (3)

where : is the second order inner product, JN is the Nth order
inner product, # is the tensor product (which, when found in
the exponent, refers to the times to apply the operator), F is the
total force, and Dn is the nth force coefficient given by

Dnþ1 ¼
ð�1Þn
n!

ð
S

f � r�ndA: (4)

The integration is over the area where the forces are applied.
Using the monopole or dipole terms for solutions far away from
the particle is often enough. Calculations of higher-order terms
are messy at best. To evaluate the Nth term, first one needs to
calculate the mixed N � 1 order derivatives, then calculate N
coefficients of DN, and finally contract these two organized
in N � 1 rank and N rank tensors in a slaving procedure.
The contraction result is often complicated in Cartesian

coordinates but is much simpler in polar coordinates. A similar
formulation is also used in 3D,30 with the equivalent G3D. In
Section 1, we will show a different route to calculating the flow
using the biharmonic equation.

Let us now consider a fluid in which an active particle is
immersed. The particle is propagated by the flow only (we will
later add steric interactions for the sake of simulations), and so
its position is given by a simple equation of motion :r = v(r).
Since the flow is incompressible and has no sources of mass
(eqn (1)), it can be described by a scalar field c called the
stream function. In 2D, r � (cẑ) = v � r>c, where r> = �ẑ �
r = x̂qy � ŷqx. In the case of a flock of similar particles, all with
the same orientation, each with strength Si, the stream function
created by all particles is a simple superposition,
cðrÞ ¼

P
i

Sicðr� riÞ. The dynamics of the particles could be

described by a geometric Hamiltonian

H ¼ 1

2

X
iaj

SiSjcðri � rjÞ: (5)

The equations of motions are given by Hamilton equations of

H, with
ffiffiffiffiffi
Si

p
xi and

ffiffiffiffiffi
Si

p
yi being conjugate variables. Such a

Hamiltonian description has been useful for point vortices in
an ideal fluid32,33 and also, more recently, in viscous
systems.26,34–37 However, this formalism only holds when c is
an even function of r. An odd component of c will cancel out in
the (symmetric) summation, and H would be identically zero.
In the rest of this work, we will mostly use the case where the
particles are identical, i.e. Si = 1.

The rest of the paper is organized as follows. In Section 1 we
will derive the 2D flow created by an active particle with any
force distribution on its surface. In Section 2, we will derive the
dynamics of two similar particles oriented along the same
direction. As an example, we will show that when the force
distribution is octopolar, dominated by D4, particles will collide
at a finite time. We will then prove that, except for a force-
dipole, all interactions of a single, even, multipole term lead to

Fig. 1 Snapshots of a simulation of 500 active particles with an octopole force distribution (i.e., the velocity decays as 1/r3). Particles are initialized
randomly in a 60 � 60 box; All particles are oriented along the x axis. The particles collide quickly only due to hydrodynamic interactions and form small
clusters. At long times, clusters also collide, creating larger clusters. Finally, The particles form a single, fractal-like, cluster organized in a 451 angled
square lattice.
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aggregation in the two-particle system. We will also discuss
more general interactions. Our arguments will also be applic-
able to other similar systems with flow fields not described by
the equations of flow above. In Section 3, we will claim that the
two-particle case also applies to an ensemble of many particles
and show a simulation resulting in aggregation.

1 Flow due to a single particle

Here, we will derive the stream function generated by a general
active particle in a 2D viscous fluid. For simplicity, we will
assume a circular particle with a radius R, applying a surface
force on the fluid at its boundary. However, the choice that
forces are only applied on a circle does not limit the result of
the stream function, and all the solutions in eqn (3) will appear
here as well (see ESI† for more details). Taking the curl of the
first equation in eqn (1), and writing the velocity in terms of c,
we arrive at an equation for the stream function,

r2r2c = �r>�f = ẑ�(r � f). (6)

The force is only present at the surface of the particle. We
will assume all the forces are parallel, giving a force of the form

f ¼ 1

R
dðr� RÞFðyÞf0 where f0 is a constant and F(y) is an

angular density distribution. We have chosen parallel forces
for simplicity, but the procedure is easily generalized to a force
distribution with multiple orientations as we outline in the
ESI.† The homogeneous biharmonic equation has been used to
study the flow created by active swimmers with varied boundary
conditions.38,39 Here, we focus on the force that an active
particle applies on the flow, which is given by the non-
homogeneous biharmonic eqn (6).

