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Geometric control by active mechanics of
epithelial gap closure†

G. Pozzi ‡ and P. Ciarletta *

Epithelial wound healing is one of the most important biological processes occurring during the lifetime

of an organism. It is a self-repair mechanism closing wounds or gaps within tissues to restore their

functional integrity. In this work we derive a new diffuse interface approach for modelling the gap

closure by means of a variational principle in the framework of non-equilibrium thermodynamics. We

investigate the interplay between the crawling with lamellipodia protrusions and the supracellular

tension exerted by the actomyosin cable on the closure dynamics. These active features are modeled as

Korteweg forces into a generalised chemical potential. From an asymptotic analysis, we derive a

pressure jump across the gap edge in the sharp interface limit. Moreover, the chemical potential diffuses

as a Mullins–Sekerka system, and its interfacial value is given by a Gibbs–Thompson relation for its local

potential driven by the curvature-dependent purse-string tension. The finite element simulations show

an excellent quantitative agreement between the closure dynamics and the morphology of the edge

with respect to existing biological experiments. The resulting force patterns are also in good qualitative

agreement with existing traction force microscopy measurements. Our results shed light on the

geometrical control of the gap closure dynamics resulting from the active forces that are chemically

activated around the gap edge.

Introduction

Living tissues have the ability to self-repair in response to injury
by closing wounds and gaps through a series of coordinated
cellular and supracellular processes. Wounds may not only
result from surgery or accidental trauma, but also from patho-
logical conditions, such as cancer, diabetes or inflammatory
processes. Moreover, it is known that dysregulation of the
physiological features of wound healing can result in severe
infection and it can promote the onset of cancer.1

Wound healing keeps attracting a lot of interest in soft
matter physics.2

Early surgical data reported a linear decay of the radius of a
circular wound over time in mammalians.3 Sherratt and
Murray4–6 fitted this experimental trend using a model that
only accounts for either an activator or an inhibitor of mitosis
produced by epidermal cells in the healing process. Thus, they
somewhat supported the view that the biochemical control of
mitosis plays a major role in re-epithelialization.7

However, many in-vivo and in-vitro experiments performed
during the last few decades pointed out the key role of a
coordinated movement of epithelial cells in closing the wound
and re-establishing tissue integrity for both embryonic
and adult skin layers. Thus, several modelling approaches
have been recently developed to elucidate the key mechano-
biological features at play.

If epidermal cells are not motile under physiological condi-
tions, it has been found that they undergo a marked phenotype
alteration in the neighborhood of the wound, acquiring the
ability to crawl via lamellipodia protrusions.8 Conversely,
embryonic epidermal movement was found to be triggered by
a circumferential tension at the free edge, acting like a purse
string pulling.9

Wounds induced in Madin–Darby canine kidney epithelial
cell monolayers were found to close by a crawling behavior
involving Rac, phosphoinositides and active movement of
multiple rows of cells, while active actin bundles were not
found to be necessary for closure, yet playing a role in deter-
mining the regularity of closure.10 Moreover, specific signaling
pathways were identified to control both such mechanical
features for the dorsal wound closure in the Drosophila
embryos.11

Later studies revealed that the wound closure is simulta-
neously driven by the cells actively crawling on the substrate
through lamellipodia and the constriction produced by a
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supracellular actomyosin cable, referred to as the purse-string
mechanism.12,13 However, even if these processes are not
mutually exclusive, their coexistence is strongly influenced by
the surrounding environment and by chemical factors.14 Cells
indeed develop cytoskeletal protrusions (i.e. lamellipodia) in
epithelia with abundant extracellular matrix (ECM) to spread
over a substrate.15 The formation of an actomyosin supracel-
lular structure, able to actively generate contractile mechanical
forces, was instead the dominant mechanism found in other
system models, either in the presence of apoptotic cells9 or in
epithelia lacking the ECM.16 Moreover, traction force patterns
at later stages of wound healing pointed out the existence of
tensions transmitted by the actomyosin ring to the underlying
substrate through focal adhesions.17,18

The mechano-biological coupling between the crawling and
the purse-string mechanisms has been proven to be regulated
by the curvature of the wound edge19,20 and by the substrate
stiffness.21

