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Avalanche properties at the yielding transition:
from externally deformed glasses to
active systems

Carlos Villarroel * and Gustavo Düring

We investigated the yielding phenomenon in the quasistatic limit using numerical simulations of soft

particles. Two different deformation scenarios, simple shear (passive) and self-random force (active), and two

interaction potentials were used. Our approach reveals that the exponents describing the avalanche

distribution are universal within the margin of error, showing consistency between the passive and active

systems. This indicates that any differences observed in the flow curves may have resulted from a dynamic

effect on the avalanche propagation mechanism. The evolution time required to reach a steady state differs

significantly between active and passive scenarios under similar conditions. However, we demonstrated that

plastic avalanches under athermal quasistatic simulation dynamics display a similar scaling relationship

between avalanche size and relaxation time, which cannot explain the different flow curves.

I. Introduction

In recent decades, considerable theoretical, experimental, and
computational efforts have been made to understand the complex
rheology of amorphous materials, such as colloids, grains, foams,
and emulsions, which are essential parts of various industrial
processes.1 Today, high-density amorphous materials are known
to be mechanically stable;2–5 however, they can exhibit an athermal
transition between the solid and fluid states when subjected to a
sufficiently large shear stress.6–9 These materials exhibit critical
stress sc (sometimes called yield stress). When the applied stress
so sc, the system moves due to an internal reorganisation, which
ends when a configuration capable of bearing the applied stress is
found. In this regime, the system behaves as an elastic solid.10

However, when s 4 sc, the system cannot find a stable configu-
ration leading to a flowing state, which is characterised by a
singular flow curve relating the strain rate and the shear stress.
The flow curve, _gB (s� sc)

b, is defined by exponent b, which is the
Herschel–bulkley (HB) exponent.11 This dynamic regime is con-
trolled by avalanches composed of several chained irreversible
plastic transformations, known as shear transformation zones
(STZ), which reorganise a group of particles.12,13 As the flow
vanishes, this dynamic becomes increasingly complex, and larger
avalanches form, which is reflected in the existence of critical
behaviour with a correlation length x B _g�n/bB (s � sc)

�n that
diverges in _g -0.13,14

Yielding-like behaviour is also observed in models of dense
active systems subjected to a self-propelled force.15–19 In con-
trast to systems that exhibit a flow when subjected to sufficient
shear stress, the size of the self-propelled force, f, must exceed
fc. In our previous study,20 the exponents b and n/b were
calculated with good precision for the active and passive
scenarios, and they exhibited a difference that did not fall
within our range of error. The origin of this difference remains
unclear and requires a detailed study of the avalanche statistics
and relaxation, which are believed to control the yielding
transition. However, obtaining a detailed description of ava-
lanches in a flowing state ( _g a 0) is a complex task because of
the difficulty in detecting and measuring avalanches when the
system is not in mechanical equilibrium.

A common approach to studying the yielding phenomenon
and statistics of avalanches in passive systems is to use ather-
mal quasistatic simulations (AQS).21–27 This very slow deforma-
tion limit is observed when the characteristic time at which the
deformation is carried out is sufficient to permit the propaga-
tion of avalanches that reorganize the system. This allowed the
system to reach a mechanical equilibrium after each deforma-
tion step, thereby facilitating the detection of plastic events. In
practice, the system is placed under a small and homogeneous
strain and then relaxed until mechanical equilibrium is
reached. This process is repeated several times until the desired
shear strain is achieved.21 Although the AQS does not allow a
direct study of the fluid regime, this method allows the explora-
tion of the properties and statistics of the avalanche size
distribution at the critical point, which controls the dynamics
near the critical point.21,28 In this regard, using mesoscopic
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elastoplastic models, both Lin et al.29 and Ferrero et al.30 made
important advances in matching the exponents that describe
the HB rheology with the exponents observed in AQS for simple
shear deformation. Nonetheless, AQS for a self-random force is
a field that has only recently been studied.31–33 Morse et al.32

have demonstrated similarities in stress drop values between
active and passive systems. Here, we further investigate the

similarities in the critical exponents that govern avalanche
distributions.

In this study, we performed a large number of simulations
involving 2D soft particles in the AQS limit using two distinct
models of driven deformation scenarios, simple shear (SS) and
self-random force (SRF), for active particles with infinite per-
sistence in the orientation of self-propulsion, as shown in
Fig. 1. We primarily concentrate on the 2D case; nevertheless,
there is evidence suggesting that the phenomenology resulting
from avalanche reorganization in AQS remains comparable in
3D.25,28 The remainder of this paper is structured as follows: in
Section 2, detailed information about the simulation protocols
utilised throughout this study is provided. In Section 3, the
results of the avalanche size distributions for both deformation
scenarios in the AQS limit are presented. In Section 4, the
propagation times with which the system undergoes reorgani-
sation are examined. Finally, in Section 5, the most significant
results are summarised.

