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Partial and complete wetting of droplets of active
Brownian particles

Francesco Turci, *a Robert L. Jackbc and Nigel B. Wilding a

We study wetting droplets formed of active Brownian particles in contact with a repulsive potential

barrier, in a wedge geometry. Our numerical results demonstrate a transition between partially wet and

completely wet states, as a function of the barrier height, analogous to the corresponding surface phase

transition in passive fluids. We analyse partially wet configurations characterised by a nonzero contact

angle y between the droplet surface and the barrier including the average density profile and its

fluctuations. These findings are compared with two equilibrium systems: a Lennard-Jones fluid and a

simple contour model for a liquid–vapour interface. We locate the wetting transition where cos(y) = 1,

and the neutral state where cos(y) = 0. We discuss the implications of these results for possible

definitions of surface tensions in active fluids.

1 Introduction

Active matter systems display a wide range of surprising
phenomena in their non-equilibrium steady states. Among the
simplest active systems are fluids comprised of self-propelled
particles without aligning interactions, which are known as
scalar active matter.1–3 Many such systems exhibit motility-
induced phase separation (MIPS),4 which resembles equilibrium
coexistence of dense and dilute fluid phases. However, the inter-
facial properties of these active fluids phases differ significantly
from their equilibrium counterparts which can lead – for example
– to microphase separation and bubbly phases.5

Given such observations, it is natural to ask about other
interfacial properties of active fluids, and their similarities and
differences with equilibrium systems. An interesting example
occurs when a system undergoing MIPS is placed in contact
with a solid or penetrable substrate (or ‘‘wall’’). In this case, one
may expect analogues of the rich phenomenology of wetting,
as occurs in equilibrium fluids at liquid–vapor coexistence.6

Processes reminiscent of equilibrium wetting appear to play a
crucial role in active systems composed of living cells, soft
responsive materials, and embedded energy sources. For example,
wetting and dewetting on soft substrates enables tunable
adhesion, motility, and shape change of cells7–10 and control
the motility of bacteria at interfaces.11

In equilibrium, wetting behaviour can be analysed in several
different settings. A famous example is the formation of a
liquid droplet on a (weakly attractive) solid substrate. The
contact angle y of this droplet obeys Young’s equation:

glvcos y = gwv � gwl, (1)

where glv is the liquid–vapor surface tension and similarly
gwv,gwl are surface tensions between the fluid phases and the
substrate (also called ‘‘wall’’). Increasing the attraction between
the fluid and the wall, the tension gwl decreases and the droplet
spreads out, leading eventually to a wetting transition12,13 as
y - 0 (specifically, this is the transition from partial to
complete wetting, but we term it here ‘‘the wetting transition’’,
for simplicity). This transition – and related phenomena such
as drying transitions14,15 – may be either first-order or critical,
depending on the behaviour of cos y as the transition is
approached. Measurements of contact angle thus permit the
characterisation of wetting transitions on planar surfaces16 as
well as related situations such as the filling transitions that
occur in capillaries.17,18

For computational model fluids like Lennard-Jonesium,
measurement of contact angles tends to be challenging. How-
ever, there are convenient alternative approaches which either
exploit the grand canonical ensemble, or a slit geometry with a
fluid confined between two walls (and periodic boundaries in
the other direction). Droplets do not form in these cases, and
one instead focusses on the average density profile r(z), as a
function of the distance z from the wall. For a grand canonical
system with a single wall, one defines the adsorption
G �

Ð1
0 dz rðzÞ � rbð Þ where rb is the bulk density at z - N.

This quantity is accessible experimentally19,20 as well as in
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density functional theories15,21 and in simulations21,22 (with
the aid of finite-size scaling). Increasing the attraction between
the fluid and the wall, a wetting transition occurs when
G becomes infinite, which may occur either by a smooth
divergence (critical wetting) or by a discontinuous jump
(first-order wetting), depending on the range of fluid–fluid
and wall–fluid interactions. A similar analysis can be performed
for the slit geometry in the canonical ensemble, in which case the
wetting transition is signalled by a symmetry breaking of the
density profile r(z) with respect to the two walls.22,23

In all these equilibrium cases, statistical mechanical theories
place strong constraints on the phenomenology. For example, the
surface tensions in (1) can be defined unambiguously through
derivatives of an appropriate free energy, as can the adsorption
G.15,21 This provides consistency requirements between different
ensembles and geometrical settings: studies based on the adsorp-
tion and the contact angle both deliver the same results for the
locations and properties of surface phase transitions, as long as
finite-size effects are controlled.

By contrast, active fluids are not ruled by a free energy, and
the status of their wetting transitions is much less well-
understood. Indeed, there are several different proposals for
active generalisations of the liquid–vapour surface tension.24–34

It is not clear a priori whether any suitably generalised version
of Young’s equation should apply for these systems; if some
such generalisation does exist then one may ask which (if any)
of the liquid–vapour surface tensions might appear, and what
should be used in place of gwv�gwl.

In recent work by some of us,23 an approach based on the
adsorption G was used to analyse the wetting properties of an
archetypical active fluid, comprised of active Brownian particles
(ABPs) in d = 2 and d = 3 dimensions. An important difference
from equilibrium fluids is that active particles tend to accumu-
late at walls, even in the absence of attractive interactions.35,36

As a result, an infinitely repulsive ‘hard’ wall is always completely
wet for these active fluids, in contrast to equilibrium fluids for
which a hard wall remains completely dry.37 However, on replacing
a solid wall with a penetrable barrier, behaviour similar to first-
order wetting was found in d = 3, for the slit geometry.23

In this work, we take a complementary approach to ref. 23,
which is to examine the wetting behaviour of droplets in the
same 3d system of ABPs. Such studies are numerically challen-
ging due to finite-size effects which appear in the form of large
fluctuations of the droplet shape and position. We sh ow that
this can be mitigated by confining droplets in a wedge geome-
try. We identify a first-order-like wetting transition for droplets
(where cos y- 1). The nature and location of this transition are
consistent with the slit geometry. We also characterise the
situation of neutral wetting (cos y = 0). We give a critical
analysis of Young’s equation in this setting. We argue that by
defining surface tensions in terms of the probabilities of
droplet shape fluctuations, Young’s equation holds by defini-
tion for the most likely shape, as long as shape fluctuations are
controlled by local properties of the interface. In this case, the
liquid–vapour surface tension also determines the probability
of large-wavelength capillary waves.

Our paper is organised as follows: the ABP model is defined
in Section 2 and its wetting behaviour is discussed extensively
in Section 3. Then Section 4 discusses analogous behaviour in a
passive LJ fluid. Section 5 introduces the simple contour model
for equilibrium interfacial fluctuations and compares it
with the particle-based models. These results are discussed in
Section 6, which also summarises our main conclusions.

2 Model and geometrical setup

We analyse ABPs as a prototypical model of scalar active matter
that displays MIPS in the bulk.38,39 We follow a previous
parameterization40 described in Appendix A, with ABPs inter-
acting via the Weeks–Chandler–Anderson potential of lengths-
cale s, and energy scale e, with coupled translation and
rotational diffusion constants DR = 3Dt/s

2 and self-propulsion
velocity v0 defining a Péclet number Pe = v0/sDR. Timescales are
expressed in units of the rotational diffusion time tR = 1/DR.