Several mathematical approaches have been proposed to
characterize such a complex interplay of geometrical and
mechanical features in wound healing. A level-set model has
been proposed to describe the edge motion regulated by cell
mitosis and lamellipodia-induced migration, also accounting
for the reaction diffusion dynamics of the epidermal growth
factor.22 A continuous approach described the effect of the
purse-string mechanisms as contraction of the healthy tissue
surrounding the wound governed by the momentum balance
equation and the mutual signaling among cells.23 The sponta-
neous formation of finger-like protrusions at the gap border
and the consequent strong alignment of the velocity field
within the fingers were captured by a continous model of
unconstrained epithelial spreading considering long-range
coupling between polarization and deformation.24 Other con-
tinuous approaches, exploiting the same idea of orientational
order, considered the balance of forces acting on a single cell
embedded in an epithelial monolayer, showing that single cell
crawling is sufficient to drive the collective motion of a cell layer
by means of cell–cell adhesion.25 The closure dynamics of small
circular wounds in epithelial layers has been successfully
reproduced by an inviscid fluid model driven by cell protru-
sions at the wound edge,26 possibly including an ad-hoc
dependence of the bulk modulus on the cell density.27,28 Later,
the combined effects of crawling and purse string were inves-
tigated using a free boundary model of a cell flowing as a
viscous fluid subjected to localized forces at the moving edge.19

Crawling and purse-string are therefore considered as source
terms in the momentum balance at the edge boundary, posing
important challenges for the numerical discretization and the
mathematical well-posedness at later stages of gap closure.

Alternatively, discrete modelling approaches were proposed
to investigate the traction force patterns exerted by the cells
during the wound closure, by means of both vertex and Voronoi
models.17,29–32

In this work, we propose a diffuse interface approach with
the aim to provide a suitable thermodynamic framework to
characterize the evolution of the state variables driving the

mechano-biological coupling and to implement a robust and
computationally affordable numerical framework to simulate
gap closure for any initial geometry. In contrast to existing
sharp interface models that require additional regularity
requirements and compatibility equations for the motion of
the free-boundary, here the motion of the diffuse interface is
intrinsically driven by the evolution of a chemo-mechanical
potential, driving a phase transition similarly to a Gibbs
potential in supercooling. Phase-field approaches have been
successfully proposed for describing both individual and collec-
tive cell migration in tissue monolayers.33–35 Here, beyond
the state-of-the-art, we consider epithelial wound healing as
a non-equilibrium system whose evolution is governed by irre-
versible mass and energy flows. By introducing appropriate non-
equilibrium state variables, we derive from mixture theory a
diffuse interface model for the healing process that incorporates
the crawling and the purse-string mechanisms in the free energy.
Our modelling choice notably allows us to overcome the numer-
ical difficulties in modelling the motion of the sharp-interface
through forces dependent on the geometric properties of the
free-boundary, such as the local curvature. Thus, the proposed
model aims to bridge the gap between the tissue and the cellular
scales by accounting for the mechanisms of the lower scales in
the form of a chemical potential at the mesoscale.

In what follows, we exploit formal asymptotic analysis to
highlight how the crawling and purse-string mechanisms at the
wound edge and the friction with the substrate cooperate in
regulating the wound closure process. Finally, we present finite
element simulations to validate the model results against the
existing experimental data, discussing the predictions against
the evolution over time of the wounded area, the morphological
transitions at the edge and the generated traction patterns with
the substrate.

Results
The diffuse interface model

We consider a simple model system made of a confluent mono-
layer of epithelial cells immersed in a large bath, where a gap is
created by positioning a stencil of well-defined geometry in its
center, as in ref. 19. Under the hypothesis of neglecting the fast-
scale dynamics of calcium and myosin traveling from the periph-
ery to the wound,36 we model the monolayer as a biphasic mixture
with a diffuse interface that separates the wound from the
surrounding healthy epithelial tissue, whose near-equilibrium
evolution is governed by slow, coarse-grained state variables. The
variable f(x,t) describes the relative volume fraction of the wound
with respect to the healthy phase in the mixture, and it is defined
in such a way that f = 1 in the wound area and f = �1 in the
healthy tissue. The evolution of f is partly driven by a gradient flow
dependence with respect to a chemical potential m, accounting for
both the local interaction among cells by means of a free energy
double-well potential, C(f), and a short-range nonlocal interaction
at the interface expressed by a gradient dependence.37,38 By
following the thermodynamic arguments in ref. 39–41 for
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extending the maximum dissipation principle accouting for active
cellular phenomena and dissipation mechanisms (see ESI†
Section 1 for model derivation), the evolution of the wounded
monolayer is described by