In order to get a solution equivalent to eqn (3), we match the
boundary conditions on the flow at infinity and at r = 0 (despite
the particle having a small radius R), similar to the derivation of
the Oseen Tensor.31 It is possible to solve eqn (6) by decom-
posing the force and the stream function in a Fourier series as
they are periodic in y,

cðr; yÞ ¼
X
n2Z

BnðrÞeiny;FðyÞ ¼
X
n2Z

Cne
iny: (7)

We will assume no force monopole, thus C0 = 0. Using
eqn (7) in eqn (6), we get (see ESI† for more details),

Ô
2

nBnðrÞ ¼ i
Z
R
Cn�1

d

dr
dðr� RÞ � n� 1

r
dðr� RÞ

� �
; (8)

where Ôn ¼
1

r

d

dr
r
d

dr

� �
� n2

r2
and Z is the force in complex

notation Z = |f0|e�iarg(f0). The solution is given only by the real
part of eqn (8). This equation implies that a Fourier component
n in the stream function c is caused by a component n � 1 of
the force. For example, a force caused by two opposing normal
point forces on the surface has only odd components, which
leads to only even components in c. Every Fourier component,
Bn(r), in the stream function c is a linear combination of four

power laws in r: rn; rnþ2;
1

rn
;

1

rn�2
, where only negative exponents

will contribute at r 4 R (see ESI† for a detailed solution).
Outside the particle, at r 4 R the solution is a linear combi-
nation of terms of the form ln r, sin(2y), sin(ny)/rn, sin(y)/rn�2

(ignoring phases), where the logarithm is due to a degeneracy
for n = 0. The complete solution outside the particles is given by

4c
iRZ

¼
X
n4 1

Cn�1e
iny 1

n

R

r

� �n

þ 1

ð1� nÞ
R

r

� �n�2
" #(

þ C�n�1
nðnþ 1Þe

�iny R

r

� �n�
� 2C�1 ln

r

R
þ 1

2
C�2e

�iyR

r
:

(9)

This solution allows us to calculate the velocity field created by
any active particle applying a force on the fluid in one direction.
As mentioned earlier, this result is easily generalized to any
force orientation as outlined in the ESI.† Furthermore, the
terms in eqn (9) can apply to active particles that have different
boundary conditions at the surface of the particle. For instance,
a squirmer is an active particle defined by the flow on its
surface, which many times is assumed to have no radial
component.40,41 Its 3D description is well-known. Similarly to
eqn (9), a general 2D squirmer is given by:

c ¼ B0 ln
r

R
þ
X
n4 1

Bn
Rn

rn
� Rn�2

rn�2

� �
sinðnyþ fnÞ (10)

For any Bn and fn. These terms are of the same form as the
different multiples of a 2D flow given in eqn (9), i.e. sin(ny)/rn,
sin(ny)/rn�2.

2 Two particle dynamics

This section will focus on a particular example of the flow given
by a single force multipole, as given by eqn (9), and the
dynamics of two particles interacting by such a flow. We will
then discuss the dynamics of two particles interacting by a
general solution to eqn (6), with any desired force distribution.
We will show that when the particles are oriented, similar
particles driven by a pure, even, multipolar term will always
collide, the only exceptions being the force monopole and force
dipole. For some general force distribution, two particles will
always attract in the far-field limit, given that the total force is
zero and there is no contribution from a force dipole. If there
are no local minima and maxima in the stream function, the
particles will also collide. Active particles that do not have a
force nor a force dipole are termed neutral swimmers,42,43 and
have been shown to have optimal efficiency for spherical
particles.44 Biological examples include Volvox45 and Parame-
cium. Artificial examples could be designed using active Janus
particles driven either phoretically10 or by light.11

2.1 Case study: octopole term

We will consider a force distribution such that only the third
harmonic of the force distribution is present. In eqn (3), this
corresponds to the forth term, D4 dominating, and the stream
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function is given by:

c3 ¼ f0C3R
R2

12r2
� R4

16r4

� �
sin 4yþ R2

24r2
sin 2y

� �
; (11)

assuming C3 = C�3 is real, and the force is in the x direction. In
the far-field limit, taking R - 0 and f0 - N such that R3f0

remains constant, only the terms 1/r2 remain, which are the
octopole moment

coct ¼
R3

12r2
C3f0

1

2
sin 2yþ sin 4y

� �
: (12)

There are many force distributions that have this property. The
obvious one is the pure harmonic written above. A more
realistic realization given by point forces is presented in
Fig. 2. A distribution of forces on a disk can always be
constructed so that any term is dominant in the multipole
expansion (see ESI†).

