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Motion of microswimmers in cylindrical
microchannels†

Florian A. Overberg, * Gerhard Gompper * and Dmitry A. Fedosov *

Biological and artificial microswimmers often have to propel through a variety of environments, ranging

from heterogeneous suspending media to strong geometrical confinement. Under confinement, local

flow fields generated by microswimmers, and steric and hydrodynamic interactions with their

environment determine the locomotion. We propose a squirmer-like model to describe the motion of

microswimmers in cylindrical microchannels, where propulsion is generated by a fixed surface slip

velocity. The model is studied using an approximate analytical solution for cylindrical swimmer shapes,

and by numerical hydrodynamics simulations for spherical and spheroidal shapes. For the numerical

simulations, we employ the dissipative particle dynamics method for modelling fluid flow. Both the

analytical model and simulations show that the propulsion force increases with increasing confinement.

However, the swimming velocity under confinement remains lower than the swimmer speed without

confinement for all investigated conditions. In simulations, different swimming modes (i.e. pusher,

neutral, puller) are investigated, and found to play a significant role in the generation of propulsion force

when a swimmer approaches a dead end of a capillary tube. Propulsion generation in confined systems

is local, such that the generated flow field generally vanishes beyond the characteristic size of the

swimmer. These results contribute to a better understanding of microswimmer force generation and

propulsion under strong confinement, including the motion in porous media and in narrow channels.

1 Introduction

In their natural habitat, biological microswimmers (e.g. E. coli,
Paramecium) are subject to a multitude of different environ-
ments, ranging from unconfined liquid media to porous-like
surroundings within the soil or a biofilm.1,2 Properties of these
media can be very diverse, and include fluid viscosity varying
over several orders of magnitude,3,4 viscoelasticity in complex
fluidic environments,5,6 and various degrees of hard and soft
confinements.7–9 In such environments, microswimmers are
subject to intricate steric and hydrodynamic interactions,10,11

which they have to cope with and be able to employ for their
efficient locomotion and navigation. Furthermore, understand-
ing microswimmer propulsion in complex environments is
relevant for the development of microscopic artificial motile
systems capable of performing specific tasks.12,13

Most studies of locomotion under confinement have
focused on microswimmer-wall interactions.2,14 For example,

microswimmers are subject to wall accumulation, which is
due to their slow re-orientation (e.g. governed by rotational
diffusion) after they hit a wall as well as hydrodynamic
interactions.15–17 The accumulation is even more enhanced in
places with a non-zero wall curvature,18–20 and this effect can
lead to a persistent microswimmer motion along the
surface.21,22 Studies of microswimmer propulsion under strong
confinements are still rather scarce due to difficulties in
experimental observations or numerical modeling. For
instance, E. coli in porous media exhibits hopping and trapping
behavior,7 in contrast to the run-and-tumble motion within
unconfined fluidic environments.23 Furthermore, trypano-
somes (parasites causing sleeping sickness) can survive in
and navigate through very different environments, including
blood and several solid-like tissues.6,24 An investigation of
trypanosome locomotion through a maze of obstacles within
a microfluidic device suggested that these parasites can some-
times move more efficiently through crowded environments.25

Nevertheless, the majority of experimental and theoretical
studies report a reduction in microswimmer speed under
confinement in comparison with that within unconfined fluid
conditions.7,26–28

Another interesting example is the motion of microswim-
mers under soft deformable confinements represented by a
lipid membrane and vesicles.8,9,29,30 This active system shows a
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variety of dynamic non-equilibrium vesicle shapes, including
prolate geometries and structures with multiple tether-
like protrusions generated by the encapsulated swimmers.
Within the tethers, the swimmers are tightly wrapped by the
membrane; however, they are still able to propel and exert
forces on the membrane to further extend the tethers. E. coli
bacteria were found not only to pull relatively long tethers, but
also to transport the vesicle with a non-zero velocity despite the
tight wrapping by the vesicle membrane.29

The examples above raise a number of scientific questions
related to microswimmer propulsion under confinement. How
can microswimmers propel and navigate through very confined
environments? Do they employ the physical mechanisms and
strategies similar to those when propelling under unconfined
conditions? Does the local flow field generated by microswim-
mers play an essential role in their propulsion under strong
confinements? Can they propel faster within confined environ-
ments in comparison to that within unconfined surroundings?

To address some of these questions, we investigate squirmer
behavior in cylindrical microchannels. In particular, we
develop a theoretical model of swimmer motion within a
cylindrical capillary tube, which predicts its propulsion force
and velocity as a function of confinement and its swimming
strength. Furthermore, we perform simulations of microswim-
mer locomotion in a tube using a squirmer model.31–33 In both
the theoretical model and simulations, periodic boundary
conditions along the capillary axis as well as an impenetrable
wall at the ends of the tube, representing a dead end, are
considered. Simulation results confirm that the approximation
of the analytical model properly captures the qualitative beha-
vior of a squirmer inside a cylindrical microchannel. In the
squirmer model with fixed surface slip velocity, the propulsion
force increases with increasing confinement, while the swim-
ming velocity always remains smaller than the swimmer speed
for unconfined conditions, suggesting that the drag on the
swimmer increases faster than the propulsion force with con-
finement. The model shows that a swimmer is expected to be
able to move even under very strong confinements, though an
increasing power with increasing confinement is required. The
analytical model does not consider details of the local flow field
generated by the swimmer, while in simulations, the squirmer
model allows the imposition of different local flow fields,
corresponding to pusher, neutral, and puller swimmers.33

The swimming velocities in long channels only differ slightly
among these three swimming modes. However, the propulsion
forces near dead ends of the tube differ substantially. These
results help us better understand swimming behavior under
confinement, including tether pulling from fluid vesicles by
encapsulated microswimmers.8,9,29,30

The article is organized as follows. Section 2 provides all
necessary details about the employed methods and models.
Section 3 presents the approximate analytical model of swim-
mer propulsion in a capillary tube. The corresponding simula-
tions using the squirmer model are presented in Section 4, and
compared with the analytical model. We discuss the results and
shortly conclude in Section 5.

2 Methods and models
2.1 Swimmer model: squirmers

We represent the swimmer as a squirmer, a geometric body
with a prescribed slip velocity on its surface. Geometry of the
squirmer body and its surface velocity field are axisymmetric.
Three squirmer shapes, spherical, spheroidal and cylindrical
are considered.

