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1 Introduction

Geometry of adipocyte packing in subcutaneous
tissue contributes to nonlinear tissue properties
captured through a Gaussian process

surrogate model

2 Luis Solorio® and Adrian Buganza Tepole {2 *3°

Jacques Barsimantov Mandel,
Subcutaneous tissue mechanical response is governed by the geometry and mechanical properties at
the microscale and drives physiological and clinical processes such as drug delivery. Even though
adipocyte packing is known to change with age, disease, and from one individual to another, the link
between the geometry of the packing and the overall mechanical response of adipose tissue remains
poorly understood. Here we create 1200 periodic representative volume elements (RVEs) that sample
the possible space of Laguerre packings describing adipose tissue. RVE mechanics are modeled under
tri-axial loading. Equilibrium configuration of RVEs is solved by minimizing an energetic potential that
includes volume change contributions from adipocyte expansion, and area change contributions from
collagen foam stretching. The resulting mechanical response across all RVE samples is interpolated with
the aid of a Gaussian process (GP), revealing how the microscale geometry dictates the overall RVE
mechanics. For example, increase in adipocyte size and increase in sphericity lead to adipose tissue
softening. We showcase the use of the homogenized model in finite element simulations of drug
injection by implementing a Blatz—Ko model, informed by the GP, as a custom material in the popular
open-source package FEBio. These simulations show how microscale geometry can lead to vastly
different injection dynamics even if the constituent parameters are held constant, highlighting the
importance of characterizing individual's adipose tissue structure in the development of personalized
therapies.

framework using the poroelastic theory.>” While there have
been experimental studies at the macroscale to characterize
adipose tissue mechanics,” imaging an structure studies to get

Subcutaneous tissue, underneath the epidermis and dermis
layers of the skin, is characterized by the presence of adipocyte
cells engulfed in a collagen foam.' Subcutaneous tissue
mechanics play a key role in many physiological and clinical
settings such as drug delivery,” especially due to the rising
adoption of auto-injector devices.’ Similar to other biological
tissues, the subcutaneous tissue mechanics are governed by the
geometry and mechanical properties at the microscale. In the
case of subcutaneous tissue, the overall mechanical properties
stem from the individual properties of adipocytes, collagen,
and, to a lesser extent, other constituents like GAGs, elastin,
among others.”*” Individual constituent properties are then
nonlinearly coupled through the geometry of the adipocyte
packing. At the macroscopic scale, on the order of centimeters,
the tissue can be described within a continuum mechanics
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the geometry of adipocytes,® and characterization of individual
cell mechanics,” little has been done to connect the two
scales.”"° This is particularly important because in many cases
it is impossible to get enough tissue to do mechanical testing,
but it is feasible to image the structure in small biopsies.""
Additionally, there are changes in microstructure of adipose
tissue with age, sex, and disease.®'*"® Thus, structure-function
models relating adipocyte packing to macroscale mechanical
behavior can shed light on adipose tissue disease and improve
design of drug delivery devices.

At the macroscale, subcutaneous tissue undergoes large
deformations, including large volume changes, especially dur-
ing drug delivery, and has to be modeled as a poro-hyperelastic
material.>'* For example, experimental work on subcutaneous
tissues from pigs and humans has shown that adipose
tissue can deform up to ~200% before failing under uniaxial
tension.’™'® The response is nonlinear, consistent with the
presence of a collagen foam which shows strain stiffening.*®
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The mechanical behavior of adipose tissue has been shown to
be isotropic, consistent with an isotropic packing of adipocytes
at the microscale."””*® During drug injection, volumetric strains
can achieve up to ~50%. Energy dissipation in adipose tissue
can be captured within the poro-hyperelastic framework
through the fluid flow in the interstitial space."®*° Additional
energy dissipation mechanisms such as damage'® and
viscoelasticity”>*' can become relevant under certain loading
conditions but are not considered in the present study.

