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Geometry, mechanics and actuation
of intrinsically curved folds†

Fan Feng, ‡ Klaudia Dradrach, ‡ Michał Zmyślony, Morgan Barnes and
John S. Biggins *

We combine theory and experiments to explore the kinematics and actuation of intrinsically curved folds

(ICFs) in otherwise developable shells. Unlike origami folds, ICFs are not bending isometries of flat sheets,

but arise via non-isometric processes (growth/moulding) or by joining sheets along curved boundaries.

Experimentally, we implement both, first making joined ICFs from paper, then fabricating flat liquid crystal

elastomer (LCE) sheets that morph into ICFs upon heating/swelling via programmed metric changes.

Theoretically, an ICF’s intrinsic geometry is defined by the geodesic curvatures on either side, kgi
. Given

these, and a target 3D fold-line, one can construct the entire surface isometrically, and compute the

bending energy. This construction shows ICFs are bending mechanisms, with a continuous family of

isometries trading fold angle against fold-line curvature. In ICFs with symmetric kgi
, straightening the fold-

line culminates in a fully-folded flat state that is deployable but weak, while asymmetric ICFs ultimately lock

with a mechanically strong finite-angle. When unloaded, freely-hinged ICFs simply adopt the (thickness t

independent) isometry that minimizes the bend energy. In contrast, in LCE ICFs a competition between flank

and ridge selects a ridge curvature that, unusually, scales as t�1/7. Finally, we demonstrate how multiple ICFs

can be combined in one LCE sheet, to create a versatile intrinsically curved gripper that lifts a heavy weight.

Curved folds lend strength, form and function to surfaces
throughout biology and engineering (Fig. 1), and have been
extensively studied in the beautiful and useful art of
origami.6,11–14 However, not all curved folds are equal. The
defining mechanics of thin sheets is that they are essentially
inextensible, as isometric bend has a much lower elastic cost
than in-plane stretch. Origami artists bend flat paper, making
their folds extrinsic (isometric to the plane) but there is no such
restriction on folds formed by stitching flat sheets,15,16 or by
non-isometric processes such as differential growth17–19 or
moulding. Such processes can thus create intrinsically curved
folds (ICFs), which can only be flattened by stretch, giving
richer geometry and stronger mechanics. Here, we present the
basic kinematic rules for describing and classifying ICFs, which
provide insight into their (lack of) rigidity, and also into their
utility as mechanisms and deployable structures.

An additional motivation for ICFs stems from the topical
field of ‘‘metric mechanics’’,20 which studies flat actuating
sheets that morph into intrinsically curved surfaces. Such
morphing requires a programmed spatial pattern of actuation,

reminiscent of differential growth during morphogenesis, and
has been implemented with swelling-gels,21 phase-changing

Fig. 1 Curved folds in biology, architecture, and engineering. Top: Leaf of Salix
babylonica ‘Annularis’ (S�),1 giant water lilly (A+),2 carambola fruit (S+, S�).3

Middle: LCE ribbon (S�), Cupola, Sedgwick Museum (S+),4 origami tower
(D. Huffman,5–7 extrinsic). Bottom: Top hat (A�),8 tent (A+),9 umbrella (S+).10

Labels (SA/�) show sign/symmetry of the geodesic curvatures.
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liquid crystal elastomers (LCEs),22–24 dielectric elastomers25

and pneumatic baromorphs.26 The generation of intrinsic
(Gauss) curvature gives dramatically strong actuation: for exam-
ple, LCE disks that morph into conical shells can lift 1000�
their weight.27 Thus inspired, we also demonstrate how to
program an LCE sheet to morph into an ICF,28,29 leading to
flat ribbons that macroscopically ‘‘bend’’ into arcs but via
strong Gaussian actuation.