II. Simulation methods and protocols

Previous molecular studies can be categorised based on the
employed interparticle potential. One group of studies used
potentials that diverged when two particles coincided at the
centre (e.g., the LJ potential,12,28 LP potential, and s/r12

potential23). Another group employed potentials in which a
finite value is assigned to the same situation (e.g., the Hertzian
potential34 and the harmonic potential22,34). To verify that this
selection of potentials does not affect the critical exponents, we
employed two potentials: the Hertzian potential and the
potential used by Lerner and Procaccia (the LP potential).23

These potentials were chosen based on the fact that they are
differentiable at least twice, thus preventing discontinuity
problems in the elastic modulus.23

We used athermal systems of frictionless soft discs for all
the simulations in a 2D box of length L. To avoid crystallisation,
we used a bidisperse mixture of 1 : 1.4.35 In our simulations, the
atomistic length scale was set according to the radius of the
small particles (r0 = 1), and the mass of all the particles is equal
to unity (m0 = 1). For each potential, the interaction between the
particles is described by eqn (1) for the Hertzian potential and
eqn (2) for the LP potential.

U rij
� �

¼
e
2

5
1� rij

2dij

� �5=2
rij o 2dij

0 rij 4 2dij

8>><
>>:

; (1)

In both cases, rij is the distance between the centres of
particles i and j, dij is the mean of their radii, and e is the energy
scale. In our simulation, we considered a0 = 10 and b0 = 0.2. The
temperature has units of e/kB, where kB is Boltzmann’s constant,

and time is measured in units of t0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0r02=e

p
. To create

systems with a Hertzian potential, we used infinite quenching,36

and for systems with an LP potential, we started equilibrating at
T = 1.0 and cooled to T = 0.05 at a 10�6e/(kBt0) rate; finally, the
residual heat was removed using the FIRE algorithm.37 Through-
out this study, the densities of both potentials were set using the
packing fraction f = 0.975, from the jamming point.38

Quasistatic SS model

The AQS for a system under a simple shear deformation can be
described using the following procedure:21,22,32 using the Less–
Edwards boundary conditions,39 we imposed an affine shear
strain Dg = 10�4. In each step, we modified the position of each
particle ri according to the following rule:

-
ri -

-
ri + Dg(-ri�ŷ)x̂. (3)

After applying the affine deformation, the total potential
energy of the system was minimised. To determine the mechan-
ical equilibrium parameters, we defined the residual force
factor as lF = h|-F|i/%f, where h|-F|i is the mean of total force over
all particles, %f is the mean interparticle force, and the

Fig. 1 (a) Representation of the simple shear model, where the system is
subjected to a speed profile with equation n = _g(r

-�ŷ)x̂. (b) Representation of
the self-random force model, where each particle is subjected to a force
of size f, that is exerted on the direction n

-R. Similar to the simple shear
model, when f 4 fc, the system is not able to find an equilibrium state and
flows between non-equilibrium states.

U rij
� �

¼

e
dij

rij

� �a0

�a0 a0 þ 2ð Þ
8

b0

a0

� �a0þ4
a0þ2 rij

dij

� �4

þb0 a0 þ 4ð Þ
4

rij

dij

� �2

�ða0 þ 2Þða0 þ 4Þ
8

b0

a0

� � a0
a0þ2

2
4

3
5 rij o dij

a0

b0

� � 1
a0þ2

0 rij 4 dij
a0

b0

� � 1
a0þ2

8>>>>>>><
>>>>>>>:

(2)
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mechanical balance is set to lF o 10�11. We primarily used the
conjugate gradient (CG) algorithm40 to perform energy mini-
misation. However, in Appendix 6, we tried three energy mini-
misation methods: FIRE, CG, and Steepest Descent (SD),41 and
we found that this did not affect our results for the occurrence
and size of plastic events. The pressure p and shear stress s
were quantified following the Irving–Kirkwood calculations.42