Adipocyte packing geometry is a key indicator of age, sex,
and disease which, among other effects, is reflected in changes
of the tissue biomechanics.”*> Adipocyte volume and number
increase concomitantly with age until adulthood, when these
metrics stabilize.?*** However, a hallmark of metabolic disease
is adipocyte hypertrophy, i.e. increased adipocyte size, as
opposed to hyperplasia (increase in adipocyte number while
keeping individual cell volume constant).® Adipocyte physio-
logy is strongly regulated through sex hormones, which leads to
notable differences between males and females with regards to
adipose tissue.”***> For example, pre-menopausal women tend
to show increased subcutaneous adipose tissue storage com-
pared to visceral adipose tissue, whereas the opposite is true
in men. Interestingly, subcutaneous tissue is less prone to
contribute to insulin resistance and metabolic disease com-
pared to visceral adipose tissue.*® Adipocyte sphericity has been
quantified to a much lesser extent than adipocyte size, but it is
hypothesized that dysfunctional adipose tissue remodeling can
lead to a loss of sphericity of adipocytes.™

This study presents a multiscale model for subcutaneous
tissue that can help us understand its homogenized mechanical
behavior based on its microstructure. The microstructure of
subcutaneous tissue consists of a Laguerre packing of adipo-
cytes'”*” in a collagen foam." To derive the homogenized behavior
of subcutaneous tissue, multiple representative volume elements
(RVE) of the subcutaneous tissue microstructure were generated
by sampling the geometry space of Laguerre packings.?*° Using a
Gaussian process (GP) model,*® we interpolated the response
across RVEs to understand the effect of geometry on the homo-
genized mechanical response. We showcase the utility of the
homogenized model by conducting finite element simulations
on the open-source platform FEBio,”" using a custom implemen-
tation of the Blatz-Ko material model,* informed by the GP. The
multiscale model developed in this study has several potential
applications. For instance, predicting the mechanical behavior
of subcutaneous tissue during drug injection can be used to
optimize auto-injector devices for specific patient populations.*®

2 Methods

2.1 Microstructural model and RVE generation

Subcutaneous tissue is composed of adipocytes in a collagen
foam. Cellular packings have often been described with Voronoi
tessellations.>**> However, Voronoi packings are too restrictive to
capture the geometry of cellular tissue such as adipose tissue.*®
Laguerre packings are more general, they encompass Voronoi
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tessellations but, moreover, are able to capture arbitrary packings
of convex polyhedra.*” The microstructure of a Laguerre tessella-
tion can be statistically described assuming the cells have
log-normal distributions®® for the equivalent diameter and
sphericity.>” The mean equivalent diameter®

() = <(6V<>)> o

n%(6V<f>).%
(8) = o ) ()

and the standard deviation of both (assuming a log-normal
distribution), are the four parameters that define the geometry
of the RVE.** In eqn (1), (2) V' and A are the volume and surface
area of a cell respectively. The mean equivalent diameter (d) and
mean sphericity (S) will simply be denoted as d and S respectively
unless otherwise specified.

The operation (e) in eqn (1) and (2) denotes averaging and is
defined as

mean sphericity,"

) =13a0 ®)

where n is the number of cells in a given RVE.

Adipocyte equivalent diameters have been observed to range
from 34 um to 126 um®*®**2 based on histology images. The
size of the adipocytes has been observed to have a strong
correlation with BMI and fat content.>>** The value for spheri-
city has been observed to range from 0.78 to 0.85," although
there is limited information on values for this parameter.

Neper,"* an open-source software package for polycrystal
generation allows us to create RVEs based on the four para-
meters that define the geometry. Based on the Latin hypercube
sampling algorithm, 400 combinations of d, dyq, S and Sgq
were generated, where (e)gq stands for the standard deviation
of the given geometric variable. The boundaries for these
parameters, shown in Table 1, were chosen such that they will
allow us to explore within the values reported in the literature
but we extend the limits to unreported results to capture a
much wider range of geometries. Based on these parameters,
fully periodic RVEs with side lengths of [, = 0.5 mm were
created. This size allows to capture the behavior of subcuta-
neous tissue, as smaller RVEs would not be statistically repre-
sentative. In the iterative creation of RVEs in Neper, discrepancies
may arise between the input geometry parameters and the final
parameters of the RVE. For the results below, the d, dsq, S, and

Table 1 Range for geometry parameters determining the Laguerre
packings

Parameter Min. value Max. value
d [pm] 25 140

dgid [um] 1 20

S 0.75 0.95

Sstd 0.001 0.04

This journal is © The Royal Society of Chemistry 2024
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Ssa are recalculated using eqn (1) and (2) after the generation of
each RVE.

In addition, to consider cell allocation and the significant
impact of spatial arrangement on the nonlinearity of the struc-
tural behavior of loaded cells, the seeding point of the RVEs were
varied three times while keeping the four geometric inputs
constant. This approach takes into account research findings that
highlight the pronounced influence of spatial arrangement on the
constitutive behavior of individual cellular components.”** As a
result, a total of 1200 RVEs were generated to capture the range of
possible configurations. After this, all the RVEs with p greater
than 32000 cells per mm® were discarded as they are computa-
tionally expensive to run and not physiologically relevant. Based
on®'84142 we should expect the cell density to vary from 1000 to
8500 cells per mm® for subcutaneous tissue. Nevertheless, we
extend the study to account for RVEs with higher p, as mentioned,
up to 32 000 cells per mm?®. Fig. 1 shows possible configurations of
the microstructure of subcutaneous tissue by varying a single
parameter at a time with respect to their mean value.