1 Geometry of intrinsically
curved folds

The elementary way to fabricate an ICF is to stitch together two
flat sheets of material along curved boundaries. The seam then
forms an ICF through an otherwise developable surface (Fig. 2).
This approach is routinely used by engineers, architects and
tailors to create intrinsically curved surfaces from flat material.
Before stitching, the boundary of each flat piece (i = 1, 2) may be
assigned a local outward normal m̂i and curvature vector
�kgi

m̂i, so that kgi
4 0 is an inward curvature vector and vice

versa. After stitching, both boundaries must follow the same
(arc-length parameterized) 3D space curve r(l) which defines the
fold line. The resultant ICF geometry is characterized by the
fold’s curvature vector j = r00(l), and, in a cross-section
perpendicular to the fold-line tangent, r0(l), the fold angles ai

between j and each flank. As marked in Fig. 2, a4 0 indicates a
clockwise rotation from j to flank (around the tangent), so the
total fold angle is a1 � a2.

The geodesic curvature kg of a curve on a surface is com-
puted as the projection of its 3D curvature vector into the
tangent plane. However, a foundational result in differential
geometry dictates that kg is an intrinsic quantity that is invar-
iant under isometric deformations.30 Accordingly, in the ICF,
the geodesic curvatures of the original flat boundaries, kgi

, must
match the projection of j into the respective flank:

kg1
= |j|cos a1, kg2

= |j|cos a2. (1)

For any proposed fold line with |j| Z max(|kg1
|,|kg2

|), one may
apply these kinematic relations to compute ai(l). Furthermore,
since the flanks are developable and hence ruled, their form is
then determined, even far from the fold. Precisely, the angle

bi(l) between ruling and fold (Fig. 2), may be computed
(ref. 12, ESI,† Section S1) in terms of the fold torsion t(l):

cot bi ¼
a
0
i ðlÞ � tðlÞ
jjðlÞj sin aiðlÞ

: (2)

Another celebrated intrinsic property of surfaces is Gaussian
curvature, K, computed as the product of the two principal
curvatures. An ICF’s Gaussian curvature defies direct computa-
tion due to the sharp apex. However, the Gauss–Bonnet theo-
rem allows us to compute the total curvature O ¼

Ð
KdA in any

patch of surface from the geodesic curvature of its boundary.
A simple application to ICFs gives the distribution of total
curvature along the fold as29

dO
dl
¼ kg1 þ kg2 ¼ jjj cos a1 þ cos a2ð Þ; (3)

so any fold with kg1
a �kg2

is intrinsic with singular K.

2 Kinematics and classification of
curved folds

Eqn (1) reveals that the kinematics of an ICF are governed by its
two geodesic curvatures. To explore what deformation are
permitted, we focus on homogeneous ICFs, made by joining
pieces with constant kgi

(annular sectors) along the arc of a
circle, leading to uniform fold angles. Such ICFs can also be
fabricated straightforwardly by joining annular arcs of craft
paper (ESI,† Section S6), enabling observations of kinematics
and mechanics. Five ICF categories emerge, based on combina-
tions of kgi

, as illustrated in Fig. 3 and Movies M1–M5 (ESI†).
Regular surfaces are often classified by the sign of their

Gaussian curvature, with K = 0 (flat), K 4 0 (cap-like) and K o 0
(saddle-like) giving different geometry and mechanics. Accord-
ingly, we first consider a K = 0 fold (origami case in Fig. 3) which
requires kg1

= �kg2
� kg. The two initial pieces are thus

Fig. 2 Construction of a general ICF. Fig. 3 Curved-fold origami and the classification of ICFs.
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complimentary, and can fit together whilst flat, confirming the
fold is extrinsic. The kinematic constraints (eqn (1)) give the
fundamental rules of origami folds,11,12 a1 = cos�1(kg/|j|), and
a2 = p � a1. The least curved state, |j| = kg, is the completely flat
state (a1 = 0 and a2 = p), while, during folding, increasing
curvature creates an increasingly sharp fold, with the fold-line
bi-normal bisecting the flanks (Movie M1, ESI†).