We simulate this model in a fully periodic orthorhombic box
of dimensions Lx � Ly � Lz. We consider various box sizes, but
we typically elect to work with Lz = 20s, smaller than both Lx

and Ly. In order for a surface phase transition to occur, the
system must be at a state point for which bulk liquid–vapor
coexistence occurs. Accordingly, we choose model parameters
well inside the MIPS region, specifically number density r =
0.60 and constant Péclet number Pe = 60 (see41 for the bulk
phase diagram). The behaviour of active fluids depends quan-
titatively on Pe but the general phenomenology of the motility-
induced phase separation is robust for sufficiently large Pe. We
also expect the wetting behaviour to be robust throughout this
range as long as the system is far enough from any critical
points that dense and dilute fluid phases are clearly defined.

Applying the lever rule,42 this corresponds to an approxi-
mate liquid fraction of the system f = (r � rLD)/(rHD � rLD) E
(0.6 � 0.45)/(1.25 � 0.45) = 0.1875, which results in a cylindrical
liquid domain with its axis parallel to the z axis. Such a
geometry allows us to monitor the changes in the liquid–vapour
interfaces (and, in particular, the contact angle) via its two-
dimensional projections in the x–y plane. We note that while
MIPS is metastable with respect to vapor-crystal phase separa-
tion in this model,41,43 crystallisation is not observed on our
simulation timescales.

To induce wetting, we introduce a penetrable wall, which we
model as a static short-ranged repulsive barrier.23 We focus on
short-range barrier–fluid interactions for reasons of simplicity
and computational convenience and to minimise the barrier’s
influence on the overall fluid structure. We identify a piecewise
surface S and employ an external repulsive potential perpendi-
cular to the surface, which takes the form of a cosine hump:

VðrÞ ¼
ew½cosðpr=dÞ þ 1� if ro d

0 otherwise

(
(2)

where r is the perpendicular distance from the surface S and ew

is expressed in units of e. We take d = s, which corresponds to a
short-ranged (i.e. thin) potential barrier.
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Simulations of liquid droplets of ABPs are challenging
because of large fluctuations of the droplet shape. This can
be mitigated by increasing the system size, but the dilute
(vapor) phase of MIPS has a relatively high concentration
rLD E 0.45, which means that such simulations quickly
become expensive, involving very large numbers (hundreds of
thousands) of particles. While planar walls are natural for
wetting, we have found it helpful to choose S to take a wedge
shape; this localises the droplet (reducing fluctuations) and
accelerates its nucleation. To achieve this, we choose S to
comprise two finite planes that are joined together at an
aperture angle a by a cylindrical section, which gives the wedge
a rounded corner. Fig. 1(a)–(c) illustrate the resulting setup,
showing the planar density r(x,y) (details of its numerical
estimation are given below). The x–y force field generated by
the barrier is illustrated in Fig. 1(d). Typical simulations have
Lx = Ly= 100s and Lz = 20s with the wedge occupying one
quadrant of the box. At the density considered, this results in
simulations of N = 120 000 particles. Working in three dimensions
ensures that the density fluctuations are more controlled than the
two-dimensional case and connects to previous evidence for a
wetting transition that becomes sharper in the large N limit.23

Our choice to work in the wedge geometry links our previous
work on the planar case23 to the literature on equilibrium filling
transitions, which are the manifestations of wetting phenomena
on wedges and corners.17,18,44–46 The presence of a wedge facil-
itates the emergence of a phase transition in regimes for which
wetting could be hindered (for example, by lowering the wetting
temperature or by allowing wetting to occur in the gas phase),
especially for small apertures. Here, however, we use the wedge as
a means to facilitate the analysis of droplets and leave the study of
the effects of the aperture to future work.

3 Wetting phenomenology for active
Brownian particles
3.1 Average local density profiles: contact angles and wetting
transition

Our analysis of wetting is based on the local density profile,
which is obtained by discretizing space in subvolumes of side

c = 2s. We define the instantaneous number of particles in bin j
of center bj

Nj ¼
XN
i¼1

I‘ ri � bj
� �

; (3)

where Ic(x) is 1 if x is within the cube of side c centered at the
origin and zero otherwise. The instantaneous number density
at site j is defined as

rj = Nj/c
3, (4)

and we average along the z dimension to obtain two-
dimensional density maps rðx; yÞ ¼ Lz

�1Ð Lz

0 rðx; y; zÞdz. Follow-
ing a relaxation time of 100tR, the average local density �r(x,y) is
formed by sampling at intervals of tR, and averaging over a
period of 1500tR.

Fig. 1 shows two-dimensional projections of the density map
for three different wedge aperture angles a. The density profiles
are smooth and – for the value of ew = 12 studied – exhibit a
liquid drop confined within the wedge. From such profiles one
can, in principle, extract the vapor–liquid interface and esti-
mate the contact angle y between the active droplet and the
repulsive barrier. For our system, the macroscopic notion of
sharp contact between a circular vapor–liquid interface and the
barrier is somewhat blurred by the ubiquitous presence of a
thin layer of particles all around the wedge. To deal with this,
we work with estimates of an apparent contact angle, defined
by fitting a circular arc to circular regions of the density profile
as described further in Appendix C. If a non-equilibrium
analogue of Young’s equation applies to these systems (valid
in the large-system limit), then y should be determined only by
local properties of the three-phase contact line, so that y is
independent of a. For the three value of a shown in Fig. 1, we
find y E 751–851: this relatively small range seems consistent
with the applicability of Young’s equation. Note that for small
equilibrium droplets, Young’s equation includes line tension
terms and Tolman corrections to the Laplace pressure,47–49

while in the active case curvature effects on swim pressure of
confined ABPs have also been reported;50 we explicitly neglect
these effects in this work.

Fig. 1 (a)–(c) Two-dimensional projections of the density profile of 3D cylindrical slabs representing droplets for three wedges of aperture angles
a = 1201, 901, 601 respectively, all at barrier strength ew = 12. Each geometry promotes occupation of the wedge by droplets of active Brownian particles
that have similar contact angles (y = 751� 31, 831� 41, 851� 91 respectively). The fitted circular arcs (white continuous lines), with their centres (red dots),
are also plotted. (d) The shape of the barriers’ static force field around the corner of the wedge.
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Henceforth we elect to work at fixed aperture a = p/2. Fig. 2
illustrates how the stationary average density field �r(x,y) for this
value of a varies with the barrier strength ew. At the largest
values of ew studied, thick liquid layers are present on both the
interior and exterior of the wedge and the density profile
flattens close to the corner of the wedge and terminates with
a rounded shape at the tips. On lowering the barrier height from
ew = 18 to ew = 15, liquid progressively accumulates in the wedge
interior. At ew E 18 the curvature of the interface between the
interior liquid and the vapor changes sign from positive to negative
and a recognisable droplet forms within the wedge having an
apparent contact angle yo p/2. The fitting procedure to obtain y is
appropriate only when the density profile exhibits such a region of
negative curvature, i.e. for ew t 18. We assert (and confirm via a
comparison with equilibrium wetting in a comparable geometry-
see Sections 4 and 5.2) that the change in sign of the interfacial
curvature corresponds to the transition from partial to complete
wetting. In other words that the barrier is partially wet, (with y4 0)
for ew t 18, and is completely wet (i.e. y = 0) for ew \ 18. Within
the partially wet regime, most liquid resides in the drop in the
wedge interior. However some liquid resides on the exterior wall of
the wedge forming a pair of symmetrical ‘‘lobes’’ of liquid-like
density. A ew decreases, progressively more liquid accumulates in
the drop whose contact angle y increases, while the extent of the
lobes decreases. In Section 3.4 we discuss the finite-size scaling
behaviour of the lobes and the liquid drop.