Propulsion of the spherical squirmer is implemented
according to the classical squirmer model33 as

usurf = (B1 sin(y) + B2 sin(y)cos(y))ty, (1)

where in spherical coordinates y is the angle between the
orientation of the squirmer and the vector from the center of
mass to a point on the surface, and ty is the tangent vector in
y-direction. The coefficient B1 defines propulsion strength of
the swimmer and B2 introduces fore-and-aft asymmetry into the
slip-velocity field. A spherical squirmer swims in bulk fluid with

a velocity v0 ¼
2

3
B1. We use the ratio b = B2/B1 to capture the

modality. For b4 0 the squirmer is called a puller, for b = 0 it is
neutral and for b o 0 it is a pusher.

The spheroidal squirmer is a generalization of the spherical
shape, and describes a class of prolate-shaped squirmers.
Adaptation of eqn (1) to a spheroidal shape is described in
Appendix A. The speed of a spheroidal squirmer increases from

v0 ¼
2

3
B1 for a spherical squirmer to v0 = B1 as a function of

increasing aspect ratio of the spheroidal shape.34

For the cylindrical squirmer, we consider a shape with a
radius rcyl and a length Lcyl (see Fig. 1). Squirmer propulsion is
facilitated by a polar surface slip velocity (usurf = ucylez for r =
rcyl) of constant magnitude ucyl on its jacket from front to back.
No-slip boundary conditions are assumed at the front and rear
surfaces of the cylinder. This is motivated by neutral squirmers,

Fig. 1 Schematic of a cylindrical swimmer in a periodic cylindrical capil-
lary tube. The swimmer has a radius rcyl and a length Lcyl, while the capillary
is characterized by a radius Rcap and a length Lcap. p1 and p2 denote
pressures at the back and the front of the swimmer, respectively. A free
swimmer moves with a velocity vsq. The swimmer’s center of mass (the
black point at z = 0) can also be held by a spring (red line), in order to
measure its propulsion force. Boundary conditions of the flow are given by
the slip velocity ucyl at the swimmer surface and the no-slip condition at
the capillary wall.
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whose polar surface slip velocity is also axisymmetric, has a
maximum at the equator, and vanishes at the poles. Further-
more, this model facilitates the construction of an approximate
analytical solution of the squirmer motion inside cylindrical
microchannels.

2.2 Modeling fluid flow

To model fluid flow in simulations, we employ the dissipative
particle dynamics (DPD) method,35–37 a mesoscopic simulation
technique. In DPD, the fluid is represented by a collection of
particles which correspond to small fluid volumes and interact
through three types of pairwise forces. Thus, the force on fluid
particle i is given by

Fi ¼
X
jai

FC
ij þ FD

ij þ FR
ij ; (2)

where the sum runs over particles j that are neighbors of the
particle i, and includes conservative (FC), dissipative (FD), and
random (FR) forces. The conservative force FC

ij = aijo
C(rij)r̂ij

supplies a soft repulsion between DPD particles with a strength
coefficient aij, where rij = ri� rj, rij = |rij|, r̂ij = rij/rij. We introduce
a weight function o of the general form

oðrÞ ¼ 1� r=rcð Þs; for r � rc;
0; for r4 rc;

�
(3)

where rc is the cutoff radius beyond which all interactions
vanish, and s is an exponent to modify the weight function. The

other two forces are FD
ij = �goD(rij)(r̂ij�vij)r̂ij and FR

ij ¼
soR rij

� �
xij r̂ij

� ffiffiffiffiffi
Dt
p

; where g and s are the force strength coeffi-
cients, vij = vi � vj, xij = xji is a Gaussian random variable with
zero mean and unit variance, and Dt is the time step. The
fluctuation–dissipation theorem relates these weight functions
and the force coefficients as36

oD(r) = [oR(r)]2 = o(r), s2 = 2gkBT. (4)

Thus, the pair of dissipative and random forces corresponds to
a thermostat which maintains a constant temperature T in the
simulated fluid.

2.3 Numerical implementation of the spherical and
spheroidal squirmer

In simulations, the squirmer is modeled by a triangulated
network of particles which are placed homogeneously on the
swimmer surface. In order to maintain a nearly rigid shape of
the squirmer, the triangulated network of particles incorpo-
rates shear elasticity, bending rigidity, and constraints for the
surface area and enclosed volume.38,39 Bonds between neigh-
boring vertices of the network supply shear elasticity and are
described by the potential Ubond = UWLC + UPOW

38 with

UWLC ¼
kBTlm

4p

3x2 � 2x3

1� x
; UPOW ¼

kp

l
; (5)

where x = l/lm A (0,1), l is the spring length, lm the maximum
spring extension, p the persistence length, and kp the repulsive
force coefficient. The bending resistance is implemented
through the discretization of the Helfrich bending energy40,41

as

Ubend ¼
k
2

X
i

si Hi �Hi
0

� �2
; (6)

where k is the bending rigidity, Hi ¼ ni �
P
jðiÞ

sijrij
�

sirij
� �

is the

discretized mean curvature at vertex i, ni is the unit normal at
the membrane vertex i, si ¼

P
jðiÞ

sijrij=4 is the area corresponding

to vertex i (the area of the dual cell), j(i) corresponds to all
vertices linked to vertex i, and sij = rij(cot y1 + cot y2)/2 is the
length of the bond in the dual lattice, where y1 and y2 are the
angles at the two vertices opposite to the edge ij in the dihedral.
Finally, Hi

0 is the spontaneous curvature at vertex i, which can
be used to implement shapes with non-constant local curva-
tures (e.g. spheroidal surfaces).

The area and volume conservation constraints are intro-
duced through the potentials38

Uarea ¼
ka A� Atot

0

� �2
2Atot

0

þ
X

m21:::Nt

kd Am � Am
0

� �2
2Am

0

; (7)

Uvol ¼
kv V � V tot

0

� �2
2V tot

0

; (8)

where A is the instantaneous area of the membrane, Atot
0 the

targeted global area, Am the area of the m-th triangle, Am
0 the

targeted area of the m-th triangle determined by the triangular
mesh on the squirmer surface, V the instantaneous membrane
volume, and Vtot

0 the targeted volume. Furthermore, ka, kd, and
kv are the global area, local area and volume constraint coeffi-
cients, respectively. Nt is the number of triangles on the
triangulated surface.

The swimmer is embedded in a DPD fluid. DPD particles
are also placed inside the swimmer. The swimmer surface,
described by a membrane, is impenetrable for DPD fluid
particles and separates them into an inside and outside
volume. The separation of DPD fluid particles by the squirmer
membrane is necessary for a proper imposition of slip bound-
ary conditions at the squirmer surface. Note that the dissipative
and random forces between fluid particles inside and outside
the membrane are turned off, while the conservative force is
used to keep homogeneous fluid pressure across the
membrane.38 To prevent fluid particles from crossing the
membrane, their reflection from both sides of the membrane
is implemented following a rule,42 in which particle positions
are updated according to specular reflection, while particle
velocities follow the bounce-back reflection.