@f
@t
þ u � rf ¼ �GþMDm; (1)

m ¼ b
E
C0ðfÞ � bEDf; (2)

where G and M are the crawling rate and the motility parameter,
respectively, the parameter b plays the role of surface tension at the
wound edge, E is a measure of the interface thickness and u is the
volume-averaged velocity of the mixture. Under the assumption
that the presence of homophilic interactions among cells within
the tissue generates a non-negligible drag,19,25 the momentum
balance equation,

�r�s + Zu = (m + fL)rf, (3)

results in a Darcy–Brinkman equation, where the stress tensor s
is given by 2nDðuÞ � pI, with n being the viscosity of the mixture,
DðuÞ ¼ 1=2ðruþruTÞ the symmetric part of the velocity gradi-
ent, p the hydrostatic pressure and I the identity matrix. In
eqn (3), the cell–cell forces are balanced by cell–substrate fric-
tion, given by a friction coefficient Z, by the Korteweg forces
exerted by the chemical potential m, and by the active crawling
potential fL of the cellular lamellipodia. Overall, the mechanical
forces exerted by the actomyosin cables are described as a
surface tension at the wound edge in the chemical potential
term m through the parameter b. The cell crawling mechanism is
also accounted for by introducing an extra chemical potential fL,
which results in a Korteweg force in the momentum balance
equation, and a source term G representing the local crawling
rate of the cellular phase over the wound. In the present set-up,
the velocity is assumed to be solenoidal, and thus

r�u = 0, (4)

holds. At the border of the monolayer, assuming that the
wound is sufficiently far from it, we impose the following no-
flux boundary conditions

rf�n = 0, rm�n = 0, sn = 0,

where n is the normal unit vector on the boundary, pointing
towards the exterior of the monolayer.

Asymptotic limit

To clarify better how crawling and purse-string mechanisms
and friction with the substrate are embedded in the proposed
model, we exploit a formal asymptotic analysis42–47 on the
model in the limit of zero thickness interface, i.e. taking
E! 0. We proceed by subdividing the wounded monolayer into
two distinct parts: a slender area including the diffuse inter-
face, which is called the inner region, and the union of the two
non-connected remaining portions of the monolayer, named
the outer region, as sketched in Fig. 1. Hence, we identify

O+ = {x A O: f0(x) = +1}, O� = {x A O: f0(x) = �1},

as the two external subdomains representing the wound and
the healthy tissue, respectively. Let us now denote by S0 the
limiting interface as the zero level sets of the variable f. After
performing the asymptotic expansions at infinitesimal inter-
face thickness E for each variable in both the outer and the
inner regions, we match the inner and the outer solutions by
imposing the compatibility conditions at the interface.

Following this procedure (for more details see ESI† Section 2)
we derive the corresponding sharp interface limit model

MDðm0Þ ¼ G onOþ [ O�;

�2nr � Dðu0Þ þ Zu0 ¼ �rp0 onOþ [ O�;

r � u0 ¼ 0 onOþ [ O�;

8>>><
>>>:

(5)

of the wounded monolayer, referred to as on O+ , O�, excluding
the interface between the healthy tissue and the wound, S0. The
system is complemented by the following jump conditions at S0

[u0]+
� n = 0, [p0]+

� = 2(m0 + fL) on S0, (6)

½m0�þ� ¼ 0; 2m0 ¼ bk
2
ffiffiffi
2
p

3
onS0; (7)

2 �V þ un;0
� �

¼M½rm0�þ� n on S0; (8)

where k and V are the local curvature and the normal velocity of
the interface, respectively. Here with the subscript 0 we denote
the principal component of the asymptotic outer expansion and
with symbol [ � ]+

� we denote the jump of the model variables at
the interface.

In the sharp interface limit, we find that the mixture behaves
as an incompressible Darcy–Brinkman fluid with two interfa-
cial forces, corresponding to a normal crawling pressure with
magnitude fL and an active purse-string tension with character-
istic force per unit length b. The movement of the interface is
driven by a Mullins–Sekerka problem, where G defines the
crawling energy source for the chemical potential. In physical
terms, the purse-string mechanism lets the interface carry a

Fig. 1 Sketch of the domain subdivided into inner and outer regions. The
inner region is a narrow portion of thickness e across the interface S0

between the healthy and the wounded epithelium, characterised by a fast
variation of the variable f. The outer region is the union of the two non-
connected bulk regions, O+ ,O�. The total domain is the square of length Lc.
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chemical potential, which results in an active surface tension b
as given by the Gibbs–Thompson condition in eqn (7), and a
friction with the substrate inversely proportional to the mobi-
lity parameter M as given by the Stefan condition in eqn (8).