From this point on, for simplicity, we will focus on one of
the terms in eqn (12) and take c = S sin(4y)/r2 (this can be
realized with a force distribution at two different directions, see
ESI†). This choice of flow was made for simplicity, but it
represents well the general case for the dynamics caused by
any single (even) term. Its corresponding flow is displayed in
Fig. 3. A system of two identical particles creating such a flow is
described by the Hamiltonian in eqn (5).

In Hamiltonian mechanics, symmetries of the Hamiltonian
correspond to conservation laws. In this case, the Hamiltonian
is symmetric to translation in time and space. Therefore, the
Hamiltonian is conserved as well as, what we term, the ‘‘center
of activity’’, (r1 + r2)/2, which is analogous to the center of mass.
It is therefore enough to consider the dynamics of the relative
difference between particles d = r1 � r2, which has a 2D phase-
space. The paths d can take are displayed in Fig. 3, which are
given by r2

p sin(4y) as a result of the conservation of the
Hamiltonian H = c(d). It is also straightforward to solve the

equations of motion directly, giving

cosð4yÞ ¼ cosð4y0Þ � 16
H2

S
t

r4 ¼ r40 � 32St cosð4y0Þ � 256H2t2;

8><
>: (13)

where r and y are the polar coordinates in the phase space
of d. Theta is constrained to only one of the intervals

0;
p
4

� 	
;

p
4
;
p
2

� 	
� � � 7p

4
; 2p

� �
which are given by half the period

of the harmonic. Also, in general, the radius does not decrease
monotonically with time, however it always decreases to zero
unless H = 0. The special paths with H = 0 are the only paths
that will not necessarily converge to the origin. In principle,
they can diverge to infinity, though a divergence is unstable as
even a small perturbation to the Hamiltonian will cause the
path to be bound. Therefore, every stable solution of the pair
leads to a collision. We will now prove that, in the far-field
limit, this holds true in general, except for dipolar force terms.

2.2 General dynamics of two particles

Let us consider a case of two identical particles, each creating a
stream function c that is described by a single (even) multipole
term in the far-field limit. We will later consider a dipolar flow
which is given by c = a ln r + b sin(2y + f). Any other flow is
given by

c ¼ a sinðmyþ jÞ þ b sin½ðmþ 2Þyþ f�f gR
m

rm
(14)

for some even m, any coefficients f and j and any non-trivial a
and b. We will now show that all such flows (excluding the

Fig. 2 A realization of a particle whose stream function’s leading term is
1/r2, which is the octopole term in eqn (3), using point forces. We
investigate the interaction between two identical particles with this force
distribution, with a fixed orientation.

Fig. 3 The vector field generated by a stream function c ¼ S
sinð4yÞ

r2
,

where blue corresponds to low strength and red is high. In purple we
mark example paths that a particle can take. The straight paths are
characterized by a zero Hamiltonian, and alternate being stable or
unstable. The leaf-shaped paths are for the non-zero case, alternating a
positive and negative Hamiltonian.
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dipole terms) will result in a collision of the two particles,
similar to the octopole term described above.

To prove this claim, we will examine the paths that the
relative distance between particles, d, takes in its phase-space,
whose motion is governed by c,

:
d = 2r>c(d). The ‘‘grad perp’’

operator, r>, has an important geometrical interpretation:
unlike the gradient, which points to the direction where a
scalar function is most increasing, the ‘‘grad perp’’ operator
points to the direction perpendicular to that (anti-clockwise)
which is also the direction where the function is constant. This
interpretation is connected to the fact that H is conserved
along paths.

First, we note that the stream function has no local maxima/
minima, as a cross section of it at a constant y gives c p r�m,
which never has local extrema. Thus, a point path is unstable.
This is expected since a stable point would have a negative
divergence of the velocity field. Thus, every path curve must be
either closed or diverging to infinity. And, since c(r - N) = 0,
every path diverging to infinity has a zero Hamiltonian, and
every path with non-zero Hamiltonian is necessarily bound and
closed. The different possible path categories are shown in
Fig. 4. We will now assess whether or not each is possible.

Path a. A closed path that does not contain the origin, such
as path a, encircles an area which is a compact subset of the
phase-space, where c is continuous. Because the stream func-
tion is constant along the edge of the region, that is, along a
path, there must be a local minimum or maximum inside that
region, contradicting our earlier conclusion (this is a higher
dimensional case of Rolle’s theorem46). This argument, which
disallows paths like a, does not hold for the closed paths like d
and e because their closed area contains the origin, and so the
stream function is not continuous on it.