Alternatively, an elementary K 4 0 fold can be made by
taking kg1

= kg2
= kg 4 0, a symmetric positive ICF (S+). Eqn (1)

now requires a1 = �a2 = cos�1(kg/|j|), so j itself bisects the
flanks, ensuring an equal projection into each (Fig. 3 (S+),
Movie M2, ESI† and Fig. 1 cupola/umbrella). The least curved
state, |j| = kg, is a flat-folded closed-book configuration, and
increasing |j| requires the book to open, tending towards an
unfolded state, a1 = �a2 = p/2, as |j| diverges. The fold line and
apex curvature have the same sense, as expected for K 4 0
surfaces, and these isometries can be interpreted as trading
fold-line curvature and folding angle at constant K. A corres-
ponding symmetric negative fold (S�) is made as kg1

= kg2
�

�kg o 0, giving a fold with almost identical behavior (Fig. 3
(S�), Movie M3, ESI† and leaf in Fig. 1) except the book-like
state is inverted a1 = �a2 = p and, as the curvature increases the
flanks approach the unfolded a1 = �a2 = p/2 from above.

However, ICFs are not fully characterized by their Gaussian
curvature, as eqn (1) applies to each flank individually. Thus
folds with asymmetric curvatures (A�) behave differently. We
focus on two prototypical examples made by joining a straight
strip, kg1

= 0 with an anulus of each sign kg2
= �kg (Fig. 3 A+ and

A�, Movies M4, M5, ESI†). Either way, the folding condition on
the straight strip requires a1 = p/2 so j has zero projection. The
least curved states still have |j| = kg, giving a2 = 0, �p
respectively, so the A+ fold resembles a capped cylinder
(Fig. 1 lilly pad), and A� a flanged pipe (Fig. 1 top hat). Thus,
asymmetric ICFs have finite fold angles even in their least
curved state. As previously, increasing |j| causes unfolding,
with the highly curved but completely unfolded state a1 = p/2,
a2 = �p/2 reached as |j| diverges.

The essential kinematic feature of ICFs is that fold angle
dictates curvature and vice-versa, giving a continuous family of
isometries in which the two change in tandem (Movies M1–M5,

ESI†). ICF’s are thus simple mechanisms, and a small actuator
controlling fold angle can be used to manipulate the fold’s
curvature. Furthermore, if the fold-angle is fixed then any
deviation of the curvature from its isometric value is strongly
resisted. A simple illustration of this mechanism principle is
that a symmetric positive fold fashioned from paper can be
used as a simple but effective grabber (Fig. 4A and Movie M6,
ESI†).

For symmetric folds, unbending of the fold-line (reducing
|j|) culminates in a flat-folded state. Symmetric folds are thus
attractive deployable structures, which can be constructed
whilst flat, then unfurled into a 3D Gauss-curved surface.

The different ICF catagories also have different mechanical
responses. If a load seeks to unbend an asymmetric ICF, it will
deform isometrically until it locks rigidly in its least curved
state—a 3D shape with finite fold angle—with further unbend-
ing requiring stretch. In contrast, unbending a symmetric fold
culminates in the flat-folded state that, mechanically, is a single
floppy sheet that can easily buckle to accommodate further
unbending. This pattern is confirmed by simple tensile tests
(Fig. 4B). Interestingly, both A+ and A� folds do eventually
buckle out of plane into inhomogeneous ICF geometries, but
A+ are considerably stronger than A�. The key difference is that
further unbending requires tensile stretches in the annular
flank of A+, but compression in A�, which promote buckling.
A+ folds are thus particularly suitable for applications requiring
rigidity or strong actuation.

3 Flank bending energy

An ICF formed by joining inextensible flat sheets is limited to
the isometric conformations discussed above. However, these
configurations are not elastically equivalent, as they have
different bends in the flanks. Quantifying this bend energy
allows one to assess which isometry will be observed whilst
unloaded, and the ICF’s stiffness as it deforms. When a flank is
bent from the initial flat state to form an ICF, it stores elastic

energy E ¼
Ð1
2
Dk2dA; D being flexural rigidity, k the single

finite curvature of a developable surface, and the integral is

Fig. 4 (A) Bending mechanism of the symmetric positive (S+) fold trading curvature vs fold angle, and a corresponding paper grabber. (B) Experimental
tensile strength measurements for the four types of folds. (C) (i) Paper strips in 2D with in-homogeneous and asymmetric kgi