To enforce the slip velocity at the swimmer surface, dissipa-
tive interaction between swimmer particles and those of outer
fluid is modified as

FD
ij ¼ �goD rij

� �
r̂ij � v�ij
� �

r̂ij ; v�ij ¼ vi � vj þ uisurf ; (9)

where ui
surf is the slip velocity at the position of swimmer

particle i, while j represents an outer-fluid particle. There also
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exist other approaches that implement swimmer motion in a
DPD fluid.43–45

2.4 Model of solid walls

Solid walls are represented by frozen DPD particles which have
the same number density and interactions as fluid particles.
The frozen wall particles facilitate no-slip boundary conditions
(BCs) at the walls through dissipative interactions with fluid
particles. To prevent fluid particles from penetrating the walls,
reflective surfaces are added at the fluid–solid interface, where
bounce-back reflection of fluid particles is performed.42 Note
that the bounce-back reflection also contributes to the enforce-
ment of no-slip BCs at the walls.

2.5 Simulation parameters

In most simulations, the swimmer has a spherical shape with a
radius rsq = 5rc, and is represented by the squirmer model with
N = 3000 discretization particles on its surface. To maintain a
non-deformable spherical geometry, the targeted membrane
area Atot

0 is set 5% smaller than 4prsq
2 and the targeted volume

Vtot
0 5% larger than 4prsq

3/3, such that the surface is under
considerable tension. The confinement is modeled by a capil-
lary tube with a radius Rcap using either periodic BCs in the z
direction or solid-wall BCs at both ends of the tube. To
constrain the swimmer position at the capillary center and its
swimming orientation along the z axis, two springs are attached
to the front and rear portions of the swimmer, represented by
about 300 surface particles with maximum and minimum z
coordinates, respectively. Equilibrium position of these springs
is set to (0, 0, *), such that the springs control the swimmer
position and orientation only in the x and y directions, while
the motion along the z direction remains unaffected. In addi-
tion to spherically-shaped squirmers, a number of simulations
are also performed for a prolate spheroid (N = 1038 particles)
with semi-minor axes bx = by = 3rc and a semi-major axis bz = 6rc.

The fluid is modelled by a collection of DPD particles with a
number density n = 5/rc

3 (rc = 1.0 is selected in simulations).
The DPD force coefficients for interactions between fluid

particles are given by a = 80kBT/rc, g ¼ 50
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBT
p �

rc; s = 1 for
oC and s = 0.1 for oD and oR, where m = 1 is the particle mass
and kBT = 1 is the unit of energy. This results in a fluid dynamic

viscosity of Z ¼ 77:5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBT
p �

rc
2; which is computed in a sepa-

rate simulation using the reverse Poiseuille flow approach.46,47

Coupling between the spherical squirmer and fluid particles

assumes asf = 0 and gsf ¼ 59:7
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBT
p

=rc with rsf
c = 0.8rc. The

value of gsf is computed such that the imposed slip BCs at the
squirmer surface are obtained.38 For the spheroidal swimmer,

gsf ¼ 106:1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBT
p �

rc because the surface density of squirmer
particles is different from that for the spherical swimmer. For
simulations with a finer fluid resolution, the density is set to n =

20/rc
3, while the cutoff radius is r

0
c ¼ 0:6rc to reduce the overall

computational cost. In this case, the dynamic viscosity becomes

Z ¼ 84:7
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBT
p �

rc
2; which is close to that in simulations with

n = 5/rc
3. The time step is Dt ¼ 0:0025rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=kBT

p
; and the center

of mass of the squirmer is sampled every 100 time steps. The
velocity is computed using the distance that the swimmer
covers within 800 time steps. Error bars represent the standard
deviation of these samples.

3 Approximate analytical approach for
cylindrical squirmers in microchannels

We first derive an approximate analytic description for a
cylindrical squirmer in confinement, sketched in Fig. 1. The
confinement is represented by a cylindrical capillary tube with
a radius Rcap and a length Lcap, which can either be closed at
both ends or have open ends connecting two fluid reservoirs.
The latter case is approximated by a capillary tube with periodic
BCs along the tube axis. The surface of the capillary tube is
subject to no-slip BCs for fluid flow. p1 and p2 correspond to
fluid pressures at the back and front ends of the swimmer,
respectively. The swimmer axis is assumed to always be parallel
to the tube axis and at the centerline of the capillary. We are
interested in the velocity vsq of the swimmer, when its propul-
sion force is balanced by the drag due to surrounding fluid
flow. Furthermore, to measure the propulsion force of the
swimmer, its center of mass can be pinned by a harmonic
spring (see Fig. 1), such that the retaining force of the spring
equals the propulsion force of the swimmer. Since we are not
able to construct a full analytic solution, an approximate model
with several simplifications is considered. In fact, the design of
the cylindrical squirmer is chosen such that an approximation
for swimming in a narrow cylindrical tube is plausible, at least
for swimmers with a large aspect ratio, i.e. Lcyl c rcyl. We
neglect the effect of local fluid flow near the back and front
ends of the cylinder on the propulsion, i.e., we assume that
fluid radial velocity ur is zero everywhere, and consider only
fluid flow through a cross-section of the tube. Under the
assumption that the microswimmer moves at low Reynolds
numbers, fluid flow in this system can be described by the
incompressible Stokes equation48 Zr2u = rp, where Z is the
dynamic viscosity. In cylindrical coordinates, the general
solution of this equation for fluid flow through a cross-
section (ur = 0) is given by

uzðrÞ ¼
rp
4Z

r2 þ c1 lnðrÞ þ c2; (10)

where c1 and c2 are constants that need to be determined.
Explicit expressions for the parameters (e.g. c1 and c2) of the
approximate analytical model are given in Appendix B for
different conditions. Note that the employed Stokes equation
with ur = 0 can also be derived from approximations used in the
lubrication theory, so that our assumptions remain valid in the
limit of vanishing gap size or when rcyl - Rcap.