Paths b and c. Now consider a path that diverges to infinity,
like paths b and c. As mentioned, such a path has zero
Hamiltonian, so every path that crosses it must also have zero
Hamiltonian. Therefore, the curve will split the plane in
two—paths on one side of the curve that have a non-zero
Hamiltonian cannot cross to the other side. For paths like b,
there is a side which does not contain the origin, and so closed
paths contained in it must be like path a. Since we showed such
paths are not allowed, it then follows that all paths in that side
have zero Hamiltonian, and thus c = 0. We assume that there
cannot be such an area in which the stream function is constant
since that corresponds to an area with no flow. That means every
path diverging to infinity must cross the origin, That is, it must
be similar to path c. In fact, a path similar to path c must exist,
because there is some y0 A [0,2p) such that c(r,y0) = 0 for all r,
and so the ray y = y0 is a path similar to path c.

Path d. Since a divergent path such as c necessarily exists,
every closed path encircling the origin (path d) crosses it. Thus,
it also has a zero Hamiltonian. Here, again, the path splits the
plane in two and forces paths similar to path a. Therefore, such
a path as d cannot exist.

In conclusion, the only possible paths are either closed curves
crossing the origin such as path e or divergent curves with a zero
Hamiltonian crossing the origin such as path c. However, the side
of the divergent path that goes to infinity as time increases is
unstable. Consider a small perturbation to the Hamiltonian, H =
e a 0, the particle’s trajectory must now be bound. Thus, it is
unstable and will turn to path e. And so, every stable path crosses
the origin, which corresponds to the particles colliding.

This conclusion only applies to the far-field limit. As the
particles get closer, eventually, higher-order terms of the flow
will contribute to the dynamics. If the stream function c has no
minima or maxima, even in close-range, then by the same
reasoning as above, the particles will collide because the only
allowed paths are still c and e. However, if the stream function
has an extremum in close range, then all path types are allowed.
Particles will still aggregate up to these short distances.

Let us now consider the different paths that the dipolar terms
allow. If the stream function contains a dipolar term of the form
sin 2y, then paths that diverge to infinity can have a non-zero
Hamiltonian, and so paths like b are allowed. If the stream
function contains the term ln r, no paths can diverge to infinity,
and so paths like d are allowed, while paths like b and c are not
allowed. Examples for both are depicted in Fig. 5. Note that
paths like path a are never allowed in the absence of extrema.

Lastly, we will address the dynamics when c is not even. If
the stream function is odd (the far-field limit always has a
defined parity), then no Hamiltonian can be constructed.
However, it is easy to see that now the relative distance, d, is
conserved, while the ‘‘center of activity’’ changes with velocity
given by v(d). This results in the pair moving together at a
constant velocity, and is true even in close range interaction. In
general, if v = vO + vE which are even and odd respectively, then

_rcm ¼ vEðdÞ
_d ¼ 2vOðdÞ



(15)

Fig. 4 The categories of possible paths for the separation between two-
active particles, d. If bound, the path either encircles the origin, does not
encircle it, or crosses it. If the path diverges, then it either crosses the origin
or not. Each path is described by an equation c(x,y) = H. In the text we
prove which paths are permitted and under what circumstances.
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and so the relative distance between particles, d, has the same
dynamics as described earlier for an even stream function, as
long as vO a 0 (note that v is odd when c is even and vice versa).

3 Many particle dynamics

A system of many particles can no longer be solved analytically.
However, for an even stream function it is possible to construct
a Hamiltonian as in eqn (5), from which follows the conserva-
tion of the center of activity

P
i

ri=N as well as H itself. We

integrate over the system’s equations of motion using the
python library scipy.integrate.DOP853, which is an 8th order
Runge–Kutta method. Since the particles are expected to col-
lide, we also add steric interactions to the system, given by
Dvsteric = ksteric(lsteric � |rij|)r̂ij if |rij| o lsteric and zero otherwise,
where rij is the distance from the i-th and j-th particles. The
steric interaction gives a strong repelling force when particles
overlap. In our simulation we used lsteric = 0.5 and ksteric = 104.
The new interactions break the Hamiltonian description, and
so H is no longer conserved. However, the center of activity
should remain constant as the interaction is still symmetric. In
addition, between collisions the Hamiltonian is still conserved
(see Fig. 6). The steric interactions are a highly simplified
description of the close-range forces between active particles
that are not described by Stokes flow.