. (ii) Resulting ICF has a
curved ridge with non-zero torsion.
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over flank area. In the special case of a homogeneous ICF, the
whole ICF is a surface of revolution with conical flanks con-
nected by a circular fold. In this case, the bending energy of an
individual flank (per-unit length of fold) may be precisely
evaluated as

rfi ¼
D

2
jjj2 � kgi

2
� �log 1� kgiwi

� �
�kgi

� Dwi

2
jjj2 � kgi

2
� �

; (4)

where wi is the width of the flank, and the second form is
accurate in the narrow flank limit. As expected, these expres-
sions are zero if |j| = kgi

, when the flank lies flat, and penalize
curvature in excess of this. If the fold of the ICF is treated as a
free-hinge, then the resting configuration will minimize the
bending energy of the two flanks, giving |j| = max(|kg1

|, |kg2
|).

In symmetric folds, this corresponds to the fully closed state,
while in asymmetric ICFs it gives the locked limiting state.
These states are indeed observed as the unloaded equilibria of
our paper ICFs.

In general, eqn (2) allows one to reconstruct the flanks of
any ICF, and then, following Wunderlich,31–34 compute the
associated bend energy as a 1D fold-line integral containing
|j| and t (ESI,† Section S2). In the narrow limit, this
procedure gives

rfi ¼
D

2
wi

jjj2 � kgi
2 þ t� a

0
i

� �2� �2
jjj2 � kgi 2

; (5)

where ai follows from |j| via eqn (1). The unloaded form of the
ICF then follows by minimizing the energy of both flanks over t
and |j|. Interestingly minimizing over t gives a simple local

condition, which reveals that homogeneous ICFs a
0
1 ¼ a

0
2 ¼ 0

� �
and symmetric ICFs w1 ¼ w2; kg1 ¼ kg2 ) a

0
1 ¼ �a

0
2

� �
will form

torsion-free plane curves. However inhomogeneous asymmetric
ICFs generically do have torsion in their minimizing configu-
ration, generating non-planar fold lines (Fig. 4C).

4 Intrinsically curved folds via metric
mechanics

ICFs in biological tissues are not formed by stitching of flat
sheets, but by patterns of differential growth that directly
alter a single sheet’s metric.17 The emerging field of metric
mechanics21,35 provides an enticing engineering analogue, by
programming patterns of shape-change into flat sheets of
soft actuating material. ICFs formed via growth or metric-
mechanics follow the same kinematics as their joined counter-
parts, but with the added feature of actuating from flat, and
different mechanics stemming from their non-hinged fold. To
investigate these differences, we fabricate flat LCE ribbons that
morph into ICFs upon stimulation, due to a spatially pro-
grammed molecular alignment direction n(x,y) � (cosc(x,y),
sinc(x,y)). The actuation mechanism is that heating or swelling
the LCE disrupts this alignment (mirroring the conventional
nematic–isotropic phase transition) and causes a large uniaxial
shape change, with markedly different stretching factors l8
along n, and l> in the orthogonal direction, n> (Fig. 5A and B).

In metric terms, this means an infinitesimal vector dl = (dx,
dy) in the flat sheet changes length from dl2 = dl�I�dl to dlA

2 = dl�
ā(x,y)�dl, where the new metric has the form

ā(x,y) = l8
2n(x,y) # n(x,y) + l>

2n>(x,y) # n>(x,y). (6)

Previous work has considered flat LCEs programmed with pairs
of circle28,36 or spiral29 director patterns, and shown that an in-
homogeneous ICF of finite extent appears along the interface
between patterns upon actuation. Typically, these ICFs resem-
ble a mountain pass between the conical tips generated by the
circle/spiral centers. Here, we instead seek a transitionally
invariant pattern to produce an infinitely extendable homoge-
neous ICF. We thus consider a flat LCE ribbon that extends
infinitely in the x direction, and has a transitionally invariant
director profile c(y) (Fig. 5B). Following our treatment of joined