3.1 Squirmer in a periodic capillary tube

When the swimmer’s center of mass is pinned by a spring,
vsq = 0 at steady state and the propulsion force of the swimmer
can be measured. The cross-sectional flow profiles can then be
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derived (i) through the gap between the swimmer and the
capillary tube, and (ii) through the tube away from the swim-
mer. The pressure gradient along the gap is given by rpgap =
(p2 � p1)/Lcyl = Dp/Lcyl, while the pressure gradient along the
swimmer-free section of the capillary is rpcap = (p1 � p2)/
(Lcap � Lcyl) = �Dp/(Lcap � Lcyl) due to periodic BCs along the
tube axis. Then, the corresponding flow profiles are

ugapðrÞ ¼
DpRcap

2

4ZLcyl

r2

Rcap
2
� 1

	 


þ
ucyl þ DpRcap

2
� ��

4ZLcyl

� �
� ð1�D2Þ

lnðDÞ ln
r

Rcap

	 

;

(11)

ucapðrÞ ¼
Dp

4Z Lcap � Lcyl

� � Rcap
2 � r2

� �
; (12)

where D = rcyl/Rcap is the confinement. Here, we used BCs at the
capillary surface with u(Rcap) = 0 and at the lateral surface of the
swimmer with ugap(rcyl) = ucyl. To determine the pressure drop
Dp, we use mass conservation which requires the volumetric
flow rate through the gap to be equal to the flow rate through

the swimmer-free section of the tube. An integral form of mass

conservation reads
Ð 2p
0 df

ÐRcap

rcyl
dr rugapðrÞ ¼

Ð 2p
0 df

ÐRcap

0 dr rucapðrÞ
with f denoting the polar angle. This allows us to compute Dp
and fully determine the flow profiles above.

To calculate the propulsion force Fcyl, the fluid stress tensor
r has to be integrated over the microswimmer surface S, i.e.
Fcyl ¼

Ð
Sn � r dS with surface normal n. In cylindrical coordi-

nates with the assumption that ur = uf = 0, the stress tensor
becomes

r ¼

�p 0 Z
@uz
@r

cosðfÞ

0 �p Z
@uz
@r

sinðfÞ

Z
@uz
@r

cosðfÞ Z
@uz
@r

sinðfÞ �p

0
BBBBB@

1
CCCCCA; (13)

where p is the hydrostatic pressure. Integration of fluid stresses
over the cylindrical surface leads to

Fcyl ¼ 2prcylLcylZ
@uz
@r

����
r¼rcyl
�prcyl2Dp

 !
ez ¼ 2pLcylZc1ez: (14)

Insertion of the solution ugap(r) from eqn (11) results in the

Fig. 2 Approximate analytical model for a cylindrical swimmer in a periodic capillary tube. (a) and (b) Propulsion force Fcyl of a spring-pinned swimmer as
a function of confinement D for (a) various swimmer lengths with Lcap = 60rcyl and (b) different capillary lengths with Lcyl = 2rcyl. The confinement D = rcyl/
Rcap is varied by changing Rcap and the force is normalized by Fsph = 6pZrcylucyl. (c) and (d) Velocity vsq of a freely moving cylindrical swimmer as a function
of confinement D for (c) different swimmer lengths with Lcap = 10rcyl and (d) various capillary lengths with Lcyl = 2rcyl.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
M

ar
ch

 2
02

4.
 D

ow
nl

oa
de

d 
on

 1
/2

2/
20

26
 1

0:
18

:5
0 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sm01480k


3012 |  Soft Matter, 2024, 20, 3007–3020 This journal is © The Royal Society of Chemistry 2024

propulsion force

Fcyl ¼ 2pLcylZ
ucyl þ DpRcap

2
� ��

4ZLcyl

� �
� 1�D2
� �

lnðDÞ ez: (15)

As the pressure drop Dp is proportional to 1/Rcap
2, the propul-

sion force in eqn (15) becomes a function of the confinement
D = rcyl/Rcap. The force Fcyl is displayed in Fig. 2(a) and (b) for
different swimmer and capillary tube lengths. It increases with
increasing confinement, and diverges as D - 1. Note that here
our model does not assume any limit on the generated propul-
sion force (see a discussion in Section 3.2), while forces
generated by realistic microswimmers would clearly have a
finite upper bound. In the limit of D - 0, the propulsion force
vanishes, suggesting that the swimmer can move without any
force generation in an unconfined situation. This is an artifact

of model assumptions, where the shear rate
@uz
@r

at the cylinder

jacket vanishes as Rcap -N (or D - 0), so that the shear stress
on the cylinder also disappears.

For Lcyl/Lcap { 1, a local maximum in Fcyl emerges at strong
confinements [see Fig. 2(a)]. The force expression in eqn (15)
has one component that is dependent on the pressure differ-
ence and another that is not. While the latter is responsible for
the divergence at D - 1, the former has a local maximum
corresponding to the maximum in the pressure difference. The
pressure gradient is increasing for smaller Lcyl which explains
the emergence of the local maximum only for small values of
Lcyl. Note that the analytical model might be inaccurate in the
limit of small Lcyl, because the flow field near the cylinder caps
would become significant for the swimmer propulsion. Fig. 2(b)
shows that the propulsion force is also affected by the capillary
tube length Lcap for an intermediate range of confinements,
while the effect of Lcap can be neglected for low and high
confinements.

For a free-swimming squirmer (i.e. no pinning spring)
moving along the channel center line, the BCs at the swimmer
surface are modified as ugap(rcyl) = ucyl + vsq. Here, an additional
condition is that the swimmer is force free, i.e. Fcyl = 0, such
that the propulsion force balances the drag force on the
swimmer. With the force given in eqn (14), we can conclude
that c1 = 0 in the solution for the velocity profile within the gap.
Furthermore, the equation for mass conservation changes toÐ 2p
0 df

ÐRcap

rcyl
drrugapðrÞ þ prcyl2vsq ¼

Ð 2p
0 df

ÐRcap

0 drrucapðrÞ. As a

result, we obtain the swimming velocity

vsq ¼ �ucyl �
DpRcap

2

4ZLcyl
1�D2
� �

: (16)

Fig. 2(c) and (d) show the swimmer velocity as a function of
confinement D for different swimmer and capillary tube
lengths. In the limit of rcyl/Rcap - 0 or rcyl/Rcap - 1, the
swimmer velocity is equal to the slip velocity. With increasing
confinement, the velocity first decreases, reaches a minimum,
and then increases again. Longer swimmers propel with larger
speeds [see Fig. 2(c)], as they generate larger propulsion forces.
An increase in Lcap leads to a reduction in the swimming speed,

as shown in Fig. 2(d). These predictions are consistent with
previous simulation results for confined spherical squirmers,26

where a decrease in swimming velocity was found for increas-
ing confinements within the range from 0.2 to 0.5. This
behavior can be understood as follows. In the limit D - 1,
there cannot be any shear gradient in the gap, so that vsq =
�ucyl. For smaller D, the propulsion force is finite, but is
has to work against a friction force of the fluid column in
the tube, which increases linearly with the tube length. Thus,
vsq B 1/Lcap at the minimum of vsq. For Lcap - Lcyl, the
analytical model corresponds to an infinite cylinder moving
in an infinite capillary with a constant velocity, whose magni-
tude is equal to ucyl independently of the confinement.