2.2 Elastic behavior

The changes in cell volume are associated with adipocyte
deformation, whereas the deformation of faces of the polyhedra
across cells can be associated with the deformation of the
collagen foam.*® Thus, the energy associated with the RVE
can be decomposed into two energy components

V=Ygl (4)

where /" is the energy associated with the changes in the
volume of the adipocytes given as

Y= kv<[](£) - 1)2>’ [5)
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and y/“ is associated with the changes in the area of the collagen
sheets enclosing the adipocytes

Vo= k(S — 1), (6)

J© = v, /vy and J9 = A,/Ax are the relative volume change and
area change respectively of each cell ¢ where the subscript X is
the cell property in the reference configuration and the sub-
script x is the cell property at the deformed configuration.

The material elastic properties, k, and k, capture the
response of the material to changes in volume and area,
respectively. Since the effect of geometry is the focus of this
study, these properties are kept constant. The chosen values for
k, and k, are 0.3 kPa and 0.7 kPa, respectively, which produce
realistic stress values for subcutaneous tissue under a hydro-
static pressure load."* However, further research is needed
to determine more appropriate values for these material
properties.

The Cauchy stress can be calculated in terms of its principal
components by taking derivatives with respect to the principal
stretches of RVE deformation,*”

o

o = ']_1)”‘(9/1,'7

(7)
where /; are the principal stretches of the deformation and
J = A1x45 is the overall volume change. We can apply the
central difference approximation such that eqn (7) can be
approximated as

W(ki+e) —(ki—¢)

ot =J" % (8)

taking ¢ = 107® in this study. The reason for the numerical
approximation of the stress is that we can only compute the

(d)

Fig. 1 RVEs based on Table 1 by setting all parameters to their mean ((d), (dsa). (S). (Ssta)) except: (@) d = 1.2 (d), (b) dstqg = 1.2 (dstq). () S = 0.99,
(d) Ssta = 1.2 (Ssta), (€) d = 0.8 (d), (f) dsta = 0.8 (dsta), (@) S = 0.8 (S), (h) Sgta = 0.8 (Scta)-

This journal is © The Royal Society of Chemistry 2024
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energies through evaluation of a forward equilibrium simula-
tion and thus the derivatives (7) cannot be directly evaluated.
Nonetheless, we can run simulations for different 1; and
compute the energy, then estimate the stress numerically.
The notation of is chosen to link this stress to a poroelastic
framework.” In poroelasticity, the total stress ¢ = ¢° — pI, where
p is the fluid pressure and ¢° is the elastic stress, associated
with the deformation of the material only.

2.3 Simulation of RVE deformation

In order to study the volume change of subcutaneous tissue
under drug delivery injections, equi-triaxial periodic boundary
conditions (PBCs) were applied to the RVEs. This is an impor-
tant consideration from an application standpoint as it mimics
hydrostatic pressure loading which occurs at the time fluid is
injected in the subcutaneous tissue space. Such a deformation
has the deformation gradient

A0 0
F=|0 4 0 (9)
00 2

which was applied to all RVEs. Stretches were gradually
increased A = 1.0, 1.05, 1.10, 1.15, and 1.20 and equilibrium
reached at each deformation before moving to the next level of
deformation. We consider a poroelastic framework.> Assuming
zero mixture normal traction then the observed stretches can
be seed as the result of uniform pressure ¢° = pI.

With the consideration of tri-axial PBC and isotropy of the
material we can simplify the notation to ¢° = 6§ = 65 =05 and 1 =
A1 = Ay = /3 and drop the i index.

Dynamic relaxation was employed to obtain the equilibrium
configurations.”® To ensure PBCs while otherwise allowing
nodes on the boundary to move freely, minimization of (4)
was done by iteratively modifying nodal positions with a force
stemming from the variation of the energy, plus a constraint
force,

oxi  Ox! (10)

X+ = xi —dr (&ﬁv i 0‘//‘? n FPBC>.