Finite element simulations

Before implementing the numerical approximation of the
model, we derive its dimensionless version to identify the
reduced set of dimensionless parameters governing the evolu-
tion of the biological system. To this purpose, we set a char-
acteristic length-scale as the domain size Lc, a characteristic
time-scale Tc and a characteristic velocity Uc. We thus introduce
the dimensionless variables x̂ = x/Lc, t̂ = t/Tc and û = u/Uc for

space, time and velocity, respectively. We adopt the symbol r̂
to denote the dimensionless differential operators. Standard
manipulations of the diffuse interface model lead to

@f
@ t̂
þ u � r̂f ¼ ��Gþ �MD̂m̂;

m̂ ¼ 1

�E
C0ðfÞ � �ED̂f;

�Dar̂ � DðûÞ þ û ¼ �r̂p̂þ ðm̂þ �f LÞr̂f;

r̂ � û ¼ 0

8>>>>>>>>>><
>>>>>>>>>>:

(9)

and thus we identify five dimensionless parameters,

�G ¼ GZLc
3

b
; Da ¼ n

ZLc
2
; �E ¼ E

Lc
; �M ¼MZ; �f L ¼

fLLc

b
;

having imposed the fundamental scaling b/(Lc
2UcZ) = 1, so that

the characteristic stress is Pc = ZLcUC = b/LC. Thus, p̂ = p/Pc and
m̂ = m/Pc, and the characteristic time is Tc = LC/UC = ZLc

3/b, i.e.
the time at which frictional forces with the substrate are of the
same order as the surface tension. The dimensionless para-
meter Da is the classical Darcy parameter for the Brinkman
equation, i.e. the ratio between viscous and friction forces, �G is

the product between the crawling rate and the characteristic

time, �E is the ratio between the interface and domain sizes,
�
M is

the ratio between the viscous and the friction forces, and %fL is
the ratio between crawling and purse string forces.

We performed numerical simulations on a square domain
with unit dimensionless side, subdivided into 3.2 � 105 uni-
formly distributed triangles and we fix the characteristic length
Lc = 2.24 � 10�4 to reproduce in silico the experimental system
adopted by Ravasio et al. in ref. 19. We explore three different
scenarios by varying the initial shape of the wound: in particular
we chose the three initial gap configurations shown in Fig. 2
(left), referred to as square inset, half moon and half circle. In
every test case the initial area is about 4000–5000 mm2. The
numerical simulations are obtained using the library FEniCS for
solving partial differential equations using finite element
methods.48,49

In order to reproduce the experimental trends presented in
ref. 19, for all the three scenarios described above we found the
values of the physical parameters from the literature, where
present, by varying them in their physiological range and by
defining as optimal set of parameters that better fit the area
decay in time. Thus, we set fL = 100 Pa,17,25 M = 3.27 � 10�15 m2

Pa�1 s�1,38 and n = 6.0 � 107 Pa s,50 while E ¼ 5� 10�7 m is
prescribed by the spatial scale of the problem. Finally,
we calibrate b = 4 � 10�3 Pa m, Z = 3.09 � 105 Pa s m�2 and
G = 5.62 � 10�5 s�1 to reproduce the experimental trends.
Consequently, the dimensionless groups take the following

values: Da = 3.87 � 109, E ¼ 2:23� 10�3, �G = 4.88 � 10�5,
�
M =

1.01 � 109 and
�
fL = 5.6. The finite element discretization of

system (9) is discussed in the ESI† Section 3.
As shown in Fig. 3, the evolution is characterized by a

common trend in the local regulation of the closure mecha-
nism. In accordance with the experimental observations in ref.
19, flat and negative curved edges, i.e. the ones protruding into
the wound, advance at a considerably slower pace compared

Fig. 2 (left) Example time lapses of gap closure. Scale bar 50 mm. (right) Mechanical coupling between purse-string and crawling. Red and blue arrows
indicate the direction of the local forces induced by purse-string and crawling, respectively. Image adapted from ref. 19.
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with boundary regions characterized by the presence of positive
curvatures, see Fig. 4. Indeed, the early stage of the simulations
consists of a regularization of the wound shape due to purse-
string tension as observed in ref. 18. When the wound reaches a
rounded shape and hence the whole border of the gap has
positive curvature, each portion of the boundary moves with the
same speed towards the center of the gap, up to the closure of
the wound. This behavior, overlooking the initial shape of
the wound, highlights the importance of the sign and the
magnitude of the local curvature in governing the closure
dynamics.