3.2 Squirmer with a fixed propulsion force

The results in Section 3.1 assume a fixed surface slip velocity,
from which the required propulsion force is then derived. We
now assume a fixed propulsion force Fcyl = Fmax for the spring-
pinned case instead. The combination of eqn (14) with the BCs
for ugap results in a confinement-dependent surface velocity

ucyl ¼
1

4ZLcyl
� 2Fmax lnðDÞ

p
� DpRcap

2 1�D2
� �	 


: (17)

When this surface velocity is used for the free-swimming case
by inserting it into eqn (16), the swimming velocity becomes

vsq ¼ �
Fmax lnðDÞ
2pZLcyl

: (18)

This result is independent of Lcap. The dependence on D is
shown in Fig. 3. As expected, the swimming velocity goes to
zero for D - 1 for a swimmer with a finite propulsion force.
Also, the velocity diverges in the absence of confinement, which
is an artifact of the theoretical model related to the fact that Fcyl

Fig. 3 Velocity vsq of a freely moving cylindrical swimmer with a fixed
propulsion force of Fmax = 0.14Fsph (Fsph = 6pZrcylucyl) as a function of
confinement D for different swimmer lengths. The confinement D = rcyl/
Rcap is varied by changing Rcap.
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vanishes as D - 0. This means that the model predicts zero
fluid friction on a moving swimmer in the limit of D - 0,
suggesting that the model should not be used for D { 1.
Furthermore, the ability of real swimmers is always limited by a
finite value of the imposed surface velocity.

3.3 Squirmer motion in a closed capillary tube

Another situation is when the confinement geometry is closed,
representing two dead ends. For instance, this is the case for
swimmers in lipid vesicles located at the end of formed
tethers.8,9 When the center of mass of the swimmer is tethered
by a spring, mass conservation corresponds to zero fluid flux
through the gap between the swimmer and the capillary tube,

and reads
Ð 2p
0 df

ÐRcap

0 dr rugapðrÞ ¼ 0. In combination with the
BCs u(Rcap) = 0 and u(rcyl) = ucyl, we can determine the
parameters c1, c2, and Dp in eqn (10), leading to a solution
for the flow profile in the gap and the resulting
propulsion force

Fcyl ¼ 2pLcylZ
ucyl

1þ lnðDÞð1þD2Þ=ð1�D2Þez: (19)

The dependence of Fcyl on D is shown in Fig. 4(a) for different
Lcyl. The propulsion force increases with increasing confine-
ment, and diverges as rcyl/Rcap - 1. Similar to the case of the
periodic tube, longer swimmers generate more thrust.

To determine the dependence of swimming velocity on
D, the tethering spring is removed. For a freely-moving
swimmer in a closed tube, the mass conservation readsÐ 2p
0 df

ÐRcap

rcyl
dr rugapðrÞ þ prcyl2vsq ¼ 0; resulting in the swimming

velocity

vsq ¼ �ucyl �
1�D2

1þD2
: (20)

Fig. 4(b) shows that the velocity decreases with increasing
confinement and vanishes as D - 1, despite an increasing
propulsion force in Fig. 4(a). Since we study a force-free
swimmer, for which the propulsion force is equal to the drag

force at a steady swimming velocity, the only possibility is that
the drag force on the swimmer increases faster than its propul-
sion force as a function of D. When we consider the case of
D = 1, the fluid exchange between the region anterior and
posterior of the swimmer vanishes. For an incompressible
fluid, the flow through the gap must also vanish due to volume
conservation. This also explains the different behavior in
comparison to the periodic tube, where the swimmer can
‘‘push’’ the fluid in front and hence can swim with a non-
zero velocity. Note that the force and velocity of the swimmer in
the closed tube are independent of the capillary length, since
mass conservation is only affected by the flow in the gap
between the swimmer and the capillary wall.

In order to compare the approximate analytical model for a
closed tube with that of a periodic tube, Fig. 4(b) presents the
velocity of a cylindrical swimmer as a function of confinement
for the both models. In the limit of Lcap - N, the analytical
model with periodic BCs along the capillary axis converges to
that for a closed tube. As the capillary length increases, the
overall resistance for fluid flow also increases, leading to a
negligible volumetric flow rate within the tube for large capil-
lary lengths.

A calculation based on a fixed propulsion force is similar to
that for a capillary tube with periodic BCs in Section 3.2.
Therefore, the predictions for Fcyl = Fmax in a closed capillary
tube do not differ qualitatively from those in Fig. 3.

4 Simulations of spherical and
spheroidal squirmer motion in
cylindrical microchannels

In order to verify to which extent the approximate analytical
model captures the behavior of squirmer in microchannels, we
perform numerical simulations of a swimmer in a capillary
tube for various conditions. In simulations, we use either
spherical or spheroidal squirmer models, as described in

Fig. 4 Approximate analytical model for a cylindrical swimmer in a capillary tube. (a) Propulsion force Fcyl of a spring-pinned swimmer in a closed tube
as a function of confinement D for different swimmer lengths. The confinement D = rcyl/Rcap is varied by changing Rcap and the force is normalized by
Fsph = 6pZrcylucyl. (b) Velocity vsq of a freely moving cylindrical swimmer in a closed tube far away from both tube ends and in an open tube with periodic
BCs as a function of confinement D.
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Section 2.1. The results in Sections 4.1 and 4.2 are based on a
neutral squirmer model (b = 0), while Section 4.3 analyses the
effect of different swimming modes.

4.1 Simulation of a squirmer in a periodic capillary tube

A spring-fixed squirmer, whose center of mass is subject to a
harmonic spring force F = �kz, starts swimming and comes to a
halt when its propulsion force is equal to the spring force. This
setup is used to measure the propulsion force of the squirmer.
Fig. 5 compares the fluid velocity profile in the gap obtained
from a simulation with the corresponding analytical prediction
in eqn (11) for rcyl = rsq (rsq is the squirmer radius). The velocity

is normalized by v0 ¼
2

3
B1; which is the swimming velocity of a

squirmer without confinement (or when rsq/Rcap - 0). The
qualitative characteristics of ugap(r) are in a good agreement
between the simulation and theory. Under the assumption
that the cylinder length is equal to the squirmer diameter (i.e.
Lcyl = 2rsq), flow velocity in the gap is slightly faster for the
analytical model than in the simulation. When we do not fix
Lcyl, but use it as a fitting parameter, the best fit between the
theory and simulation is found for Lcyl = 1.41rsq. This value is
somewhat smaller than the diameter of the squirmer, consis-
tent with our expectations.