In eqn (10), X' are the current nodal coordinates in a matrix

of size M x 3, with M the number of nodes; d¢ is a pseudo-time

to reach the equilibrium solution iteratively set empirically to

0.0015, and F*®¢ are the forces needed to impose periodic
boundary conditions

FIPC = 27 (] =) — (1 +dD6))

FypCt = 2™ ((nf =) = o+ dney?) )
such that they are equal to 0 at equilibrium. »” and n? are
coupled sets of periodic nodes of the RVE that define the
coordinates of the end-points of a boundary edge where p
and q are index numbers that can range from 1 to the number
of nodes at the boundary. For instance, n” returns the global
nodal index and n# returns the coordinates of said node. &7 is

4200 | Soft Matter, 2024, 20, 4197-4207
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the periodicity vector associated with the node pair n’ and n?
specifying in which direction the nodes must satisfy the PBC
constraint. The components of @¥9 can only be —1, 0 or 1. This
information is extracted from the Neper file generated when
creating the RVEs. %€ is a penalty factor. We set ¢ = 100
after trial and error. The higher the ¢ the better the PBC
constraint is enforced, but the slower convergence becomes.
We found empirically that 7€ = 100 satisfies the PBC and has
a convergence that we could tolerate with our computational
budget. For a particular stretch, the change in length of the RVE
is calculated as dI = Iy(4 — 1).

To calculate the partial derivatives dy"/0x and Oy/“/0x, we
employ the convex hull algorithm® available in ref. 50 to
determine the volume and area of each cell based on the nodes
that compose them. The dynamic relaxation eqn (10) is then
iteratively solved until the norm of dt(0y"/ox + dy?/ox + F*®°)
reaches a set tolerance value (10~°). As shown in Fig. 2, the
volume and area of each cell changes after deformation. While
finding the final nodal position, we allow the convexity of each
cell to drop, if necessary, with respect to the original Laguerre
packing, for which all cells are convex polyhedra.

2.4 Gaussian process interpolation

After filtering the RVEs with acceptable density p, data was
generated with 45% of the data points (N = 2359) after
randomly mixing the data set. The remaining 55% of the data
points were set aside for model validation, resulting in an
RMSE value of 0.4556 kPa. To better understand the relation-
ship between geometry and mechanical response, a GP surro-
gate was implemented. A GP is a random process that is
characterized by sampling functions f(£) such that at a given
point ¢ the samples f(&) have a normal distribution,

S (&) ~ N (1, K) (12)

where p(¢) is a mean function, here taken initially to be zero
because we have no prior information, and K(¢&,£’) is a covar-
iance function. The GP has 5 inputs, d, dgq, S, Ssta Which are the
parameters that define the geometry of the microstructure, and
/A which is the stretch of interest. These inputs are denoted with
¢ to distinguish them from the coordinates x. The covariance
matrix is based on a radial basis function (RBF) kernel
following,*>*" under the assumption of smoothness of the
stress as a function of the inputs. The components of the
covariance matrix between two points ED and W) are

Ky = k(&,¢0:0)
1 (13)
= Srzefi(

gm,a/))TA—l(5@'),5(0)
with A = diag(A4, Ay, Az, A4, A5), and each A; capturing the
squared characteristic length-scale of each input and { denot-
ing other hyperparameters of the kernel such as the signal
strength.

Note that due to the assumption of the noisy observations
we have an extended covariance X = K + 0,521, which is the sum
of the GP covariance matrix plus Gaussian noise o.,s>. Given a

This journal is © The Royal Society of Chemistry 2024
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(a)

Fig. 2

(a) Cell volume plotted over the initial and deformed RVE, (b) corresponding distribution of relative volume change of the cells J©
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the reference and deformed RVEs, and (d) distribution of relative area change J over the cells after a deformation of 4 = 1.15 for a random RVE
characterized by d = 91.8 um, dgtg = 12.9 um, S = 0.89, Ssq = 0.015 with n = 291.

. &™), and corresponding
— [O_e(l], 0_6(2)’

set of input data = = [¢W), ¢@)
observations of the stress at those inputs Y
o“™), the predictive mean and variance for a new input ¢* are

fprea (E¥) = K27, (14)
Oprea’(EW) = K(EW, E950) 4o — K27k (15)

In (14), the vector k is
k= (KW, €950, .., KEW, &5 Q). (16)

2.5 Finite element model

We aim to replace the microstructural model of the subcuta-
neous tissue with an equivalent homogenized response to
enable finite element simulations. This will enable us to find
effective elastic properties to perform complex simulations
related to drug injection physiology while using the inferred
behavior due to the microstructure. To accomplish this, we
assume that the subcutaneous tissue behaves as a Blatz-Ko
material with strain energy defined as*”

&([1 —_ 1= V*l + - 2V]1 2\7)
2 v

1 I 1-2
+M(_2_1_ + VII 2t>

Ppk =
(17)

I

in terms of the invariants of deformation I;, and the parameters
are the shear modulus g, the Poisson ratio v, and the scaling

This journal is © The Royal Society of Chemistry 2024

parameter ¢. The elastic stress follows

I

—2v
T2y I is the identity matrix, b = FF" is the left
Cauchy Green deformation tensor. We can then apply deforma-
tion gradient (9) to eqn (17) and (18) to obtain the solution for
the equi-triaxial problem.