At ew = 10 we find y E p/2, which – in the context of Young’s
equation – is interpreted as a neutral point, where the tensions
between the barrier and liquid and the barrier and the vapor
balance each other. This point separates the partial wetting and
partial drying regimes. On decreasing the barrier strength still
further, we find that within the timescale of our simulations,
the stationary state becomes harder to define: if we initiate the
system in a homogeneous density state, the nucleation of the
droplet becomes very slow; if we start instead from a pre-formed
droplet and instantaneously decrease the barrier strength,
the droplet progressively detaches from the barrier. The detach-
ment indicates that the vapor phase is favoured near the barrier in

the stationary state. Henceforth, we restrict our analysis to the
range of barrier strength for which the liquid is attached to the
barrier. Our results for the dependence of the measured contact
angle on the barrier strength are displayed in Fig. 3. For the
weakest accessible barrier strengths at which the droplet is
attached to the wedge, we find cos(y) E 0, i.e. the droplet is close
to the neutral point. As ew increases, cos(y) increases approximately
linearly and appears to attain the wetting point cosy = 1 with a
nonzero slope, suggesting a first-order wetting transition around
ew = 18� 1, which is the value that was independently obtained via
a very different method previously from our previous analysis of
this system in the slit geometry.23 The match between the two
estimates of the complete wetting transition points towards an
equivalence between the adsorption and the contact angle routes,
as expected in the equilibrium case.

3.2 Local density fluctuations

Density fluctuations play a central role in characterising phase
transitions, both in passive and active systems. In the case of

Fig. 2 Average and variance of the local density in the active system. Upper row: stationary density profiles for phase-separated active Brownian
particles in contact with a finite wedge-shaped potential with aperture a = p/2 of repulsive strength ew for increasing values of the barrier strength in the
range ew = 10–40. The system has periodic boundary conditions. Lower row: stationary profiles of local density fluctuation Var[r] for phase-separated
active Brownian particles at increasing values of the barrier strength ew.

Fig. 3 Cosine of the apparent contact angle y for ABPs in a 901 wedge for
a range of repulsive strengths ew, as calculated from a circular arc fit to the
portion of the liquid–vapor interface having negative curvature. The
vertical dashed line indicates the transition from partial to complete
wetting determined previously via a different approach.21 The hatched
area indicates the regime in which the droplet detaches from the barrier.
Error bars are bootstrap estimates for three standard deviations.
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surface phase transitions studied within a grand canonical
framework, the behaviour of the local compressibility (which
quantifies the magnitude of the density fluctuations relative to
the average density) allows the order of a surface phase
transition15 to be ascertained and provides information on
the character of interfaces.

To quantify the density fluctuations in our system, we
accumulate the local variance of the density field Var[r(x,y)] =
hr2(x,y) i � hr(x,y) i2 on the same scale c = 2s over which the
field is defined. This provides a fine-grained description of the
spatial dependence of the density fluctuations. Fig. 2 shows
that the fluctuations are greatest at the liquid–vapor interface:
both for the droplet in the wedge interior and for the exterior
lobes. In particular, the complete wetting regime at large ew

corresponds to small overall fluctuations, with higher values
occurring around points of higher curvature. As the repulsive
barrier gets weaker (moving from right to left in Fig. 2), the
fluctuations at the liquid–vapor interface in the interior
increase in magnitude, and become progressively more loca-
lised in the vicinity of the contact region between the interface
and the barrier.

3.3 Polarisation field

The orientation of the self-propulsion force of ABPs rotates via a
diffusive process. For a bulk system, every particle orientation is
equally likely, and thus, the average orientation vector of each

particle is zero. When interfaces are formed (as in MIPS), the
local stationary orientation can take nonzero values, indicating
a local polarisation of the system.

We define the instantaneous polarisation / from the parti-
cle orientation ni on a grid of spacing c. For bin j

/j ¼
1

Nj

X
i

niI‘ ri � bj
� �

; (5)

which corresponds to the local average of the orientation field.
Its norm is |/| A [0,1], and it is expected to be negligible in the
bulk phases, as the individual orientations diffuse on the unit
sphere. Near boundaries and interfaces, however, the net
orientation typically follows the density gradient, i.e. normal
to the interface.

In Fig. 4(a)–(d), we track the changes to the stationary
polarisation that occur as we vary the barrier strength ew.
As expected, the polarisation fields are non-zero only at inter-
faces and closely follow the density gradient, directed from the
dilute towards the denser phase. The principal effect of varying
ew is manifest in the barrier region: for large ew, the particles at
liquid-like densities on both the interior and exterior of
the wedge are oriented against the barrier. For weaker barriers
(e.g. ew = 12), the particles inside the droplet change orienta-
tion and point towards the droplet interior. This contrasts
with the behaviour of exterior particles in the vicinity of the

Fig. 4 Polarisation and flow. (a)–(d) Stationary average of the local particle orientation f for increasing values of the barrier strength, accumulated on a
grid of bin size c = 2s. The color coding indicates the angle of the local orientation; the arrow length corresponds to the average value of the polarization
at the grid point, and it is scaled for clarity (leading to some crossings where the polarization is largest). For clarity, the plots depict only the immediate
vicinity of the droplet, with grid binning dx = 2s. Both the dilute phase and the interior of the droplet have negligible average polarization: only the
interfaces (between the liquid and the vapor and between the barrier and the fluid phases) display significant contributions orthogonal to the interfaces.
(e)–(h) Streamlines of the particle flux obtained as described in the text for the indicated values of the repulsive barrier strength ew overlayed to the density
field. The line thickness scales linearly with the norm of the two-dimensional flux, with the same scaling used for all plots. The streamplots visualise the
entire x–y span of the simulations.
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barrier, which are always polarised towards the barrier, inde-
pendent of ew.

3.4 Finite size effects

The density profiles display the formation of both an interior
liquid layer and some accumulation on the exterior of the wedge.
These exterior density ‘‘lobes’’ are a consequence of the non-
equilibrium accumulation mechanism and its coupling with the
barrier strength. In the limit of very repulsive barriers, the liquid
covers both the interior and exterior approximately symmetrically,
whereas, in the partial wetting regime that occurs for ew o 18,
the liquid is primarily localised as a droplet in the interior.

If we now consider increasing the overall system size at
partial wetting, whilst maintaining the overall number density
constant, then one expects the volume of liquid in the wedge
interior to increase in size accordingly. However, the thickness
of the exterior lobes should remain approximately unchanged
because they arise from the usual accumulation of ABPs at a
barrier, combined with a local balance of particles crossing the
barrier: these aspects only depend on the liquid density.