The extension of the spring by the spring-pinned squirmer
allows the quantification of the propulsion force Fsq. Fig. 6(a)
presents the dependence of Fsq on the confinement D. As
expected from the approximate analytical model in eqn (15),
Fsq increases with increasing D. Comparison of the simulation
results with the analytical solution shows a good agreement
for a fitted cylinder length of Lcyl = 1.22rsq, while the choice of

Lcyl = 2rsq in eqn (15) results in the overprediction of the
propulsion force measured in simulations. Fig. 6(b) shows an
increase in the propulsion force of the squirmer as a function
of the capillary length Lcap, which can be fitted well by the
analytical model with Lcyl = 1.25rsq. The increase in Fsq with
increasing Lcap is likely due to an increased friction for fluid
flow in longer capillaries, which leads to slower flow velocities
within the tube and more efficient swimmer propulsion. In the
periodic capillary tube, the squirmer propulsion might be
affected by its periodic images. For large capillary lengths, this
effect is negligible, while it becomes increasingly relevant for
Lcap t 4rsq. Note that the effect of periodic images is not
considered in the analytical model.

Fig. 6(c) and (d) show the swimming velocity of a free
squirmer as a function of D and Lcap. As expected, all simulated

velocities of the squirmer are smaller than v0 ¼
2

3
B1 for a

squirmer in an unbounded fluid. The description of the simu-
lation data by the analytical model from eqn (16) is less
accurate here. We choose ucyl such that the swimming velocity
of the theoretical model matches the bulk velocity of a squirmer
for D - 0. At high confinement, there seems to be a qualitative
disagreement between simulations and the analytical model
[see Fig. 6(c)], which is due to an insufficient fluid resolution in
simulations when the gap between the squirmer and the tube
becomes very narrow. We have performed simulations with a
four times larger fluid density (n = 20/rc

3), which show that the
nominal resolution with n = 5/rc

3 is sufficient only up to
confinements of D t 0.75. Simulations with the finer resolu-
tion do reproduce an increase in vsq at large confinements, in
qualitative agreement with the analytical model. Furthermore,
our swimming velocity converges for increasing capillary length
to that in ref. 26, where the swimming velocity of vsq = 0.8v0 was
found for the confinement of D = 0.5.

We have also performed a few simulations using a spher-
oidal squirmer for intermediate confinements (see Fig. S1,
ESI†). The qualitative trends of spheroidal squirmer motion
as a function of confinement are the same as for the
spherically-shaped squirmer, in agreement with the theoretical
model. The optimal aspect ratio of the cylindrical swimmer
from the analytical model to quantitatively capture the depen-
dence of swimming velocity and propulsion force on the con-
finement D for the spheroidal swimmer with aspect ratio 2
increases roughly by the same factor compared to a spherical
squirmer, as should be expected if the correspondence of the
two models is not just fortuitous. Further simulations showed
that the swimming velocity of the spheroidal squirmer is larger
than for the spherical case, which is in agreement with theore-
tical predictions.34

4.2 Simulation of a squirmer in a closed capillary tube

Fig. 7(a) shows the propulsion force of a spherical spring-
pinned squirmer in a closed tube as a function of confinement.
The generated force increases with increasing rsq/Rcap and the
correspondence between simulations and the analytical model
in eqn (19) is good for Lcyl = 1.35rsq. Fig. 7(b) presents the

Fig. 5 Flow velocity profile ugap(r) at the symmetry plane (z = 0) of a
spherical swimmer. The confining capillary tube is periodic along its axis

and the velocity is normalized by v0 ¼
2

3
B1; which is the swimming velocity

of a squirmer without confinement. Here, the confinement is D = rsq/Rcap =
0.56. The blue curve corresponds to averaged velocity profile from the
simulation, while the red and orange lines represent velocity profiles from
the analytical solution in eqn (11) for a cylinder with a radius rcyl = rsq, ucyl =
�B1 and lengths Lcyl = 2rsq and Lcyl = 1.41rsq, respectively.
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swimming velocity of a neutral squirmer as a function of the
distance between its center of mass and the wall at the positive
end of the tube for different confinements. The swimming
velocity becomes slower in more confined systems. Interest-
ingly, the effect of the wall at the positive end of the tube on
swimming velocity becomes relevant only for a distance d t
1.5rsq, corresponding to a distance of half a radius between the
wall and the squirmer surface. This indicates that the flow field
generated by the squirmer is local and does not extend beyond
the distance of 0.5rsq � 0.8rsq away from the squirmer surface.
Note that d can be slightly lower than rsq, because the squirmer
slightly deforms when it directly interacts with the wall. Never-
theless, away from the wall the squirmer shape remains
spherical.

Fig. 7(c) compares the squirmer velocity for d 4 rsq with the
results of the analytical model from eqn (20). The swimming
velocity reduces with increasing confinement for both simula-
tions and the analytical model, but simulations display overall

larger velocities. Note that for confinements D 4 0.75, we
employ simulations with an increased fluid resolution (n =
20/rc

3). A few simulations with a spheroidal squirmer shape
show qualitatively similar behavior of the propulsion force and
the swimming velocity as for the case of spherical squirmer.
These results further support the validity of the proposed
approximate analytical model of squirmer propulsion under
confinement.