We can find the optimal g, ¢, and v by minimizing the root

mean square error

1 S i ~e(i))2
RMSE = NZ(onJU) (19)

i=1

where ¢°@) are the stresses predicted by the GP (the mean
prediction fipreq) and 6°@ are the predicted stresses with the
Blatz-Ko model for a given triaxial input 4 and parameters
U, ¢, and v.

The Blatz-Ko model fitted to the GP has the advantage that
it generalizes stress predictions for arbitrary b and not just tri-
axial deformation. It can be implemented as a user material
into finite element packages such as the popular FEBio
package.*’ To model drug injections, the model has to be
poroelastic and, unlike the equilibrium equations solved for
the microstructure, has to account for fluid flux. Following
extensive work in the literature by us and others,>* perme-
ability can be effectively modeled as a function of the volume
change J = detF using the Holmes-Mow model.>® We assume
the mean permeability parameters reported for porcine

Soft Matter, 2024, 20, 4197-4207 | 4201
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Table 2 Blatz—Ko effective elastic parameters

d=59.6+ 7.8 um d =752 + 24.28 pm d = 105.6 + 14.7 um

Parameter S = 0.82 + 0.0306 S = 0.82 & 0.0306 S = 0.82 + 0.0306
w[kPa]  2.329 2.222 1.777
0 0 0
v 0.397 0.388 0.386
RMSE [kPa] 0.0455 0.0136 0.0253

subcutaneous tissue.*> We perform a simulation where a
subcutaneous tissue sample sees a pressure similar to an
injection pressure P = 2 kPa. The material parameters used
for the simulations are the stiffer and softer materials
reported in Table 2. Since permeability is out of the scope of
this study it will be assumed to be independent of RVE
microstructure.

3 Results

3.1 RVE deformation and homogenized response depend on
packing geometry

The RVEs captured the entire range of geometries according to
Table 1 and illustrated in Fig. 1. When subjected to tri-axial
deformation, individual cells showed highly heterogeneous
deformation. For instance, as shown in Fig. 2, for a tri-axial
deformation given by A = 1.15, the corresponding average
volume change that is expected in the RVE is J = 1.52. However,

~
(%)
~

(b)
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as seen in Fig. 2b, for a random RVE in the set, the individual
change in cell volume ranges from almost no volume change
J9 =1, to extreme deformations of J) = 4.13. The average is
indeed () = 1.52 as expected from the boundary conditions.
The area, similarly, has a wide distribution, from J%) = 1 to J¢) =
2.56 for this particular RVE (Fig. 2d). Variation in volume and
area changes stems from the variability in the cell shape and
size within an RVE which can lead to cell jamming.**> In the
extreme case of a perfect packing, all cells would deform
equally. This underscores the importance of sampling random
packings as occurs in adipose tissue.

Having generated 1200 RVEs spanning the geometries in
Table 1 and done simulations on 1068 of them (based on the
cutoff density), we can ask how exactly do the adipose tissue
mechanics depend on geometry? The GP was trained on the
simulation data from the RVEs at the five different stretches A =
[1.0,1.05,1.10, 1.15, 1.20] for a total of 2359 data points. The GP
surrogate then allowed us to interpolate the stress as a function
of geometry and deformation. As depicted in Fig. 3a, stress
increases nonlinearly with stretch for the mean values of the
other parameters. Fig. 3b and d show the dependence on cell
size and sphericity (with all other inputs set at their mean
value). Size and sphericity contribute significantly to the homo-
genized response. A decrease in cell size leads to significantly
higher stresses somewhat proportional to d~'. The propor-
tionality of mechanical properties to d~*/* is called the Hall-
Petch relationship and it was established originally for the yield

8
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6
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Fig. 3 Stress response by fixing all parameters but (a) 4, (b) d, (d) S. The shaded blue region in (a), (b) and (d) shows the 95% confidence interval from the
GP. (c), (e)—(i) Contour plots for stress when two of the inputs are varied while keeping the rest at their mean value and 1 = 1.15.
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stress of metals, but extended to other mechanical properties
since then.>®™ In the adipocyte system, the increase in stress
with d~*? is likely due to the increase in collagen area with
respect to the adipocyte volume. An increase in sphericity
reduces the stresses. Fig. 3g shows the interplay between
sphericity and cell size and shows that cell size has a greater
effect. In particular, for high cell sizes, the sphericity effect
becomes almost negligible. For the lower range of cell size, on
the other hand, sphericity can become important in tissue
softening.