Fig. 5 (A) The nematic–isotropic transition in an LCE, which can be induced by heating or swelling with an isotropic solvent. The monodomain nematic
director is n. (B) Top: A planar director pattern in an LCE ribbon that morphs it into an annular arc on actuation. Bottom: 3D printed LCE following the
arc-pattern before and after actuation by swelling in toluene (unactuated thickness E 0.2 mm, 2 printed layers). (C) The four types of ICF can be encoded
in an LCE by combining pairs of arc patterns (S+/�), or the arc pattern with a monodomain (A+/�). From top to bottom: Theoretical director patterns,
unactuated experimental strips, and actuated ICFs in simulation and experiment. Experiments and simulations have matched (unactuated) thickness
E 0.4 mm (4 printed layers), w = 5 mm, and actuation factors l8 E 0.9, l> E 2.4. All scale bars are 10 mm.
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ICFs, we first seek a profile that morphs the ribbon into an
annular sector. Since such a sector remains Gaussian flat during
actuation, we may apply the Theorema Egregium and set K = 0 to

find the profile ccðyÞ ¼
1

2
arccosð2y=w� 1Þ,37 where w is the

width of the ribbon, and the profile varies from along x̂ to ŷ over
the ribbon’s width. A direct computation (ref. 38, ESI,† Section S4)
gives the geodesic curvatures of the strip’s boundaries as

kginner ¼
lk2 � l?2

2wlk2l?
; kgouter ¼

�lk2 þ l?2

2wlkl?2
;

confirming they follow circular arcs, and hence that the strip
becomes annular. Here kgouter

4 0 and kginnter
o 0 follow the sign

convention in Fig. 2. As sketched in Fig. 5C, we may then form
positive and negative symmetric ICFs by combining pairs of
patterns in a single sheet, with the join becoming the ICF.
Similarly, asymmetric ICFs can be created by combining a
single pattern with a ribbon of uniform director.

To verify these designs, we fabricated LCE ribbons via
extrusion-based 3D printing39 (materials and methods), using
the extrusion direction to encode the spatial alignment pattern,
and each printed layer adding E100 mm of thickness. After
printing, actuation was tested on mono-domain ribbons. Swel-
ling in toluene produced actuation factors of l8 E 0.9 and
l> E 2.4 (Fig. S10, ESI†), while thermal actuation yields
l8 E 0.5 and l> E 1.3 by 130 1C (Fig. S9, ESI†). Swelling of a
ribbon printed with a single copy of the pattern cc(y) indeed
produces an annular arc, and ribbons with the four pair-wise
combinations of patterns indeed produce the four categories of
ICF (Fig. 5B and C). The actuated shapes of the ICFs were also
computed numerically using the bespoke active-shell C++
code Morphoshell,38 producing excellent agreement with the
experiments.

5 Relaxed shape of metric-mechanic
ICFs

Interestingly, the LCE ICFs do not adopt the simple bend-
minimizing forms discussed above: for example the symmetric

ICFs are far from fully closed. The key difference is that now the
fold is not a freely jointed hinge, so the elastic sheet resists
the singular bending deformations required to create a sharp
apex. Indeed, one may readily observe in experiments and
numerics that the central fold is not sharp, but rather blunted
over some lengthscale f, that is short compared to flank-width
and radius, but not compared to thickness. Such blunting
requires a competition between stretch and bend, with small
strains (deviations from isometry) occurring to relieve the
singular curvature of a sharp ridge. To capture this competi-
tion, we consider a homogeneous ICF with fixed curvature |j|,
as created in our experiments. A perfect isometry of the ICF
would form a surface of revolution consisting of two conical
flanks connected by a sharp ridge at radius R0 = 1/|j|, which we
may describe in cylindrical coordinates as %R(s) = R0 � |s|cos ai,
with s being the arc-length transverse to the fold, s = 0 being the
apex, and ai switching value between the flanks in accord with
eqn (1). Similarly, we describe the blunted form of the ICF by
the smooth curve R(s) = %R(s) + DR(s), and also define the y(s) as
the angle between the local tangent and the radial direction
(see Fig. 6(A)). During blunting, the dominant bend-stretch
competition is between s curvature y0(s) (which would diverge
at a sharp fold) and hoop strain, e = DR/ %R, leading to the
simplified shell energy density