Fig. 5 confirms this: the top panel shows that on increasing
the repulsion strength, the thickness of the lobes grows,
and eventually saturates as the complete wetting regime is
approached. (This thickness is measured as the stationary
average of the largest distance between the outer liquid–vapor
interface and the exterior of the wedge). The lower panel of
Fig. 5 shows that in the partially wet regime e o 18, the lobe
thickness is independent of system volume. Thus, the exterior
lobes in the partial wetting regime can be regarded as a finite-
size effect such that for a sufficiently large system, the liquid
phase is essentially confined in the wedge interior.

3.5 Flow fields

The internal self-propulsion force renders the system dissipa-
tive, promoting flows coupled to the geometric features of the
barriers. For example, in the case of ellipsoidal impenetrable
barriers, distinctive quadrupolar flow patterns have been
reported previously.51

In order to quantify the flow field, we track the particle
displacements Dri = ri(t + Dt) � ri(t) with Dt = 0.005tR, a time
interval that is sufficiently small to allow us to follows the local
patterns of motion. We estimate the flow patterns from the
Z = x, y, z components of the field

J
Z
j ðtÞ ¼

1

Dt‘3
X
i

DriðtÞ � êZI‘ðri � bjÞ: (6)

where êZ is the unit vector. We average over the steady state and
the z direction to obtain two-dimensional flow maps from
which we can extract streamlines.

Fig. 4(e)–(h) illustrates the flow patterns occurring at weak
(ew = 12) intermediate (ew = 18), strong (ew = 30) and very strong
repulsive (ew = 40) barriers. In all cases, the wedge geometry
shapes the structure of the flow field. Consider first the results
for the strongest repulsive barrier (ew = 40). Here the end-points
of the wedge correspond to regions of opposing counterflows,
reminiscent of the quadrupolar structure of hard objects men-
tioned above; the flow in the interior of the wedge is from the
vapor into the liquid, consistent with the orientation field;
particle flow through the wedge occurs only at the wedge
corner, where two other counter-flows are formed, and where
the flow field rotates in order to be orthogonal to the exterior of
the wedge.

These overall features persist on decreasing ew, but the flow
patterns become more complex. In particular, the flow field
reorients itself around the contact points between the droplet
and the barrier, forming two additional local regions of
nonzero circulation. Lower energy barriers also engender inter-
esting changes in the flow patterns inside the liquid droplet.
One is a marked increase in the flow through the wedge corner.
Another is that while for the largest ew particles are trapped
in the liquid region, with any flow occurring parallel to
the barriers (for example, Fig. 4(h)) in the positive x and y
directions, for weaker ew the particles can traverse the barrier,
creating perpendicular flow patterns as seen in Fig. 4(e). These
changes are accompanied by a reversal in the net flux direction,
with x and y flux components being net negative for small ew and
net positive for large ew. Forces on asymmetric objects have been
previously linked52 to the flow patterns of active particles, and the
changes observed here indicate a change in the direction of the net
force on the wedge as we vary the repulsion strength, a prediction
that can potentially be tested in experiments.

These results emphasise that the dissipative non-equilibrium
flow patterns generated by the soft wedge can be highly non-trivial,
with exquisite features that start to develop even well inside the
dilute phase. Notwithstanding these fine-grained phenomena, as
we show in the next section, coarse-graining over sufficiently large
scales reproduces closely the principal features of the density

Fig. 5 Thickness of the ‘lobes’ ie the adsorbed layer on the exterior of the
wedge. The upper panel shows the variation with the barrier strength for a
system of size Lx = 100s. The lower panel shows the scaling with system
size for different values of the barrier strength ew both in the complete wet
regime (e.g. ew = 30) and partially wet regime (e.g. ew = 12).
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profiles and their fluctuations that occur in comparable equili-
brium systems.

We conclude this section by summarising the key findings
from our simulations of the active system: (i) imposing a wedge-
shaped, penetrable, repulsive barrier on a metastable fluid of
active Brownian particles promotes the formation of a droplet
of the dense phase whose shape depends on the strength of the
repulsive potential; (ii) the barrier strength at which the transi-
tion from complete to partial wetting occurs can be extracted
from the apparent contact angle and matches that previously
measured in a different (slab) geometry;23 (iii) the apparent
contact angle is almost independent of the geometry of the
wedge, indicating that a non-equilibrium version of Young’s
equation is applicable; (iv) local fluctuations maps can be
extracted from density profiles and reveal the presence of
enhanced fluctuations at the contact points between the dro-
plet and the barrier; (v) the polarisation of the particles’
orientations and the particle flows are sensitive to the barrier
strength, with more complex patterns for weak barrier strength
corresponding to the partially wet regime; (vi) particle accumu-
lation occurs both inside and outside the wedge, but the
thickness of the exterior layer is sub-extensive with respect to
the system size in the partially wet regime.

With these observations in mind, we now compare the
behaviour of active Brownian particles with that of a particle-
based equilibrium model known to undergo a first-order wet-
ting transition.

4 Comparison with equilibrium
wetting in a passive fluid

The phenomenology of the active system displays specific
spatial density profiles, local density fluctuations and flow
patterns. While the non-equilibrium flows have no counterpart
in equilibrium, we can compare the stationary density

distributions and their fluctuations to a conventional passive
system undergoing a wetting transition in an analogous geo-
metry. To do so, we consider the prototypical model for
equilibrium wetting in which a liquid droplet of Lennard-
Jones particles interacting via a truncated and shifted potential,
in coexistence with the vapor, interacts with an impenetrable
wall supplemented by a long-ranged attraction, as described by
a Lennard-Jones 9-3 interaction potential. Such long-ranged
wall–fluid attractions are sufficient for a planar substrate to
engender a first-order wetting transition.21 We note that for our
active system, the competition between attraction and repul-
sion that engenders a wetting transition arises from a single
repulsive potential barrier alone. This contrasts with passive
systems, where the necessary ingredients are separate attractive
and repulsive parts of the wall–fluid potential and wetting is
driven by increasing the strength of attraction.

To make contact with the behaviour of droplets in our active
system, we arrange the wall to form a wedge with aperture angle
a = 901 (see details of the equilibrium model in Appendix B).
We control the affinity of particles for the wall by varying
the strength of the interaction eLJ

w between the wedge and the
fluid. Note, however, that in contrast to the active case where
increasing ew increases the degree of repulsion between the
barrier and the fluid particles, here increasing eLJ

w strengthens
the wall–fluid attraction.

Fig. 6 shows the evolution of the density profile with
increasing attractive strength eLJ

w . The boundary conditions of
the simulation box are such that the LJ walls are located on the
left and bottom edges while the top and right edges present
reflective boundary conditions; the z dimension, orthogonal to
the projection plane, is periodic. The qualitative dependence
on wall–fluid interaction strength is very similar to that seen for
the active case in Fig. 2: a droplet is formed in the corner of the
wedge, and gradually spreads out as the attractive strength is
increased. Complete wetting occurs at the largest wall strengths
where the particles coat the wall (note that the rounding of the

Fig. 6 Average and variance of the density profile of the equilibrium LJ system. Upper row: density profile for a droplet of Lennard-Jones liquid in
coexistence with the vapour in contact with impenetrable, attractive walls of depth eLJ

w on the bottom and left sides, and reflective periodic boundary
conditions on the top and right sides. Lower row: stationary local density fluctuation profiles for a droplet of Lennard-Jones liquid in coexistence with the
vapour in contact with an impenetrable, attractive wall of depth eLJ

w .
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density profile at the end of the simulation box is a conse-
quence of the reflective boundary conditions required in this
ensemble and is not a genuine point of contact). As in the active
case, the changes in the density profiles are accompanied by
changes in the local density fluctuations, as shown in Fig. 6.
The regions of highest variance (greatest fluctuation) are
located at the vapor–liquid interface, and on approaching the
neutral point, y = p/2, the variance exhibits maxima near the
point of contact with the wall.