4.3 Effect of the swimming mode on squirmer behavior

All simulations described in Sections 4.1 and 4.2 are for a
neutral squirmer with b = 0 (or B2 = 0), for which the slip
velocity field is symmetric with respect to the squirmer’s center
of mass. Other swimming modes are obtained by varying the
parameter b, which generates pusher (bo 0) and puller (b4 0)
modes, where the thrust is generated predominantly in the
front and in the back of the squirmer, respectively. Note that
b a 0 affects local flow field around the squirmer, but does not

Fig. 6 (a) and (b) Propulsion force Fsq of a spring-fixed spherical squirmer in comparison with the analytical prediction from eqn (15) for (a) different
confinements D = rsq/Rcap with Lcap = 6rsq and (b) various capillary tube lengths Lcap with D = 0.56. The red and orange lines show propulsion forces from
the analytical solution in eqn (15) for a cylindrical swimmer with radius rcyl = rsq, surface velocity ucyl = �B1 and two different lengths. The force is

normalized by F0 = 6pZrsqv0 with v0 ¼
2

3
B1. (c) and (d) Swimming velocity vsq of the squirmer in comparison with the analytical prediction from eqn (16) for

(c) different confinements D = rsq/Rcap with Lcap = 6rsq and (d) various capillary lengths Lcap with D = 0.56. The velocity is normalized by v0. The orange line
corresponds to the analytical solution from eqn (16) for a cylinder with a radius rcyl = rsq, a surface velocity ucyl = �v0 and a cylinder length Lcyl = 2rsq.
Fitting the cylinder length results in the same value. The green curve in (c) shows the swimming velocity at strong confinements from simulations with an
increased fluid resolution (i.e. particle density n = 20/rc

3). The confinement is varied by changing Rcap. The error bars represent standard deviation of
simulation measurements. Periodic BCs in the z direction are assumed in all cases.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
M

ar
ch

 2
02

4.
 D

ow
nl

oa
de

d 
on

 1
/2

2/
20

26
 1

0:
18

:5
0 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sm01480k


3016 |  Soft Matter, 2024, 20, 3007–3020 This journal is © The Royal Society of Chemistry 2024

change its swimming velocity in an unbounded fluid. However,
b strongly affects the interaction of the squirmer with walls and
other swimmers.16,49,50 For example, a recent simulation study
has shown that the swimmer navigation through a regular
lattice of solid spheres depends on the swimming mode of
microswimmers.51 It is important to note that the proposed
analytical model does not include the effect of b a 0.

In a capillary tube with periodic BCs, the propulsion
force only weakly depends on the swimming mode with
Fpuller/Fneutral = 1.02 and Fpusher/Fneutral = 0.99 for b = �5 and
Rcap = 2rsq. The ratios of swimming velocities are vpuller/vneutral =
0.98 and vpusher/vneutral = 1.08, so that pushers are slightly faster
than pullers in a periodic capillary.

Further, we focus on the case of the closed capillary tube,
and the propulsion of squirmers as they approach the closed
ends. Fig. 8 shows flow fields around the squirmer spring-
anchored at zanchor = rsq for different swimming modes. The
flow fields are qualitatively different, and are significantly
affected by confining walls. Fig. 9 presents propulsion forces
of different squirmers anchored at various positions zanchor

along the tube axis. When the squirmer is far enough
(Lcap/2 � |zanchor| \ 1.5rsq) from the closed ends of the
capillary, its propulsion force is independent of the anchoring
position. The propulsion force of the neutral squirmer
increases as the squirmer approaches the front end of the tube.
The increase in Fsq for the neutral squirmer appears to be
similar for the both tube ends, indicating that the squirmer
interaction with the walls is independent of whether it swims
away from or toward one of the closed ends. This is likely due to
the symmetry of the local flow field around the neutral squir-
mer along its propulsion direction. When the squirmer is fixed
at the center of the tube, Fsq is slightly larger (smaller) for the
pusher (puller) in comparison to the neutral squirmer. The
puller generates larger propulsion forces than the neutral
squirmer when approaching the closed end in swimming
direction. However, when the squirmer swims away from the

capillary end, the puller is weaker than the neutral squirmer.
Swimmer interaction with the closed ends is opposite for
pushers in comparison with pullers. The pusher generates
larger propulsion forces when it moves away from the tube
end, and smaller forces when it moves toward the end in
comparison to those of the neutral squirmer. This is not
entirely surprising, because the asymmetry of the generated
flow field is directed toward the front for pullers and toward the
back for pushers. We have also verified that spheroidally-
shaped squirmers exhibit qualitatively similar behavior in a
closed capillary tube for different swimming modes.

5 Discussion and conclusions

We have derived an approximate analytical solution for the
propulsion of a cylindrical squirmer under confinement, and
compared it to simulations of spherical and spheroidal squir-
mers moving inside a capillary tube. Both the analytical model
and simulations show that the locomotion of squirmers is
possible in cylindrical capillaries even under very strong con-
finement. For squirmers, the propulsion force increases with
increasing confinement, and diverges as rcyl/Rcap - 1, accord-
ing to predictions of the analytical model. This is in qualitative
agreement with theoretical calculations for a swimmer near a
wall.52 Despite the fact that the propulsion force may become
very large under strong confinements, the swimming velocity
can never exceed the velocity of a swimmer in an unbound fluid
for rsq/Rcap - 0. This indicates that the fluid resistance gen-
erally grows faster than the propulsion force with increasing
confinement, due to the assumption of a force-free swimmer.

The modeled swimmers generate their propulsion through
the prescribed surface velocity, which results in large propul-
sion forces under strong confinements, independently of the
magnitude of fluid resistance. In the theoretical model, these
swimmers can generate an infinite power, which is clearly not

Fig. 7 (a) Propulsion force Fsq of a spring-fixed spherical squirmer as a function of D = rsq/Rcap in a closed capillary tube. Simulation results (blue) are
compared with the analytical solution (red and orange) from eqn (19) for two different cylinder lengths and a surface velocity ucyl = �B1. (b) and (c)

Swimming velocity vsq of a free squirmer in a closed tube normalized by v0 ¼
2

3
B1. (b) vsq as a function of the distance d from the squirmer’s center of mass

to the closed end of the tube. Different colors represent different capillary radii, changing the confinement. The vertical red line indicates the distance at
which the squirmer touches the wall. (c) Squirmer velocity away from the tube ends (averaged within the region 0.2rsq r z r rsq) in comparison with the
analytical model from eqn (20) for ucyl = �v0. Simulation results are presented for different fluid resolutions with n = 5/rc

3 (blue) and n = 20/rc
3 (green).

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
M

ar
ch

 2
02

4.
 D

ow
nl

oa
de

d 
on

 1
/2

2/
20

26
 1

0:
18

:5
0 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sm01480k


This journal is © The Royal Society of Chemistry 2024 Soft Matter, 2024, 20, 3007–3020 |  3017

the case for real biological or synthetic microswimmers, whose
ability to generate propulsion has an upper limit. This indicates
that real microswimmers would likely move slower under
strong confinement in comparison to the predictions by the
squirmer model, or may even stop moving for a fixed propul-
sion force when rsq/Rcap - 1.53 Note that the case where motion
is implemented through the application of propulsion force of
limited strength, instead of a prescribed surface slip velocity,
has also been investigated.43–45 This corresponds to the analy-
tical results for fixed propulsion described in Section 3.2.
Furthermore, details of the local flow field generated by a
microswimmer are important for its propulsion through

confinements and crowded environments.54,55 Since biological
swimmers generally propel due to the motion of attached
appendages such as flagella and cilia, steric interactions
between the appendages and surrounding walls can also
affect the navigation of microswimmers through crowded
environments.54 To accurately capture the complex interactions
between microswimmers and their environment, more realistic
models of biological swimmers with explicit appendages are
required.