The effect of the other parameters and their pairwise cou-
plings are shown in Fig. 3c, e-i. We show that the standard
deviations of the geometry can have an effect, although less
pronounced, on the homogenized response. For example, the
standard deviation of the cell size dyq has a comparable impor-
tance to sphericity (Fig. 3e). Distributions of cell size with higher
variance (higher dg4), increase the stress with respect to sphericity,
see Fig. 3e. For metals, wider distributions of grain size (higher
da), reduce the yield strength when compared to mean grain size
d.>®* This is not fully evident in our system. In Fig. 3h, the size d
has the dominant effect. For smaller adipocytes, increasing the
width of the distribution indeed increases the stress slightly with
respect to d as illustrated in Fig. 3h.

The other parameter characterizing the variance in adipo-
cyte packing geometry is the standard deviation of the spheri-
city Sga. Ssta has an influence on the elastic response
comparable to sphericity S (Fig. 3f). For lower sphericities S,
the stresses are higher. For packings with more spherical cells
on average, increasing the variance of the sphericity distribu-
tion reduces the stress even further (Fig. 3f). Experimental
characterization has reveled correlations between sphericity
and standard deviation of sphericity for several epithelial
tissues, suggesting that not all combination of geometric para-
meters are equally likely in nature.>® Recent experimental work
measuring stiffness of epithelial packings with atomic force
microscopy (AFM) has shown that reducing sphericity indeed
results in stiffer tissue.*®®

The bottom line, however, is that cell size is the most
important contributor to the homogenized response (Fig. 3g-i),
with the other three geometric parameters having smaller but
comparable sensitivity.

We generated a very wide range of microstructures and
interpolated them with the GP surrogate in order to predict
the stress-stretch response given a new, potentially unseen,
microstructure. In particular, we can approximate geometry
parameters from histology images and use our GP surrogate
to estimate their equi-triaxial deformation. The reported values
for statistics of different histology images for subcutaneous
tissue in previous studies®'® provide the necessary input to
predict the stress-stretch response for those histology images,
as shown in Fig. 4.

3.2 Finite element simulations of drug delivery reflect
microstructure effects

Even though we only explore the tri-axial deformation in the
RVE cases, as mentioned in the Methods section, we can extend

This journal is © The Royal Society of Chemistry 2024
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Stress [kPa]

1.00 1.05 1.15 1.20

Fig. 4 Equivalent diameter and width of the size distribution have an
effect on the stress response. Geometric values were taken from thorough
characterization of adipocyte size in the literature. A sphericity of 0.82 +
0.0306 was assumed.'®* The shaded regions depict the 95% confidence
interval. Histology slide was taken from the experimental work® on
porcine adipose tissue to showcase the typical packing of adipocytes in
this tissue.

to arbitrary deformations by fitting a constitutive model such as
Blatz-Ko.*> Extensions of the GP to arbitrary deformations
would be possible by building GP energies in terms of invar-
iants of deformation rather than only tri-axial stretch, and
imposing suitable regularizations such as polyconvexity and
other regularizations such as minimizaiton of second derivatives
(to promote linear behavior outside the training region).>*>
We found that the Blatz-Ko model was actually a very accurate
model for tri-axial deformation as see in Fig. 5a and b. we can find
the optimal Blatz-Ko material parameters for a few RVEs as shown
in Table 2. The model was implemented as a user material in
FEBio. Fig. 5c shows the corresponding mesh used to verify the
implementation by doing the quasi-static inflation with zero
traction at all faces. The uniform solution behaves exactly as
the GP.