When the attractive wall strength is reduced further, a
situation similar to that observed in the active case arises:
the liquid drop pinches off and detaches from the wall.
Fig. 7 plots cos(y) as a function of eLJ

w as extracted from circular
fits to the interface. The main difference from the active
case is that the passive system can access a larger range of
cos(y) before detachment occurs: specifically for the passive
system we can stabilize droplets with cosy E �0.5 (y E 2p/3),
whereas the active system becomes unstable around the neutral
point y = p/2.

5 Theoretical model for droplet shape
fluctuations

On sufficiently large (hydrodynamic) length scales, it is natural
to describe wetting droplets in a continuum formalism, with a
sharp interface separating liquid and vapour domains. We
discuss here a simple model for the fluctuations of such an
interface, which is useful for rationalising the density fluctua-
tions observed in active and passive systems. We describe the
interface as a line in two dimensions, in order to model the
planar profiles in Fig. 2.

5.1 Contour model

For a wedge with opening angle a, we describe the interface in
polar co-ordinates, with the origin at the corner of the wedge.
The distance from the origin to the interface R(f) is

parameterised as

RðfÞ ¼ R0 þ B
2f
a
� 1

� �
þ
XM
k¼1

ak sin
pkf
a

� �
(7)

where f is the polar angle with 0 r fr a and the parameter M
enforces a short-wavelength cutoff for numerical convenience.
Example interfaces are shown in Fig. 8(a), they are parame-
terised by R0,B,a1,a2,. . .,aM. The following results depend
weakly on the cutoff M.

We formulate our model in terms of the probability dis-
tribution for the droplet shape, encoded by the function R(f).
Since we describe the interface as a line – or contour – we refer
to this as the contour model. For simplicity, we suppose that
the area of the liquid region is fixed at some reference value A0,
so the probability (or probability density) of a given contour is

P½R� ¼ 1

Z
e�F½R�d A½R� � A0ð Þ (8)

where A½R� ¼ 1

2

Ð a
0RðfÞ2df is the area enclosed by the liquid–

vapour interface, F[R] is a free-energy-like quantity that con-
trols the shape fluctuations, and Z is a suitable normalisation
constant.

By analogy with equilibrium systems we propose that the
dominant terms in F on hydrodynamic scales are

F R½ � ¼ ~glv‘lv½R� ¼ D~gwdw1½R� (9)

where clv is the length of the liquid–vapour interface, dwl is the
(total) length of the liquid–wall interface, and ~glv,D~gw play the
role of surface tensions (see below for a more detailed discus-
sion). One sees immediately that dwl = R(0) +R(a) and the

interfacial length is ‘lv½R� ¼
Ð a
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðfÞ2 þ R0ðfÞ2

p
df.

In equilibrium, (9) is valid on hydrodynamic scales12 and its
parameters are related to the surface tensions between the
phases as ~glv = glv/(kBT) and D~gw = (gwv � gwl)/(kBT): here T is
the temperature and kB is Boltzmann’s constant.† In principle
other terms might also appear in F but these are constrained by
locality – the probability of an interfacial perturbation should

Fig. 7 Cosine of the apparent contact angle y between the droplet of
Lennard-Jones liquid and the 9-3 Lennard-Jones walls of strength eLJ

w , as
estimated by circular arc fits to the liquid–vapor interface. The hatched
area indicates where the droplet detaches from the walls. Note that,
differently from Fig. 3, the range of cosines extends to the partially dry
regime (cos y o 0) before detaching is observed. Error bars are bootstrap
estimates for three standard deviations.

Fig. 8 (a) Example paths generated by Monte–Carlo according to the free
energy in eqn (9). The quantities c,d1,d2 are illustrated for a specific
contour. (b) Average and (c) variance of the density determined by the
statistics of the contours generated at fixed D~g/~g = 0.7. For these profiles,
no Gaussian convolution is performed. Every sampled contour has fixed
area A and the maps have dimensions 2OA � 2OA.

† The notation with tildes is a reminder that the parameters in F have the units of
inverse length, while surface tensions g (without tilde) have units of energy per
length in this 2d setup.
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not depend on the shape of the interface far away – and by the
symmetries of the problem, and the restriction to large length
scales.

For active systems, non-local contributions to F cannot be
ruled out, but the symmetries of the system (isotropy and
translation invariance) suggest that (9) is a natural starting
point for a hydrodynamic theory. Moreover, for large droplets
one sees that clv and dwl are O(L) and ~glv,D~g = O(1) which means
that shape fluctuations are small, as happens for thermal
fluctuations in the thermodynamic limit. As in that case, the
result is that the distribution of shapes is dominated by the
most likely contour. Applying calculus of variations to mini-
mise F at fixed droplet area A0 one arrives at Young’s equation
in the form

~g cos y = D~g (10)

where we have dropped the subscripts to lighten the notation,
using ~g = ~glv and ~g = D~gw.

For completeness, a derivation of this result is given in
Appendix D, which also shows that the curvature of the
liquid–vapour interface must be constant everywhere, so that
the droplet boundary is an arc of a circle. Analysing small
fluctuations about this most-likely shape also recovers the
standard theory of capillary fluctuations. This suggests that
the appropriate glv that should appear in a Young’s equation for
active fluids is a capillary surface tension,32 see Section 6 below
for further discussion of this point.

5.2 Comparison with wetting simulations

To investigate the predictions of this model, we sample contour
fluctuations numerically by a straightforward Monte Carlo
algorithm as detailed in Appendix E. Assuming sharp inter-
faces, this yields a density field r(x,y|t) at every iteration t, by
taking a value of unity for the liquid and zero for the vapor.
These sharp profiles are then averaged to return the equili-
brium density profile, and its variance, which are both com-
puted by partitioning the 2d domain into bins of size dx.

Fig. 8 illustrates the procedure for a particular choice of D~g/
~g, connecting collections of paths (Fig. 8(a)) to a density profile
and its variance (panels (b) and (c)). For a specific choice of D~g/~g
the average density profile converges to form a specific contact
angle, such that cos y = D~g/~g: in the specific example of panel (b)
and (c) we have D~g/~g = 0.7 - y E 451. While the density profile
closely resembles that produced by the passive system (and the
interior of the wedge in the active system), the variance profiles
are typically sharper and do not display a marked relative
increase of the variance in the regions where the contour
contacts the wall.

This deficiency of the model arises from our assumption of
perfectly sharp instantaneous interfaces. In reality, the density
across the instantaneous interfaces (e.g. in the Lennard-Jones
system) evolves smoothly, interpolating between the liquid
and the vapor density with a characteristic interface width.
(The observed width is also affected by the projection of the
three-dimensional system onto a planar density, because of
capillary waves along the z-direction.) To account for this width,

we perform a convolution of the instantaneous density profiles
with a Gaussian kernel of size sblur. As illustrated in Fig. 9, the
convolution promotes the emergence of peaks in local density
fluctuations in the vicinity of the contacts with the wedge,
similarly to what is observed in both the active and passive
particle systems.