W ¼ 1

2
Y

DR
�R

� �2

þ1
2
Dy0ðsÞ2; (7)

where Y ¼ 3mt; D ¼ 1

3
mt3 are stretching and bending moduli

respectively, m being the (incompressible) LCE’s shear modu-
lus, and t the actuated thickness. Assuming that the length-
scale of blunting is short compared to R0, and also that the
isometery is nearly cylindrical so that y0(s) = DR00(s), we may
write the energy of the ridge as

E � L

ð
1

2
Y

DR
R0

� �2

þ1
2
DDR

002ds; (8)

where L is the length of the ICF. Minimizing variationally with
respect to DR requires DR(4)(s) + YDR/DR0

2, which admits four

Fig. 6 (A) Reference (isometric) shape of an ICF with a1 = 0.2p and a2 = 0.4p, and its theoretical (eqn (9)) and simulated relaxation. (B) Equilibrium ICF
curvature against thickness for an (S+) fold: theory (eqn (11)), experiments, and simulations. All simulation and experiment have equal planar dimensions
(reference half-width w = 50 mm and length 3 cm) and span a range of actuated thicknesses t.
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independent solutions DR p exp((�1 � i)s/f), revealing f ¼
4R0

2D=Y
� �1=4� ffiffiffiffiffiffiffi

R0t
p

as the emergent blunting length-scale,
which matches the blunting lengthscale of (extrinsic) Pogorelov
ridges created by mirror inverting a portion of a shell,40–43 and
ensures our approximations are self consistent (ESI,† Section
S5). The full form of DR is constructed by taking the decaying
solutions on either side of s = 0, and joining them to produce a
smooth and energy minimizing solution, giving

DR ¼ �f
4
e�js=f j cos a1 þ cos a2ð Þ cos js=f j � sin js=f jð Þ: (9)

Finally, the corresponding vertical position is given by

ZðsÞ ¼
Ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R0ðsÞ2
p

ds. To validate this form, we use Mathe-
matica to numerically minimize a full geometrically-nonlinear
energy for an axisymmetric shell (ESI,† Section S5) for multiple
symmetric ICFs, revealing strong agreement over a large range
of a (Fig. 6 and Fig. S6, ESI†).

Substituting the shape expression into eqn (8), we obtain the
effective ridge energy density rr = E/L as

rr ¼
1

4
ffiffiffi
6
p mt5=2jjj�3=2 kg1 þ kg2

� �2
: (10)

Interestingly, this ridge energy again has the same thickness
scaling as a Pogorelov ridge.40,43 However, the ICF energy
also includes the signature of the folds Gaussian curvature
(kg1

+ kg2
), and scales with |j|�3/2, showing the ridge favours less

folded more curved configurations.
To predict the relaxed shape of an ICF, we take the total

energy as the ridge energy plus the previously computed bend-
ing energy of the two flanks. Minimizing this total energy
rr + rf1

+ rf2
of the fold over curvature yields

jjj ¼ 3
3
7

2
t�

1
7 kg1 þ kg2
� �4

7
log 1� kg1w1

� �
kg1

þ
log 1� kg2w2

� �
kg2

� ��2
7

;

(11)

which, for the narrow symmetric case reduces to:

|j| = (33/25)1/7kg
4/7t�1/7w�2/7. (12)

These results reveal an unusual behavior: the selected isometry
is thickness-dependent, with thinner sheets curving more and
folding less despite having the same metric. The divergent
behavior of |j| for thinner sheets corresponds to tightly rolling
up a thin ribbon in a very open almost-cylindrical manner. We
note there are a couple of restrictions on this scaling behavior.
Firstly, our ridge + flank analysis requires ribbons that are
substantially wider than the ridge blunting scale, w	

ffiffiffiffiffiffiffiffiffiffi
t=jjj

p
.