We initialize hundreds of randomly positioned particles.
Each particle creates the velocity field discussed in Section 3.
Namely, we take an octopolar flow with the stream function c =
sin 4y/r2. Since we have established the similarity of all far-field
flows, excluding dipolar flow, as well as flows created by stream
functions with no extrema, we can use this simulation to
infer the behavior of ensembles interaction via such stream

functions. The result of the simulation for different times is
displayed in Fig. 1.

Immediately, pairs of particles start attracting and even-
tually collide. This behavior is a direct result of the two-particle
dynamics, because the stream function falls fast with r, c B
r�2, and so the majority of a particle’s motion is determined by
its closest neighbor, while the weak effect of other particles
forces it to take stable paths only. The colliding particles
quickly align at perfect 451 lines, corresponding to the angles
where the velocity field is radial only. The stability results from
the steric interactions—once the particles collide, the steric
force cancels any velocity in the radial direction, and the
particles slide on each other until the tangential velocity is also
zero. Since the velocity field increases near the particle, the
sliding motion is very fast compared to the global dynamics.
Thus, a collision is characterized by a swift change to the
Hamiltonian since the pair’s contribution to H changed from
relatively constant (in time) to zero. We clearly see this rapid
change in Fig. 6, which shows a simulation for four particles.
A collision of two particles is clearly observed by the decrease in
the Hamiltonian at t = 8.5. In simulations of hundreds of
particles, collisions are too frequent to see the effect clearly.

The two-particle behavior described above repeats on a
global scale: all the particles collide into clusters, and all the
clusters collide into bigger clusters. This is because, at large
distances, a cluster functions as a particle whose strength is the
combined strength of its constituents. Therefore, the dynamics
of clusters can be described by a Hamiltonian in eqn (5), now
with varying strengths. The center of activity is now given byP

i Siri=
P

i Si and is still conserved. In the case of two-cluster
dynamics, the vector d = r1 � r2 is sufficient to describe the

dynamics, and its equation of motion is
:
d = (S1 + S2)r>c(d).

Therefore the two-cluster dynamics also lead to a collision,
resulting in the clusters mimicking the behavior of the parti-
cles. The collisions continue until all the particles form a single
stable cluster in the form of an incomplete square lattice, see
Fig. 1. This final result can be deduced from the Hamiltonian,

Fig. 5 Phase space (configurational space) examples where dipole terms
are allowed showing paths b and d exist in such cases. In blue, c ¼ 2 ln rþ
sin 4y
r2

with H = 1.2 and in red c ¼ sin 2yþ cos 4y
r2

with H = 0.8. These paths

are also stable, as a perturbation to the Hamiltonian gives a similarly
shaped path.

Fig. 6 The Hamiltonian of a 4-particle system during a collision. A
swift change in the Hamiltonian is observed at time t = 8.5 when a
collision occurs.
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since, in each collision, the formed cluster must have zero
Hamiltonian (i.e. its self interaction).

The crystallization is thus a general behavior of any ensemble
of identical particles that are oriented along the same direction,
as long as the two-particle dynamics lead to a collision, in the
manner discussed in Section 2.2. Particles will tend to stabilize
in incomplete crystal clusters, with an angle approximately given
by the lowest power term of the stream function, which is
dominant at close-range interactions. More precisely, the stabi-
lity angles are such that the velocity field at the particles’ radius
(lsteric/2) at those angles is radial only. Of course, this generalized
conclusion is true if the system does not find dynamic stability.

In cases where the stream function is not a pure multipole
and possesses extremum points, the dynamics do not necessa-
rily result in the collision of two particles. The particles still
draw closer up to distances where the next-order multipole
term starts to dominant. Two examples of such cases are given
in the ESI.† One still results in crystallization, with particles
tending to stay at minimal points of the stream function. The
second example is of squirmers. The particles draw closer, but
within the aggregate, there are still chaotic dynamics.

4 Conclusions

In this work, we introduced a new method to characterize the
flow created by 2D active particles, working directly with a
stream function instead of the velocity field. We used this
method to investigate the dynamics of a two-particle system,
which we then used to infer the behavior of a multi-particle
ensemble. We found that in all cases where the stream function
does not have a local extremum and does not have a contribution
from the monopole or the dipole terms, two particles will always
collide. This includes all cases where the flow field is given by a
pure even force moment (such as in the far-field limit). Our
simulations suggest that many-body systems of such particles
aggregate into a cluster. The formed clusters appear to be
fractal-like and are somewhat reminiscent of diffusion-limited
aggregation47 but with two differences—(1) particle motion is
driven by active flows, not diffusion. In fact, the only random
component is in the initial positions of the particles. (2) There is
short-range repulsion between particles, not attraction. Particles
stick together due to the balance between steric interactions and
active flows.