An important result of our investigation is that the genera-
tion of propulsion forces by squirmers under confinement is
very localized, and can be thought of as ‘pushing forward’ using
the walls, which occurs due to the interaction of local flow field
generated by the swimmer with the walls. This is well sup-
ported by a short distance beyond which the generated flow
field vanishes, see Fig. 8, and by the fact that the presence of
closed tube ends is not important if the swimmer is more than
its radius away from them. Therefore, microswimmers employ
predominantly the closest confining walls around them to
propel forward. Also, this means that specific geometric details
of a confining environment are increasingly important close to
the swimmer, and become irrelevant further away from it.
Furthermore, the locality of force generation is relevant for
the understanding of tether pulling from fluid membrane
vesicles by enclosed microswimmers.8,9,29 For instance, we
conclude that a squirmer-like swimmer cannot pull long
tethers, because when the squirmer becomes fully and closely
surrounded by the membrane after tether initiation, the gen-
erated force cannot propagate anymore toward the vesicle
through the tether in order to further extend it. Furthermore,
the force on the tether end is compensated by an opposing
force on the tether walls. In a recent experiment of Bacillus
subtilis bacteria in fluid vesicles, relatively short tethers filled by
a train-like arrangement of 2–3 bacteria are formed.8 It is likely

Fig. 8 Flow field around a spherical squirmer (grey) within a closed
capillary tube with a length of Lcap = 6rsq and a radius of Rcap = 2rsq. The
squirmer is tethered by a spring at the anchoring point with zanchor = rsq.

The colors code the flow velocity in the z direction normalized by v0 ¼
2

3
B1.

The red arrows represent flow lines within the y–z-plane. From the top to
the bottom, the figures correspond to pusher (b = �5), neutral (b = 0), and
puller (b = 5) squirmers.

Fig. 9 Propulsion force Fsq of a spherical spring-fixed squirmer as a
function of its anchoring position zanchor for different swimming modes
in a closed capillary tube with Lcap = 6rsq and Rcap = 2rsq. zanchor = 0
corresponds to the anchoring point in the middle of the tube length. The
swimming orientation of the squirmer is always in the positive z direction,
while the anchoring point also includes negative z values. The colors
represent various swimming modes with different b values.
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due to sequential entering of bacteria, such that the first
initiates a tether of approximately its own length, then a second
bacterium extends it by another bacterium length, etc. In
another experiment,29 E. coli bacteria were able to pull relatively
long tethers due to another mechanism, where E. coli helical
flagella form a single bundle, which is tightly wrapped by the
membrane after tether formation, so that the membrane-
wrapped bundle serves as a propeller to move forward and
extend the tether.

Our simulations show that strong confinements may require
a fine resolution to accurately capture fluid flow between the
swimmer and the wall, which is associated with large computa-
tional costs. Furthermore, fluid compressibility may play an
important role for systems with strong confinements, as large
pressure gradients develop. The DPD method has a limited
control over the fluid compressibility, which can be improved
by using the smoothed dissipative particle dynamics
method,56,57 where the equation of state can be prescribed
explicitly.
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Appendices
Appendix A: Spheroidal squirmer model

For the derivation of analytical expressions, it is convenient to
work in modified prolate spheroidal coordinates58 z A [1, �1],
t A [1, N], and f A [0, 2p], whose relation to the Cartesian
coordinates is given by

t ¼ 1

2c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðzþ cÞ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðz� cÞ2

q	 

;

z ¼ 1

2c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðzþ cÞ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðz� cÞ2

q	 

;

f ¼ arctan
y

x

� �
;

(21)

where c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bz2 � bx2

p
is the geometric constant which controls

spheroid eccentricity e = c/bz. Normal (n = et) and tangential

(t = �ez) vectors at the spheroid surface are given by

et ¼
2t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1
p ex þ zez

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � z2

p ;

ez ¼
2t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p ex þ tez

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � z2

p :

(22)

The surface velocity of a spheroidal squirmer is then34

usurf = �B1(1 + bz)(t�ez)t, (23)

where b = B2/B1 and ez = (0,0,1)T.

Appendix B: Expressions for the parameters of the
approximate analytical model for cylindrical microswimmers

Parameters for the case of a spring-fixed swimmer in a periodic
capillary tube are given by

c2 ¼ �
Dp

4ZLcyl
Rcap

2 � c1 ln Rcap

� �
;

c1 ¼
ucyl þ

DpRcap
2

4ZLcyl
ð1�D2Þ

lnðDÞ ;

Dp ¼ � 4ucylZ
Rcap

2

1�D2 þ 2D2 lnðDÞ
1

Lcyl
1�D4ð Þ lnðDÞ þ 1�D2ð Þ2

� �
þ lnðDÞ
Lcap � Lcyl

:

(24)

For a free cylindrical swimmer in a periodic capillary tube,
the parameters are

c2 ¼ �
Dp

4ZLcyl
Rcap

2;

c1 ¼ 0;

Dp ¼ � ucyl8Z
Rcap

2

D2

1�D4ð Þ=Lcyl þ 1= Lcap � Lcyl

� �:
(25)

Parameters for the case of a spring-pinned swimmer in a
closed capillary tube are given by

c2 ¼ �
Dp

4ZLcyl
Rcap

2 � c1 ln Rcap

� �
;

c1 ¼
ucyl þ DpRcap

2
� ��

4ZLcyl

� �
� 1�D2
� �

lnðDÞ

¼ ucyl

1þ lnðDÞð1þD2Þ=ð1�D2Þ;

Dp ¼ � ucyl4ZLcyl

Rcap
2

1�D2 þ 2D2 lnðDÞ
ð1�D2Þ2 þ lnðDÞð1�D4Þ:

(26)

For a free cylindrical swimmer in a closed capillary tube, the
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parameters are

c2 ¼ �
DpRcap

2

4ZLcyl
¼ 2ucyl

D2

D4 � 1
;

c1 ¼ 0;

Dp ¼ ucyl8ZLcyl

Rcap
2

D2

D4 � 1
:

(27)
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