It is interesting to quantify the similarities of the fluctuation
profiles for the active fluid (Fig. 2) and the contour model as a
function of the contact angle (or equivalently in the contour
model, D~g/~g). To achieve this, we use Monte Carlo to sample
contours with a fixed area A. First, we calibrate the spatial
discretisation of the contour model on the active model in the
partially wet regime ew = 10, by tuning the binsize dx of the
contour model to match the bin location of the contact point in
the active system. This gives dx = 0.066OA. We fix the discre-
tisation, and by using a blurring scale sblur = 2dx, we compute
the average particle density in each bin. Then, we optimise the
parameters of the contour model so that this density profile
matches the ABP system at a given state point, by adjusting D~g/~g
to minimise

L ¼
X
bins j

�rABP
j � �rcontourj

� �2
(11)

where �rABP
j is the average of the local density rj defined as in (4),

but now scaled to lie between 0 and 1; also rcontour
j is the

corresponding (blurred) density for the contour model (which
lies between 0 and 1 by definition).

Results are shown in Fig. 10. The contour model generates
density profiles which closely match those of the ABPs not only
for near-neutral conditions (e.g. ew = 10) but also close to the
wetting transition ew = 18. The best fit profiles are associated
with a contact angle cos(y) = D~g/~g which confirms the wetting
transition to occur around ew = 18 (D~g/~g = 0.95) and accords with
direct measurements of y via circular fits to the interfaces of
Fig. 3. In generating each density profile, we take advantage of
the low computational cost of the contour model by performing
averages over 104 independent contours.

We also show the local variance of the density. This is not
part of the fitting procedure so it can be interpreted as a
prediction of the contour model. As expected, the variance is
large at the liquid–vapour interface. In the contour model, it
also tends to be large where this interface meets the barrier. For
the ABPs under partial wetting conditions, the same behaviour
is observed, with large fluctuations near points of contact with
the barrier. However, close to the transition point ew = 18, the
strongest density fluctuations in the ABPs occur away from

Fig. 9 Effect of the Gaussian convolution of scale sblur = 0.1, 1, 2, 3dx
where dx = 0.022OA on the two-dimensional variance profile, at D~g/~g =
0.7. The maps have dimensions 2OA � 2OA.
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these contact points. In fact, the contour model behaves
analogously to the passive Lennard-Jones fluid (recall Fig. 6),
with large fluctuations restricted to the contact points. This
suggests that the geometrical setup of the active system may be
influencing these density fluctuations, via the tips of the wedge,
which are not explicitly accounted for either in the LJ system
(which has walls terminating at reflective boundary conditions)
or the contour model (which assumes infinite walls). Future
work should clarify these potential finite-size effects and their
coupling with the nonequilibrium fluxes of Fig. 4.

To analyse the density fluctuations in more detail, we
characterise the behaviour of the local variance w(x,y) =
Var[r], along the interface. To identify the interfacial region
we take two density thresholds rlo,rhi and define a top-hat
function Prlo,rhi(�r) that is equal to unity for rlo o �r o rhi

(which is the interfacial region) and zero otherwise. Then we
integrate this local variance over the interfacial region to obtain

�winterface ¼
ð
wðx; yÞPrlo;rhi �rðx; yÞ½ �dxdy; (12)

(the integral runs over the entire system and �r is the local
density).

To determine how much w varies as we move along the
interface, we compute a corresponding spatial variance:

Var½w�interface ¼
ð
wðx; yÞ � �winterfaceð Þ2Prlo;rhi �rðx; yÞ½ �dxdy:

(13)

We vary the barrier and the wall strength in the ABP model
and the (passive) LJ system respectively, to obtain systems with
various contact angles. As different models have different scales
for the variance w = Var[r(x,y)], we rescale Var[w]interface of the
active and passive model by their maximal values. Results are
shown in Fig. 11, which also shows corresponding quantities
for the contour model, computed as a function of D~g/~g. To
reduce the noise of our estimates, we repeat the measurements
over a number of independent runs, which depend on the

complexity of the models (5 for the active system, 20 for the
passive system and 100 for the contour model), limited by the
computational costs of the different models.

The contour model results can be accurately fitted with a
polynomial expression (dashed line), and indicate an increas-
ing spatial variance of the fluctuations, as the system moves
from complete wetting [cos y E 1] towards the neutral point
[cos y E 0]. The particle-based simulations exhibit more pro-
nounced statistical errors, but follow a comparable trend. In
particular, the ABP simulations have significant statistical
uncertainties, both in determination of contact angle and the
spatial variance. This is due to relatively large density fluctua-
tions in the active fluids as well as limitations on available
statistics due to the large system sizes and computational costs.
It would be interesting to explore in more detail the agreement
of the particle systems with the contour model but we postpone
such a study to future work.

Fig. 10 Fitting the density profiles of the active system with the contour model for different values of the barrier strength ew. The upper row of each
panel is the local density, while the lower row is the variance. Every panel displays two columns: the left column corresponds to the data from the region
of the active systems contained inside the wedge, excluding the barrier region; the right column represents the fitted profiles produced by an ensemble
of 10 000 contours. The fit is only performed on the density field, whereas the variance maps are inferred. The numerical values of the barrier strength of
the active model ew and the fitted values of D~g/~g are also reported. Every map has dimensions 46s � 46s, and every pixel is a box of size 2s� 2s,
consistent with the discretisation used in the rest of the article.

Fig. 11 Scaled value of Var[w]interface where w= Var[r(x,y)] in the interfacial
region between the vapor and the liquid, scaled by its maximum. For the
contour model we consider, we convolve the density profiles with con-
volution scale sblur = 2dx, where dx = 0.13R0. The contour curve is scaled
to fit the particle-based simulations data and thus its peak value differs
from unity due to the fluctuations in the data.
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Overall, Fig. 11 illustrates that – for a given choice of
the contact angle – and notwithstanding the very different
specific interaction mechanisms with the wall/barrier, the three
model systems display similar characteristic fluctuations of
their interfaces, which match quantitatively (up to an overall
scale factor). More generally, Fig. 2, 6 and 10 demonstrate
similar phenomenology for ABPs, passive LJ particles and the
contour model, indicating that the principal features of the
steady state density distribution in the wedge interior are well
described by the minimal contour model, within which the
most likely droplet shape is determined by a ratio of surface-
tension-like quantities. This idea is developed further in the
next Section.

6 Discussion and conclusions

We have considered active Brownian particles subject to a finite
repulsive external potential as a simple model for surface phase
transitions in active fluids. Our findings connect the behaviour
of stable droplets to previously identified sharp spontaneous
symmetry-breaking transitions from completely to partially
wet states in three-dimensional systems.23 In order to stabilise
active droplets with nonzero contact angles, we utilise a wedge-
shaped external potential. The droplets thus formed display
distinctive density distributions as well as non-trivial steady
currents.