The steps we took in this paper are not limited to a simple
description of 2D fluid dynamics, but can be generalized to other
effective 2D fluids with more complex flow equations. Such systems
are commonly encountered in biological membranes,6,7,48,49 or in
experimental systems when particles sediment close to the bottom
or float to the interface.11,50–52 Such cases are associated with
Green’s functions that differ from eqn (2) and flow equations that
differ from eqn (6). Solutions to their flow equations will produce all
the force multipoles of those systems.

In addition, the arguments and results laid out in Section 2.2,
regarding possible paths that two particles can take, are also
relevant to these more complex systems, in describing oriented

particles. The requirements for particle dynamics to result in a
collision are: (a) the stream function has no extrema, e.g. by the
Hessian test (and twice-differentiability everywhere except the
origin). (b) c(r - N) = 0, and (c) there is at least one path
diverging to infinity.

For instance, in a membrane, at small distances, the fluid is
conserved in the membrane, and the flow created by an active
protein is given by the dipole terms in eqn (9). At large
distances, momentum is exchanged with the outer three-
dimensional fluid.48,53 An active particle in a membrane at
large distances creates a flow with a stream function that dies

out at infinity, as c ¼ S
sin 2y
r

.7 The ray y = 0 is a path diverging

to infinity. The Hessian is negative, det H(c) = �2S(5 + 3 cos2 2
y)/r6 o 0. Thus, two oriented active proteins interacting via this
stream function are bound to aggregate.

We have pointed out a connection between two-particle
dynamics and multi-particle dynamics. It is tempting to say
that as long as c B r�1 or lower, such that two particles must
collide (per our discussion in Section 2.2), then larger systems
will exhibit the same dynamics because the interactions are
dominated by the nearest neighbors. However, it is unclear if
this assessment is necessarily correct. Based on our findings,
we hypothesize that such a conclusion is correct, but it remains
for future work to assess its validity.

Our analysis was restricted to cases where the particles are
all oriented along the same direction. Such a setting can arise
either in a flocking mode,54 in which case particles can rotate
but are more likely to rotate together, or when the particles are
all oriented due to an external field.55 In the latter case, the
point particles we consider do not experience a torque, but
particles with a finite size will experience a torque. From
Faxén’s second law56 in 2D we expect T p a2(r � v). When
this torque is reflected to other particles, it will induce a higher-
order flow decaying as 1/r2 times the original flow. In such
cases, we still expect condensation up to shorter distances
where the torque may become significant. In future work, we
hope to generalize our results to cases where the particles are
free to rotate, in which case a Hamiltonian description is
challenging.

We have focused on interactions that lead to collisions
between two particles—those of pure multipolar flows and
cases where there are no extremum points in the stream
function. In other types of dynamics, particles attract up to a
certain distance, but there is no static final state. Ensembles
with such interactions can have chaotic dynamics, but also
global structures and order, as mentioned in the ESI.† These
systems require closer examination.

We have limited our discussion to far-field hydrodynamic
interactions in the low Reynolds limit. However, it is clear that
in close range, the interaction of the particles can be influenced
by other effects. For Instance, Yoshinaga and Liverpool57

showed the importance of lubrication forces in dense inter-
action between active swimmers, which may affect the crystal-
lization and stability of a many-particle ensembles. Similar
effects are expected to change the final state of our system,
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but in principle, the characteristics of the far-range interactions
should remain the same, meaning the particles are still
expected to aggregate into large clusters.
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34 A. Zöttl and H. Stark, Nonlinear dynamics of a microswim-
mer in Poiseuille flow, Phys. Rev. Lett., 2012, 108(21), 218104.

35 R. Chajwa, N. Menon and S. Ramaswamy, Kepler orbits in
pairs of disks settling in a viscous fluid, Phys. Rev. Lett.,
2019, 122(22), 224501.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
M

ar
ch

 2
02

4.
 D

ow
nl

oa
de

d 
on

 7
/3

0/
20

25
 1

:1
0:

53
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sm01670f


This journal is © The Royal Society of Chemistry 2024 Soft Matter, 2024, 20, 3901–3909 |  3909

36 P. Lenz, J. F. Joanny, F. Jülicher and J. Prost, Membranes
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