Quasistatic SRF model

A key point in studying the SRF model is identifying quantities
and algorithms equivalent to the SS model to be able to make
an accurate comparison. Following an overdamped dynamic,
the velocity of active particles that are subjected to a persistent

self-force with size f can be determined by
d~ri
dt
¼ D f n̂Ri �

@U

@~ri

� �
,

where n̂R
i is the direction in which the self-force is applied and

D is the overdamp constant.43,44 Despite the simplicity of this
approach for conducting simulations, our previous work
showed that, to mitigate stagnation issues arising from finite
size problems,20 it is more convenient to reformulate this

equation, making the parallel velocity vRk ¼
1

N

P
~vi �~nRi a control

parameter as follows:

d~ri
dt
¼ L _gR

2
ffiffiffiffi
N
p n̂Ri þD �f kn̂

R
i �

@U

@~ri

� �
: (4)

where �f k ¼
1

N

PN
j¼1

@U

@~rj
� n̂Rj represents the mean of the contact

force projection along the direction of deformation. In addi-

tion, we adopted the definition _gR ¼ 2
ffiffiffiffi
N
p

L
vRk , which enabled us

to obtain a control parameter with dimensions equivalent to
the shear strain rate _g in the SS model. Consequently, the self-
force f is computed as

f ¼ 1

N

XN
i¼1

1

D

d~ri
dt
�
@U rij
� �
@~ri

� �
� n̂Ri : (5)

Notice that for both models, the SS and the SRF model, their
names refer not to the control parameter but to the resulting
stresses or forces, respectively. The final essential ingredient to
establish an equivalence between SS and SRF is to define a

‘random’ stress sR ¼ 1

L2

dU

dgR
¼ 1

2L
ffiffiffiffi
N
p

PN
i¼1

@U

@~ri
n̂Ri .32 By combining

this with the overdamped equation, we obtain the following
relationship:

sR ¼
ffiffiffiffi
N
p

2L
f � 1

4D
_gR: (6)

In practice, a quasistatic regime is observed when, for
dg deformation, the system has enough time to reach a
new equilibrium state. Using the above and dynamic
eqn (4), we constructed a time-independent equation of
motion, as described by eqn (7) that defines how the AQS–

SRF should be

d~ri ¼
L

2
ffiffiffiffi
N
p dgR þD

ð1
0

�f kn̂
R
i �

@U

@~ri

� �
dt; (7)

where dgR = _gRdt.
Consequently, the AQS algorithm for an SRF deformation

can be described as follows: first, at each step of the simulation,
an affine deformation displaces the particles in

~ri !~ri þ
L

2
ffiffiffiffi
N
p DgRn̂Ri : (8)

Second, the system is given the time required to reach
mechanical equilibrium, which presents a constriction owing
to the presence of a self-force f. In this sense, minimization is

done in search of balance
@U rij
� �
@~ri

¼ �f kn̂
R
i .32

III. Quasistatic yielding statistics

As shown in Fig. 2(a) and (b), we calculate the stress for the SS
model over a range of 0 o g o 6 and an SRF over 0 o g o 60;
using these ranges, we ensured that a stationary state was
achieved in the last third of the data, where the data did not
depend on the initial configuration. The significant differences
in the ranges necessary to obtain these results are consistent
with the results obtained in our previous study.20

To improve the resolution of the plastic events for both
models, we used the detection method described by Lerner and
Procaccia.23 For each step of size Dg, this method calculates the
difference between the potential energy of the system immedi-
ately after making the affine deformation Uaff and its energy
once it reaches its minimum U0. In Fig. 2(c) and (d), we show

how the total reorganisation factor, k ¼ Uaff �U0

NDg2
, fluctuates

over the same range as g. In intervals in which plastic events are
not detected, k assumes values within a well-determined range.

Fig. 2 Evolution of stress s in (a) the SS model and (b) the SRF model as
the affine deformation is imposed. (c) and (d) the evolution of k. An abrupt
jump is observed when a plastic event occurs. In these data we used
potential LP and N = 8192.
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However, when an event occurs, this value increases signifi-
cantly, demonstrating its effectiveness for characterising events
with high reorganisation. This allows us to reduce Dg = 10�4

until Dg = 10�6 and provides a better resolution in sections
close to a plastic event.

A more detailed analysis of the evolution of s over g reveals
that the system exhibits sections with elastic behaviour, where
it loads a shear stress ds0 during a strain section of size dg (see
Fig. 3(a)). This behaviour was also observed when analysing the
equivalent quantities for the SRF model. By examining these
quantities, in elastic deformation sections we can calculate the

shear modulus G ¼ ds0

dg
at which the system loads the stress. In

Fig. 3(b), the distribution of G for different system sizes is
shown; notably, it follows a distribution centred on G0.

This elastic section, where the system loads stress, is
abruptly terminated by the origin of an avalanche (composed
of several plastic events), where the reorganisation of particles
occurs. This event is reflected in the gap in the shear stress of
size ds.