A comparison with the wetting behaviour of a (Lennard-
Jones) passive fluid confined by impenetrable, long-range
attractive walls shows quantitative correspondences between
the characteristic features of the density field and its fluctua-
tions. Increasing the strength of the attractive wall–fluid inter-
action in the passive system plays an analogous role to
increasing the potential barrier height in the active system,
promoting a continuous change in curvature in the liquid–
vapor interfaces and the promotion of density fluctuations in
the vicinity of the contact line that increases as one moves from
complete wetting (cos(y) = 1) through the partial wetting regime
to the neutral point (cos(y) = 0).

Our results for the partial to complete wetting transition in
ABPs provide new insights into phase separation phenomena
in dry active matter. They suggest that, despite the inherent
non-equilibrium mechanisms that engender phase separation
and non-trivial flow patterns, the large-scale properties of
the active model can be mapped onto an equilibrium one, an
assertion that is supported by the finite-size scaling analysis of
the density profiles in the partially wet regime. Such a scenario
is similar to the hydrodynamic models proposed to rationalise
motility-induced phase separation in the bulk53 and connects
to recent attempts to recover capillary-wave-like fluctuations
in the nonequilibrium case.28,33,54 It will be interesting to study
whether these findings generalize to more complex active
matter systems with anisotropic interactions or long-ranged
hydrodynamic effects: in such systems, MIPS may be modi-
fied55 or suppressed,56 hence affecting dramatically one of the
key ingredients for surface phase transitions.

The agreement of the contour model with the ABP system
supports the correspondence between the interfacial behaviour
of MIPS systems and equilibrium fluids. The parameters ~glv,D~gw

appearing in F are similar to (rescaled) surface tensions
in equilibrium systems in that they set the probabilities of
interfacial fluctuations. Indeed, one may use (8), (9) to write the
suggestive expression,

~glv ¼ �
@

@‘lv
ln P; (14)

analogous to the definition of an equilibrium surface tension
as a derivative of the free energy. Similarly D~gw = (q/qdwl)lnP.
However, it should not be assumed that ~glv,D~gw are related to
mechanical aspects of interfaces, in contrast to equilibrium
systems where the surface tension controls anisotropic contri-
butions to the stress tensor,57 as well as the magnitude of
capillary fluctuations, and the Laplace pressure. It is a familiar
feature of active matter that there is no a priori connection
between fluctuations and mechanical forces, because standard
fluctuation–dissipation theorems do not hold in these non-
equilibrium steady states. In deriving Young’s equation, the
central (albeit trivial) assumption is that the observed large-
scale droplet configuration is the one that maximises the
probability, so its shape is naturally determined by prob-
abilistic quantities.

To the extent that the contour model is an accurate descrip-
tion of interfacial fluctuations, the quantity ~glv can be deduced
from fluctuations of a planar MIPS interface: it is closely related
to the capillary surface tensions discussed in.32,33 In equili-
brium, D~gw is the difference between liquid–wall and vapour–
wall surface tensions: these can be computed separately from
simulations of the fluid in contact with the wall, under appro-
priate conditions. In this case, all the quantities that appear in
Young’s equation are known, and the contact angle y can be
predicted. In the active case, it is not clear how D~gw can be
estimated without direct simulation of a wetting droplet, so the
modified Young’s eqn (10) cannot predict the value of y.
Instead, one might infer D~gw by measuring the contact angle,
under the assumption that (8), (9) are suitable as a model for
droplet-shape fluctuations. Under this assumption, the theory
does make non-trivial predictions, for example, that the contact
angle of a fluid in a wedge should be independent of the
aperture angle a, as found (at least approximately) in Fig. 1.
Predictions of the most likely shape and its fluctuations would
then also be available for other wall geometries. However, the
existence of steady-state currents in active fluids should be
borne in mind since this could mediate non-local interaction
terms in F , in which case (8), (9) would not hold. More detailed
tests of this theory would be desirable.
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Appendix
A Active Brownian particles model

We follow previous literature and simulate repulsive active
Brownian particles of equal mass m interacting via the
Weeks–Chandler–Anderson potential

VðrÞ ¼ 4e
s
r

� �12
� s

r

� �6	 

þ e (15)

with a cutoff at r = 21/6s.
The equations of motion for the particle positions and

orientations are:

@tri ¼ bDT Fi þ Fppi
� �

þ
ffiffiffiffiffiffiffiffiffi
2DT

p
Lr; (16)

@tpi ¼
ffiffiffiffiffiffiffiffiffi
2DR

p
pi � Lp

� �
: (17)

where pi is the orientation of particle i, Fp is the strength of self
propulsion force DT and DR are diffusivities and Lr and Lp are
noise terms.

The translational and rotational diffusion constants DT and
DR coupling is DT = DRs

2/3, with inverse thermal energy scale b
and friction x such that bx = 1/Dt. Following Stenhammar
et al.,40 we keep the self-propulsion force constant Fp = 24e/s
as well as the friction x ¼ 50

ffiffiffiffiffiffi
em
p

=s. The noise terms Lr,Lq,Lp

are unit-variance stochastic vectors in three dimensions whose
Cartesian components satisfy hLi(r,t)Lj(r0,t0)i = dijd(r � r0)d(t � t0).
The rotational diffusion constant defines a natural timescale for
the system, the rotational diffusion time tR = 1/DR. We work at
constant Péclet number Pe = Fp/xDrs = 60. We choose this value as
a compromise between the need to work away from criticality
(Pe E 3641) and the requirement of system sizes that are compar-
able or larger than the persistence length cp = sPe.

To integrate the equations of motion, we implement an
Euler–Maruyama scheme with constant timestep dt = 4 �
10�5tR, following the Ermak–McCammon method described
in detail in ref. 58, with an in-house implementation for the
molecular dynamics package LAMMPS.59

B Lennard-Jones droplet

We performed molecular dynamics simulations of a system of
point-like particles interacting via the short-range Lennard-
Jones potential

VðrÞ ¼ 4eLJ
s
r

� �12
� s

r

� �6	 

: (18)

The potential was truncated and shifted at cutoff rc = 2.5s.
To mimic the setup of the active case, we considered a three-

dimensional system with Lz { Lx = Ly, with Lz = 20s and Lx = Ly =
100s. While the z dimension is periodic, particles interact with
a Lennard-Jones 9-3 wall interaction on two of the remaining
faces (forming a corner), while the opposite walls have reflective
boundary conditions. The wall–fluid interactions took the form

VwðuÞ ¼ eLJw
2

15

s
u

� �9
� s

u

� �3	 

; (19)

where u is the distance from the planar wall. Wall–fluid
interactions were cutoff at rw

cut = Lx � 0.5s.
The simulations were performed in the NVT ensemble at

temperature T = 0.91954eLJ for a system of N = 20 000 particles
of mass m and number density r = 0.1s�3 using a timestep

dt ¼ 0:006
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms2=eLJ

p
.

C Fitting contact angles

Measuring contact angles relies on fitting procedures. To vali-
date our results, we follow two alternative procedures to fit the
contact angles from stationary density profiles of the active and
passive models: (1) a three-parameter fit with a circular profile;
(2) a seven-parameter fit with a Fourier series representing the
liquid–vapor interface.