The in silico healing times are approximately 40–60 min,
depending on the initial extension of the wound, as shown in
Fig. 5. The wound area decreases in a near-linear manner over
time up to the complete closure regardless of the initial shape
of the gap. A comparison between the numerical results and the
experimental data extracted from ref. 19 for each of the
considered gap geometries is also shown in Fig. 5. In order to
achieve a deeper understanding of the system behavior, we
investigate the influence of the dimensionless parameters on
the model response for square inset geometry. In Fig. S1 (ESI†),
we notice that lower crawling, i.e. decreasing the value for the
dimensionless term �G, is correlated with longer healing times.

The same behavior is also observed for the dimensionless
motility

�
M, and so reducing the friction with the substrate

increases the velocity of gap closure. We also observe that
decreasing Da not only speeds up the closure process, but also
creates swirling patterns in the normal velocity field surround-
ing the wound, as shown in Fig. S2 (ESI†), similar to the ones
observed in other system models.31

Finally, we explore the effect of crawling on the closure
dynamics given by the dimensionless parameters

�
fL and �G in

determining the dynamics of gap closure. We find that
�
fL acts

as an extra pressure term in �p, not affecting directly the healing
time and the shape evolution, which are indeed controlled by �G,
as discussed earlier.

In Fig. 6, we report the resulting morphological diagrams of
the closure dynamics by exploring different combinations
between the crawling and the purse string dimensional para-
meters. We notice that an increase of the purse-string force
results in regularization of the wound shapes at the same time
instants, i.e. the wound protrusions in the healthy tissue tend
to disappear early during the healing process. On the other
hand, an increase of the crawling rate accelerates closure by
preserving the initial morphology of the wound against the
regularizing effect of the purse-string mechanism. In Fig. 7, we

Fig. 3 Numerical time lapses of gap closure for each of the three distinct initial wound shapes: half circle (first row), half moon (second row) and square
inset (third row). The left side of each figure shows the wound profile, while the right side shows the pressure profile.
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depict the morphological changes at given time instants by
varying one parameter at a time, thus highlighting the different
geometrical effects.

Finally, we plot the principal stress pattern smax for the
square inset geometry. We observe that in the early stages of the
healing process, regions in the proximity of convex borders are
characterized by a compressive stress pattern, indicating that

the cell crawling contribution is suppressed by the actomyosin
cable action. In contrast, areas in the vicinity of concave
borders present a traction stress pattern. In later stages, when
the wound evolves towards more regular shapes, with concave
borders almost everywhere, the traction pattern becomes the
dominant one (Fig. 8). These results are in good qualitative
agreement with the traction force microscopy measurements
presented in ref. 17, showing force components that are both
radial and tangential to the wound for the effect of the
substrate friction.

Fig. 4 Plot of the normal velocity versus the local curvature for different interface points A–D in the half circle geometry. For every point, velocity-
curvature pairs are extracted at times 0 min (star marker), 6 min (square marker), and 18 min (triangle marker). The regression line of each spatial group of
points is also reported in the figure. We remark that the curvature was estimated from the chemical potential m based on the formulas obtained in the
asymptotic limit rather than being directly computed from the geometry.

Fig. 5 In silico simulated decrease of the area over time for three
differently shaped wounds: square inset (blue line), half circle (green line)
and half moon (orange line) with an initial area of 3500–5000 mm2. The
horizontal bars coincide with the error bars of the experimental
data extracted from ref. 19 for each geometry. The image shows
also the overlay of outlines at different time points for each of the three
wound shapes.

Fig. 6 Phase diagram describing the evolution of the wound edge
(square inset geometry) during the closure process by varying the purse-
string intensity b and the crawling rate G. Each figure is obtained
by overlapping the simulated wound edges at time t: 12 min, 24 min,
36 min, and 48 min.
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Discussion

In this work we present a novel diffuse interface model
to characterize mechano-biological features during epithelial
closure. The model is derived from thermodynamical princi-
ples within the mixture theory framework using the maximum

dissipation principle to account for both active phenomena and
dissipation mechanisms. We considered a viscous mixture
behaving as a Darcy–Brinkman–Korteweg fluid with volumetric
mass sources and a diffusive mass flux. The diffusive mass flux
follows the gradient flow of a chemical potential m, containing a
local interaction term that acts as an active surface tension,
mimicking the active purse-string mechanisms, and a regular-
ising short-range nonlocal interaction that controls the width
of the interface. The crawling of the lamellipodia appears as the
combined effect of an extra-pressure in the chemical potential
and a crawling rate G in the Cahn–Hilliard equation.