Despite the tremendous numerical effort, the ds distribu-
tion shown in Fig. 4 demonstrates that our data have a mini-
mum resolution dsmin, beyond which we cannot capture
smaller avalanches. This minimum resolution is the product

of Dg, which is nonzero. In each step, the system loads, on
average, a shear stress equivalent to G0Dg, for which our
algorithm that detects the drop in shear stress has problems
detecting drops smaller than G0Dg because the drop in stress
can be hidden by the loading process of shear stress. Due to
this, and to avoid the diffusion effect of distribution P(G) for
small system sizes, we considered only ds 4 2G0Dg to be
sufficiently large to avoid minimal resolution problems.

The next important result corresponds to the size distribu-
tion of an avalanche S = dsLd, which is defined as the total
stress released by an avalanche in a system of large size L. It has
been observed that this distribution follows the power law
described by P(S) BS�t and exhibits a cutoff value of Sc, which
is due to the finite size of the system.24–26,29,45 The cutoff
corresponds to the size of the system Sc B Ldf, where df is an
exponent known as the fractal dimension.24,46 Together, these
two exponents determine the size of the avalanche distribution
in the systems.

Fig. 5 shows our results for P(S) in both the models and
potentials used. We observed that all the distributions have the
form P(S) B S�tf (S/Sc), where f (x) is a rapidly decaying func-
tion. A good collapse of the distributions for different system
sizes was observed when plotting P(S)Ltdf vs. S/Ldf.30 As can be
seen in all configurations used, t = 1.14 was consistently
maintained. However, df presents a slight difference between
the SS (df = 1.1) and SRF (df = 1) models. These values are
consistent with those obtained for SS deformation in previous
studies.24–27 Using both exponents, we can calculate the scale
relation between hdsi and the system size L as hdsiBL�d, where
d = d � df(2 � t) with d dimension number. The latter result is
obtained by integrating P(S) between 0 and Sc. The final scale
relation was tested, as shown in Fig. 6 (blue line). Here, d = 1.04
for the SS model using both potentials, thus reflecting the
consistency of the data. Although the d exponent that we
computed is similar to one recently reported,33 it differs from
that reported for systems with very similar simulation
protocols.23,47 This difference is attributable to the fact that
our data are truncated for avalanches smaller than 2G0Dg
because, by not differentiating, we recovered exponents similar
to those mentioned (red line in Fig. 6).

IV. Avalanche relaxation time in AQS

The equivalence of results when analysing the avalanche dis-
tribution between both deformation scenarios suggests that the
discrepancy observed in the exponents describing the fluid
region is due to a dynamic component. This dynamic aspect
is commonly examined through the exponent z, which corre-
sponds to the time required for an avalanche to propagate and
its extension length TBlz. Additionally, this exponent plays a
crucial role in bridging the quasistatic regime with the dynamic
regime;29 however, measuring this exponent has proven to be a
challenging task.30,45

Table 1 presents a summary of the exponents calculated for
both deformation scenarios. By utilizing these exponents and

Fig. 3 (a) For SS model, the system behaves elastically during a section dg,
loading a stress ds0. This process ends when the system is not able to
continue deforming without causing an internal reorganisation (ava-
lanche), which is reflected in a drop in stress ds. (b) The G distribution
for different system sizes in SS model; in the inset the same data in linear-
log scale. Here, the rate at which the system loads stress in each elastic
section presents a distribution centred on G0 and diffuses as the size of the
system decreases.

Fig. 4 (a) Distribution of ds (SS model) and (b) distribution of dsR (SRF
model). For ds o dsmin and dsR o dsR

min, both distributions stop following
the power law owing to the presence of a minimum resolution by the
simulation protocols.
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the relation of the scales studied by Lin et al.29 on mesoscopic
systems (b = n(d� df + z)), we can indirectly calculate the exponent
z, resulting in z = 2.9 for the SS model and z = 8.1 for the SRF
model. Similar to the findings of our previous work,20 applying this
scaling relation indicates that the value of z should be significantly
larger than that observed in mesoscopic models.29,30