We picked two extremes corresponding to very different RVE
microstructures. For a microstructure d = 59.6 um, dgq =
7.8 um, S = 0.82, Ssq = 0.0306, captured with a Blatz-Ko model
w = 2329 kPa, v = 0.397, ¢ = 0, the tissue homogenized
properties are stiff. We simulated an injection pressure of
2 kPa at the center of a 1 x 1 x 1 mm?® domain with symmetric
boundary conditions on the sides, fixed vertical displacement
at the bottom boundary, and zero fluid pressure at the top
surface as seen in Fig. 6a. The pressure leads to fluid flux

Soft Matter, 2024, 20, 4197-4207 | 4203
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Fig. 5 (a) RVE characterized by d = 59.6 + 7.8 um and S = 0.82 + 0.0306,
(b) corresponding GP prediction, which aligns with the FEBio implementation
of the Blatz—Ko material for the case of uniform fluid pressure loading (c).

(arrows in Fig. 6a, right column), which expands the tissue near
the injection point. Over time, the pressure iso-contours extend
outwards as the whole domain expands toward equilibrium.
Volume changes at the injection site are J = 1.15, decaying to
1.11 and 1.07 by 0.22 and 0.43 mm respectively.

For a microstructure characterized by d = 105.6 pm, dgq =
14.7 pm, S = 0.82, Ssq = 0.0306, the material is soft and
captured with Blatz-Ko parameters p = 1.777 kPa, v = 0.386,
¢ = 0 (Fig. 6b). Injection into this subcutaneous tissue material
of a fluid pressure P = 2 kPa at the center of a domain leads to
volume changes up to J = 1.26 near the injection point. Because
volume changes increase permeability,®* the pressure decays
rapidly away from the injection point, accompanied by larger
fluid fluxes. Overall, the softer tissue acquires greater fluid
volume for the same pressure. Even at 0.45 mm from the
injection site at ¢ = 10 seconds, the volume change is J = 1.2,
indicating that the fluid has reached almost the entirety of the
domain. It is also worth noting that the Green Lagrange strain
tensor at the injection location was close to triaxial, justifying
the training of the model based on triaxial deformation of the
RVEs. For the stiffer material, the strain at the center was E,, =
0.045, Ey, = 0.045, E,, = 0.054, E;, = 1.9 X 10 %, E, = 6.1 x 10,
Ey, = —6.7 X 10~°, while for the softer material the strain at the
center was Ey, = 0.067, E,, = 0.067, E,, = 0.079, Ey, = 1.9 X 10’4,
E, = 2.7 x 10°% E, = —4.5 x 10 *. In summary, just by
changing the microstructure, the response during drug injec-
tion can be remarkably different as illustrated in Fig. 6, even if
all the material parameters of individual constituents are
kept fixed.

4 Discussion

In this study we constructed 1200 RVEs of Laguerre packings to
describe the possible geometries of subcutaneous tissue.**?°

4204 | Soft Matter, 2024, 20, 4197-4207
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Adipose tissue microstructure was parameterized by mean cell
diameter, sphericity, and standard deviation these two geo-
metric quantities. The RVEs were subjected to tri-axial loading,
an expected deformation mode during drug delivery, whereby
adipose tissue locally expands near the injection site due to an
increase in fluid pressure.” The equilibrium configurations of
the cells in the packing upon deformation were obtained by
minimizing the energy of the system and imposing periodic
boundary conditions. After sampling a large range of possible
microstructures, we were able to the interpolate between the
geometry and the homogenized stress response with the aid of
a GP surrogate.®® We also extended from the RVE simulation to
finite element simulations of drug delivery leveraging the
Blatz-Ko constitutive model.**

A hallmark of metabolic disease is the increase in adipocyte
size with respect to healthy individuals.”® Increase in adipose
tissue volume due to hypertrophy rather and hyperplasia
(increase adipocyte number via cell division) does correlate
with adipose tissue dysfunction.**** Here we showed that the
increase in adipocyte size should lead to softening of the tissue
all other factors remaining constant. The proportionality of
d~*"* is known as the Hall-Petch relationship for linear elasto-
plastic polycrystaline materials.”” However, we show that size
alone is not the best predictor of adipose tissue biomechanics
due to the nonlinear coupling to other geometry parameters.
For instance, comparison of size and sphericity shows that
sphericity can become important, with more spherical cells
reducing the stress compared to elongated cells.®® In metabolic
disease, the reduced proliferation of cells and their enlarge-
ment can lead to more disorganized geometry, overall reducing
sphericity,"”® which would lead to an increase in stiffness,
counteracting to a small extent the effect of the larger cell size.
Moreover, mean size and mean sphericity are, by themselves,
not fully predictive of the biomechanics of the tissue: spread of
the distribution of size and sphericity is also crucial (see Fig. 3).
Even though we show the importance of these four geometric
parameters, there is a dearth of detailed data of the 3D packing
of adipocytes and changes associated with age and disease.®®®

One important assumption employed in this work was that
material parameters of individual constituents remained con-
stant. This allowed us to isolate the effect of geometry alone on
the homogenized response. However, it is well-known that
metabolic disease affects not just adipocyte size but also
triggers a pro-fibrotic response that can alter the composition,
thickness, and mechanical properties of the collagen foam
surrounding adipocytes.®”*® Adipocytes themselves can exhibit
changes in mechanical properties as a function of lipid droplet
numbers per adipocyte, a sign of adipocyte differentiation.'®
Thus, future work should further extend the present model to
sample the space of material properties on the homogenized
response.