Secondly, we require that the proposed flank isometry actually
exists and is physically reasonable, a condition that can fail, for
example, if the width is too large (kgi

wi 4 1), so the conical
flank to extend right out to a tip, or if the achieved curvature
rolls the strip so tight that itself intersects. However, we are able
to validate the effect by numerically (Morphoshell) and experi-
mentally actuating S+ LCE ICFs spanning a magnitude of
thickness. Experimentally, thickness was varied via changing
the number of printed layers, and actuation was again by

swelling in toluene. As seen in Fig. 6, both experiment and
numerics clearly exhibit higher curvature at lower thickness, in
very satisfactory agreement with eqn (11).

Such stretch-bend competitions are ubiquitous in the
mechanics of realistic non-Euclidean shells, leading, for exam-
ple, to buckling transitions from flat to curved,44,45 mechani-
cally rich boundary layers,45,46 and the blunting of conical
tips.22,26,27 However, the competition in ICFs produces the
unusual feature that the selected shape also diverges in the
thin limit. Generally, when an initially flat sheet is programmed
with an intrinsically curved metric, the different thickness
scaling of stretch and bend means that the stretch energy turns
into a constraint in the thin limit, allowing only isometric
deformations, with bend only entering as a tie breaker between
these zero-stretch states. Furthermore, since the bending
energy only depends on thickness via a t3 prefactor, the
resultant bend-minimising isometry is thickness indepen-
dent:45 for example, a given (anti-)conical metric always gen-
erates the same (anti-)cone, independent of thickness,27 as
would a pattern generating a saddle or spherical cap. Freely
hinged ICFs follow this usual rule, as do LCE sheets encoded
with either finite Gaussian curvature, or point-wise concentra-
tions at (anti-)conical tips. However, beyond metric mechanics,
similar thickness effects are seen in curved-fold origami, if the
hinge is formed from an angular spring, setting up a contest
between spring energy (thickness independent) and flank bend
(t3) to determine which isometry is observed.13,47 Similarly, the
thickness dependent behavior of ICFs (line-like curvature con-
centrations) emerges from the contest between the stretch/
bend energy of the blunted fold (t5/2) and the bend energy of
the flanks (t3). However, the effects in curved-fold origami and
LCE folds are fundamentally different: origami creases only
fold because of the hinge-spring motivates finite fold angles,
leading thinner sheets fold more as the spring becomes more
significant. In contrast, ICFs fold because of their intrinsic
geometry, with the ridge inhibiting folding so that thinner
sheets fold less.

6 Discussion

Our principle results on the rich kinematics of ICFs highlight
how, provided they are constructed from bendable sheets, they
form useful mechanisms, with potential applications across
soft robotics and morphing/deployable structures. Particular
highlights include symmetric ICFs which, pseudo-parado-
xically, allow a truly Gauss curved surface to be deployed from
a planar flat-packed state, and also asymmetric positive ICFs
which can show great strength and rigidity. Our results also
highlight the similarities and differences between hinged ICFs
and those formed by morphing active sheets, with both obeying
the same basic kinematics but having quite different
mechanics and shape selection.

Our treatment has focused on shells containing single ICFs,
but a natural extension is to combine multiple ICFs for more
complex morphing. As a simple demonstration, we design and
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fabricate an LCE Gaussian-gripper, by combining multiple
strong asymmetric positive folds in a cross-like configuration,
(Fig. 7A and B). Upon convenient thermal actuation by a heat
lamp, the cross morphs into a claw shape that is capable of
gripping and lifting a simple load (Fig. 7C) up to 40� the
gripper’s own weight (Movie M7, ESI†). Although this weight
multiple is naturally scale dependent, it considerably exceeds
the performance of previous bend-driven soft grabbers of
comparable dimensions.39,48 The gripper is also versatile, lift-
ing a wide range of objects with different shapes, weights,
textures and levels of compliance (Fig. 7D and Movie M8, ESI†).

Looking ahead, our results also motivate many directions for
further exploration. Can one design an ICF that traces an
arbitrary 3D space curve in its equilibrium state, or even an
elephant’s-trunk ICF that can morphs between many space-
curves via angular actuators along its length? What is the
effective rod-theory47,49 for ICF ribbons? How do ICF kine-
matics change when they pass through intrinsically curved
ribbons?50 What are the kinematics of surfaces containing
multiple ICFs, such as our gripper? Overall, the rich geometry
and mechanics of ICFs coupled with their straightforward
manufacture, suggests these questions, any many others, will
be a very fruitful area for further exploration.