For method (1), we identify the interface between vapor
and liquid by thresholding the absolute value of the gradient
of the density profile to extract the (x,y) coordinates of
points exclusively at the vapor–liquid. We ignore interfacial
points close to the walls as they worsen the quality of the
result. We then perform a least-square circular fit with para-
meters R,xc,yx where R is the radius of the circle xc and yc are
the coordinates of the centre of the circle. The centre of the
circle corresponds to the tip of the wedge only when the
contact angle is 901. In general, the wedge identifies the sector
of a circle with the centre inside or outside of the wedge.
When the centre is outside, the contact angle is measured as
y = p/2 � arcsin(|yc|/R), when it is inside, the angle is y = p/2 +
arcsin(|yc|/R).

For method (2), we use the parametrisation of eqn (7) with
M = 5 to fit the interface between the vapor and the liquid. In
this case, we include all the points of the interface that are
inside the wedge and evaluate the local slope of the interface at
a fixed distance dy = 3s from the wall in order to approximate
the contact angle. We take advantage of the closed form
parameterisation (eqn (7)) by taking its derivative analytically,
which improves the numerical stability of the estimate of the
contact angle.

The two methods yield comparable results in the partially
wet regime. Method 2 breaks down on the approach to the
wetting transition, although it continues to provide a lower
bound for the contact angle at high ew. This is illustrated
in Fig. 12.

D Variational derivation of Young’s
equation

We show that Young’s equation can be obtained by minimising
the free-energy-like quantity (9), subject to a constraint of fixed
enclosed area. We emphasize however than in the active case
F is not a thermodynamic free energy, instead it describes the
log-probability of shape fluctuations, such that its minimum is
the most likely shape. For convenience we consider a planar
wall instead of a wedge geometry and define f (x) as the normal
distance from the wall to the interface, see Fig. 13. We explain
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below how results for other geometries can be deduced
from this computation. (In order for f to be single-valued our
derivation also requires that y r p/2, this assumption can be
also be relaxed.) We assume that the interface meets the wall at
x = �X so f (X) = 0 = f (�X): here X is a variational parameter. The

length of the liquid–vapour interface is ‘lv ¼
ÐX
�X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 02

p
dx

and the length of the liquid–wall interface is 2X. The enclosed

area is
ÐX
�Xf dx.

The problem can be simplified by a symmetry argument: the
optimal droplet shape is symmetric about x = 0 so f0(0).
We enforce the constraints of enclosed area A0 and f (X) = 0
by Lagrange multipliers l,m. Hence it remains to extremise

L½ f ;X� ¼ 2

ðX
0

~glv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 02

p
� lf

h i
dx

�2D~gwX þ lA0 � mf ðXÞ
(20)

(Note that this is a functional of f, also X is a scalar variational
parameter and A0 is the imposed area.)

Within the calculus of variations we write f = f + df and
X = X + dX. Substituting this into L, the optimal droplet shape
is identified by setting the first variation dL ¼ 0. We find

dL ¼ 2

ðX
0

~glv
f 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 02
p df 0 � ldf

" #
dxþ dX 2~glv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0ðXÞ2

q	

� 2lf ðXÞ � 2D~gw � mf 0ðXÞ� � mdf ðXÞ

Integration by parts and using f (X) = 0 and f 0(0) = 0 yields

dL ¼ 2~glv
f 0ðXÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 0ðXÞ2
p � m

" #
df ðXÞ

� 2

ðX
0

~glv
d

dx

f 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 02

p
 !

þ l

" #
df dx

þ dX 2~glv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0ðXÞ2

q
� 2D~gw � mf 0ðXÞ

	 

(21)

The optimal droplet has dL ¼ 0 for any df,dX, so all the terms in
square brackets need to vanish. The second of these terms yields an
Euler–Lagrange equation for f whose solutions are circular arcs with
radius 1/|~glvl|.‡ To obtain the contact angle one must deal with the
end points of these arcs, for which the first term in (21) implies that

m ¼ 2~glv
f 0ðXÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 0ðXÞ2
p (22)

Putting this into the third term, we get (after simplification)

D~gw ¼ ~glv
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 0ðXÞ2
p (23)

Finally note that f0(X) is the gradient with which the liquid–
vapour meets the wall, which is tan y, where y is the contact

angle. We assumed 0 o yr p/2 so 1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 0ðXÞ2
p

¼ cos y and

we recover Young’s equation in the form (10).
Note that we performed this computation for a particular

parameterisation of a droplet on a planar substrate, but the
condition that the terms in square brackets vanish in (21) gives
local geometrical constraints on the shape of the optimal droplet,
which can be formulated in terms of the local curvature and the
contact angle, independent of the parameterisations. As a result, the
geometrical properties of the minimiser can be transferred to other
geometrical settings even if the natural parameterisations are different
in that case [recall (7)]. Specifically, the optimal shape has sections of
liquid–vapour interfaces that form arcs of circles, and Young’s
equation is obeyed at points of contact with (locally) planar substrates.

E Contour sampling

We describe a numerical procedure for sampling droplet
shapes according to (8), subject to a constraint of fixed area

A½R� ¼ 1

2

Ð a
0
RðfÞ2df. To achieve this note that

A½R� ¼ a
2

R0
2 þ R0

X
kodd

4ak

kp
þ B2

3
þ 1

2

X
k

a2k � B
X
keven

4ak

kp

" #
(24)

Given parameters (B,a1,. . .,aM) and a target area A0 this is a
quadratic equation that can be solved for R0. We fix R0 in this
way and perform Metropolis MC on u = (B,a1,. . .,aM).§ As MC

Fig. 12 Comparison of the two independent measures of contact angles
in the case of the active droplets. The hatched area indicates the detached
regime.

Fig. 13 (a) Sketch of geometry for derivation of Young’s equation in
Appendix D. (b) Corresponding geometry for the contour model, see
Appendix E.

‡ In equilibrium, l is related to the Laplace pressure.
§ Note that the interpretation of (8) as a probability density for functions R has
some ambiguity, but the most likely droplet shape is unambigous and obeys
Young’s equation. Our choice of MC sampling method corresponds to a specific
interpretation of the probability density P[R].

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
Fe

br
ua

ry
 2

02
4.

 D
ow

nl
oa

de
d 

on
 7

/3
1/

20
25

 6
:3

3:
58

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sm01493b


This journal is © The Royal Society of Chemistry 2024 Soft Matter, 2024, 20, 2060–2074 |  2073

updates we propose

unew ¼ uold þN (25)

where N is a vector of Gaussian random numbers where
each component has mean zero and variance s2. We take s =
0.01. The proposed update is accepted with probability
min 1; eFold�Fnew

� �
, evaluation of F requires the integral

‘lv½R� ¼
Ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RðfÞ2 þ R0ðfÞ2
p

df, which is performed numerically.
Note that scaling the droplet as R(f) - lR(f) for any scale

factor l, we find that A - l2A and F! lF. This scale
invariance means that there are only two non-trivial parameters
in this sampling problem, which are D~gw/~glv and ~glv

2A0. For
numerical purposes we therefore fix A0 = 1 without loss of
generality.

For the range of D~g/~g here considered we observe (after an
initial transient) decorrelation of F over approximately MC
50 steps, which allows us to accumulate large statistics. For
example, we produce 200 000 independent profiles to evaluate
the density and variance of the density field in blocks of 2000
contours, to produce 100 samples of the variance in the inter-
face region, from which we estimate the scale of variance
fluctuations within the interface (Fig. 11).
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