Applications of interest, such as drug delivery to the sub-
cutaneous tissue, require large scale simulations for which
modeling individual adipocytes would not be feasible.®® Thus,
there is a need to obtain homogenized subcutaneous tissue
properties.*>**7%71 Multiscale models to tie the cell to the

This journal is © The Royal Society of Chemistry 2024
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(a) Injection into a stiff adipose tissue domain based on the packing geometry d = 59.6 um, dgtg = 7.8 um, S = 0.82, Ssq = 0.0306 corresponding to

a stiff microstructure. Injection is controlled by a pressure of 2 kPa at the center of the domain, which leads to local volumetric expansion which extends
to the surrounding tissue as time progresses. (b) The same boundary conditions but for a packing specified by d = 105.6 um, dgiq = 14.7 um, S = 0.82,

Ssta = 0.0306 result in larger deformations and larger fluxes.

tissue scale are often too expensive for many realistic
simulations.”> While it is possible to embed RVEs per inte-
gration point of a finite element mesh,”*””> the advances in
machine learning and data-driven frameworks have resulted in
efficient homogenization tools such as Gaussian process sur-
rogates used here.®® To build a complete model at the tissue
scale, the RVEs generated for this study would have to be
subjected to a large range of deformations and not just tri-axial
loading.**”® Our consideration of tri-axial stretching is moti-
vated by the application of interest, namely subcutaneous
injection.” For the tri-axial deformation, we found that the
Blatz-Ko model offered an almost perfect fit to the GP inter-
polation, and we used this constitutive model to extend the
response to arbitrary loading. The Blatz-Ko model was imple-
mented in the finite element software FEBio through a user
material. Other work in the field of adipose tissue biomecha-
nics has shown that strain energies such as the Ogden model
might be needed to generalize to other deformation modes.”
During drug injections to subcutaneous tissue, the elastic
properties are only partially descriptive of the tissue, the

This journal is © The Royal Society of Chemistry 2024

transport properties being the other set of parameters
needed.”® Permeability of adipose tissue has been reported
across a wide range.”® Only very recent studies have narrowed
down the possible permeability values for adipose tissue,”* but
these studies have ignored any possible coupling with geometry
at the microscale. Here we took the permeability parameters
from the literature,® but additional, non-equilibrium simula-
tions of the RVEs are needed to tie the geometry of the packing
to both the elastic as well as the transport response of the
tissue.

This study is not without limitations, several of which have
already been discussed, such as the emphasis on the elastic
response. Other nonlinearities were ignored, such as other
material models,”” or dissipative mechanisms (viscoelasticity,
damage).”" Finally, experimental work is needed to concur-
rently image the microscale during loading in order to establish
fully calibrated multiscale models.”*”> Additional experimental
work is also urgently needed to characterize the sphericity
distribution in adipose tissue and how this distribution
changes with age, sex and disease.

Soft Matter, 2024, 20, 4197-4207 | 4205


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sm01661g

Open Access Article. Published on 06 March 2024. Downloaded on 8/24/2025 3:12:35 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

5 Conclusions

We used a GP surrogate to interpolate the response of adipose
tissue under triaxial loading across all possible 3D packings of
adipocytes parameterized as Laguerre tessellations. We showed
that mean diameter was the most important determinant of
homogenized tissue response, with proportionality close to the
well-known Hall-Petch relationship of d~*/%. This alone is of
high relevance for the clinical setting because metabolic dis-
ease leads to adipocyte hypertrophy. Moreover, the emergence
of new weight-loss and type-2 diabetes treatments such as
Mounjaro are administered through subcutaneous injections.
We show that coupling adipocyte hypertrophy to multiscale
finite element simulations leads to significant changes in drug
transport. Thus, we anticipate that the present work will spark
new studies to better characterize 3D adipose tissue structure
and constituent properties, as well as contribute to the devel-
opment of patient-specific drug delivery strategies based on
individual’s adipose tissue microstructure.
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