7 Materials and methods
7.1 Materials

LC ink was synthesised by creating oligomers via aza-Michael
addition from a reactive mesogen (RM82; CAS: 125248-71-7),
amine linker (n-butylamine, nBA; CAS: 109-73-9) and photoini-
tiator (Ir2959; CAS: 106797-53-9). RM82 was purchased from
Daken Chemical, China, and both nBA and Ir2959 from Merck
Life Science, UK. All compounds were put to a glass vial (with
molar ratio of RM82 to nBA: 1.1 : 1.0 and with 1 wt% of
initiator), melted with a heat gun and vigorously mixed, first
by vortex mixer and then on a hot plate with magnetic stirrer
bar for ca. 30 min. A (pre-heated) metal syringe for printing was
then filled with the ink and left in the oven for around 18 h for
full oligomerisation (75–80 1C).

7.2 3D-printing of ICFs

The syringe with the ink was mounted in Hyrel’s KR2-15 used
with System 30 M 3D printer with a 2D array of UV LED
(365 nm). All the patterns were printed on glass slides coated
with 5% solution of poly(vinyl alcohol) in water, after careful
calibration of the printing parameters for 0.30 mm MK8 nozzle
(printed line width: 0.20 mm, first layer height: 0.125 mm, layer
height: 0.1 mm, printing speed: 260 mm min�1, extrusion rate:
5.2 mL min�1, priming: 40 000–50 000 pulses with rate 10 000
pulses per s, where 1297 pulses correspond to 1 mL; tempera-
ture of printing: 80 1C), with UV LEDs working on 30–50% of
max power. After printing all samples were additionally cured
for 1 h in a UV curing station with two UV LEDs (LuxiGen
LZ1-10UV0R, 365 nm) irradiating a sample placed on a distance
of 65 mm from both top and bottom diode. Printed LCE sheets
were then detached from their glass substrates with a blade.

7.3 Actuation

Initial thermal strain data was collected on monodomain
(linear) samples, using a hot plate (Fig. S9, ESI†). Swelling
strain data was obtained by placing monodomain samples in
a glass container filled with toluene for around 3 h (Fig. S10,
ESI†). ICF samples were actuated by swelling in the same way,
and then imaged using a Canon EOS 1200D camera, with either
EFS 18–55 mm lens or with macro 100 mm lens. ICFs in Fig. 5C
were imaged shortly after removal from toluene. The precisely
characterized ICFs in Fig. 6B were imaged whilst still in
toluene, with the camera directly facing the axis of the fold’s
surface of revolution for accurate extraction of the ICF radius.
Thickness, before and after actuation, was measured using
digital calipers (Hilka 0–150 mm). The LCE grippers were
actuated thermally with a heat lamp (Panasonic, 300 W) in a
custom box coated internally with 0.4 mm thick black paper.
The LCE sample was prepared by 3D printing, then painted
with a black marker to aid absorption, and the lamp was
directed at an angle of 301 from the vertical. The same camera
was used to record experiments of grasping and lifting different
objects with a weight range 0.24–19.24 g. Temperatures up to
150 1C were recorded during heat lamp irradiation, using a

Fig. 7 The design of an LCE Gaussian gripper. A (i) Reference director pattern, encoding several ICFs. (ii) Simulated actuated configuration makes a
strong claw shape. (B) 4-layer 3D printed sample weighing 0.48 g (i) before and (ii) after actuation with an IR heat lamp. (C) Controlled grip, lift and release
of a weighted cork. Release occurs shortly after the stimulation is turned off. (D) The gripper can lift a wide range of object: clockwise, Turkish hazelnut
husk, silverpuff, blueberry, fabric, pinecone and 3D printed dodecahedron frame. Scale bar on B (i) is 1 cm.
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digital thermometer (CELTEK T2001) with the probe placed
between a gripper and a weight.
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