We performed an asymptotic analysis obtaining the sharp
interface limit of our model, in order to investigate the role of
interfacial forces and of the frictional forces with the substrate
in governing the wound edge movements. We found that the
Korteweg forces driven by the diffusive chemical potential and
the crawling impose a pressure jump across the interface.
Moreover, the diffusion of the chemical potential is governed
by a Mullins–Sekerka system, and its interfacial value is given
by a Gibbs–Thompson relation driven by the purse-string
tension and a Stefan law driven by the frictional forces.

The model has been finally numerically approximated using
finite element discretization. We found that our in-silico numer-
ical results are in good quantitative agreement with the in-vitro
experiments reported in ref. 19. The quasi-linear trend in the
decrease of the area over time is confirmed and the numerical
closure time is aligned with the experimental one for all the
considered gap geometries. We also found a similar morpho-
logical evolution of the wound edge during the closure
dynamics. In particular, we observed a local regulation of the
closure mechanism governed by the curvature of the gap edge:
curved regions move at a significantly higher velocity than flat
edges, thus resulting in a change in the gap geometry during
the tissue repair process. Indeed, during the first stages of the
process, the wound evolves towards a more regular shape to
form an elliptical or a circular hole. Afterwards, the gap closes
symmetrically with homogeneous velocity till the end of the
closure process.

Our sharp interface limit is supporting evidence that the
curvature of the edge has a major role in regulating the closure
mechanism. Indeed, we showed that the local curvature affects
the pressure jump at the border and tunes the direction of the
purse-string force. In regions where the edge is positively
curved the force is directed towards the inner of the wound;
on the contrary, the purse-string action is oriented towards the
healthy tissue when the curvature is negative. Therefore, our
diffuse interface model is able to capture the observed gap
closure dynamics dictated by the presence of the actomyosin
cable. Its numerical implementation is finally robust and
computationally much more affordable compared to its sharp
interface counterpart.

In conclusion, this work sheds light on the geometric
control by active mechanics during the epithelial closure
dynamics. Compared to existing sharp interface approaches,
the use of a diffuse interface significantly reduces the numer-
ical complexities related to the need to track the border

Fig. 7 Overlap of the wound profiles for different purse-string intensities
(left column) and for different crawling intensities (right column) at time t =
12 min (first row) and t = 24 min (second row). Black arrows indicate the
direction of the parameter increase. On the left, we set G = 5.62 � 10�5 s�1

and we vary b = {1, 4, 8} � 10�3 Pa m; on the right, we set b = 4 � 10�3 Pa m
and we vary G = {4.62, 5.62, 6.62} � 10�5 s�1.

Fig. 8 Vectorial map of the principal stress at different time instants of the
closure process for the square inset geometry in a crawling-dominant
scenario. The set of parameters used are b = 1 � 10�3 Pa m and G = 6.62 �
10�5 s�1. The colormap describes the stress intensity.
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movements and to impose jump conditions on the forces
across the free boundary. In our model, the use of the max-
imum dissipation principles allows us to account for the active
mechanical forces around the edge, modeled as Korteweg
forces in the bulk, and dissipation mechanism within the
phases and with the substrate. The numerical results not only
quantitatively predict the universal quasi-linear decrease of
area over time and the observed morphological transitions of
the wound edge, but also qualitatively agree with the traction
force patterns reported in existing experiments, highlighting
the interplay between edge and frictional forces.

However, we remark that our diffuse interface approach
suffers from some limitations that require future develop-
ments. In particular, we plan to improve the current model
by developing a chemo-mechanical coupling between the fast
dynamics of calcium waves and myosin activation that trigger
the purse-string and crawling forces during the closure
dynamics. Although the near-equilibrium assumption imposed
here by the maximum dissipation principle allows us to predict
accurately the closure dynamics and the collective behaviors,
the introduction of fast variables would require to extend the
theoretical framework in the context of non-equilibrium
reversible-irreversible thermodynamic coupling.51 Moreover, it
would be physically relevant to investigate the effects of the
orientational order on the cellular spreading, which are
deemed to be particularly relevant in regimes of high-activity
on non-adherent substrates.52 Finally, as a further next step of
our work, we aim at exploring different model systems to
perform a quantitative comparison of the numerical predic-
tions against traction force microscopy measurements with
varying adhesive properties with the substrate.
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