The natural next step is to calculate the exponent z directly.
Time does not play an intrinsic role in AQS, as evident in
eqn (7), here relaxation is allowed without imposing a time

limit. Nevertheless, the finite size of the system constrains the
maximum extent of an avalanche, thus limiting the duration of
this process. In this context, we propose an algorithm that
enables us to make a measurement from AQS. During each
simulation step, the system was permitted to relax until it
reached a state in which the residual force factor satisfied the
equilibrium condition. As mentioned earlier, we measured the
total shear stress release S and total reorganisation factor k that
occur when a plastic event is generated. Consequently, the time
t* at which this reorganisation process occurs depends on S.
Fig. 7(a) and (b) illustrate the evolution of S(t) and k(t) over time
for two specific events. In the first section (before the yellow
dots), the system experiences minimal reorganisation, leading
to almost negligible changes in S(t) and k(t). This behaviour is
interpreted as a region in which the system is still trying to relax
energy following an elastic regime. Similarly, in the last section
(after the green dot), the reorganisation is almost negligible,

Fig. 5 (a) and (c) show the distribution of S for the SS model with LP potential and Hertzian potential for different system sizes, respectively; (e) and (g)
show the distribution of SR for the SRF model with LP potential and Hertzian potential for different system sizes, respectively; all results show t = 1.14. (b),
(d), (f), and (h) show the same results collapsed by the size of the system L; df = 1.1 for the SS model and df = 1 for the SRF model.

Fig. 6 The blue line represents hdsi vs. L based on the established
minimal resolution, and the red line hdsi vs. L represents all plastic events
detected for (a) the SS deformation and LP potential and (b) the Hertzian
potential. For both potentials, d = 1.2 is determined by taking all detected
events and d = 1.04 by adjusting for the presence of a minimum resolution.

Table 1 Summary of all the exponents calculated throughout this study
and our previous study20 for both deformation scenarios

Exponent SS model SRF model

t 1.14 1.14
df 1.1 1
b 2.3 1.7
n/b 0.26 0.11

Fig. 7 (a) S(t) as a function of time t for two different plastic events; these
processes end with a total release of stress S. (b) k(t)/k as a function of time.
Here the time that elapses between the yellow and green point define t*.
(c) Plot of t* vs. S for one million plastic events in N = 8192 systems and LP
potential; the red curve shows the average of all events.
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and the system solely aims to adapt to our mechanical stability
criteria. In contrast, the central section between the yellow
and green dots exhibits a concentration of stress drops and
reorganisation.

This analysis allowed us to define t* as the elapsed time in
the middle section, which we defined starting at k(t)/k 4 z and
ending at k(t)/k o1 � z, where z = 0.015, and verify that
variations in this choice do not affect our scale results. In
Fig. 7(c), one million events were observed for a system of N =
8192 and LP potential. Here the average of these events
indicates that the time needed to reach equilibrium increases
in avalanches of larger sizes.

By using this algorithm, Fig. 8(a) and (b) show the distribu-
tion P(t*) for different system sizes with the LP potential
method, GC relaxation method, and both deformation scenarios,
respectively. The cutoff point of P(t*) corresponds to the propa-
gation time of an avalanche with a length of the system L.29

Thus, a collapse can be observed with L0.9 for the SS model and

L0.8 for the SRF model. These results provide the exponent z,
which relates the linear extension of an avalanche vs. the time at
which this process occurs using the relation T B Lz. Here, we
obtained z = 0.9 for passive systems and z = 0.8 for active
systems. This final result represents an important change from
the first estimate of the exponent z.

A possible explanation for this radical difference could be
the choice of relaxation method used in the simulations.
Previous studies on mesoscopic systems found that the value
of this exponent is sensitive to the methodology used to
propagate the effects of an avalanche.30 Similarly, in our soft-
particle systems, a point of contention arises regarding the
energy minimisation method used in our simulations. The CG
algorithms employed in our latest results, or the FIRE algo-
rithms, require significantly less simulation effort than the SD
algorithms. Consequently, it is reasonable to expect that this
difference will translate into shorter avalanche propagation
times for certain relaxation algorithms. Specifically, considering
that FIRE incorporates inertia, CG considers the history of
descent for faster convergence. A change in the exponent z due
to the relaxation method can play an essential role in reconciling
the dynamical regime with AQS, especially when considering
that almost all studies involving dynamical regimes with parti-
cles (including our latest work20) use simulation algorithms from
Durian’s studies,48 where inertia or any temporary memory effect
of the evolution algorithm does not play a role. To address this
question, one possible solution would be to perform the same
calculation as above for z using the steepest descent (SD) as the
relaxation method. However, this requires significant computa-
tional effort, as our experience indicates that the simulation
times increase between two to three orders of magnitude with
SD, making it unfeasible with the current numerical capacity.

V. Conclusions

In this study, we observed that the differences in flow curves
due to the modification of the deformation scenario type did
not appear to be reflected in the avalanche probability distribu-
tion when the deformation was executed in a quasistatic
regime. This is consistent with previous research that provided
similar results.32,44,49

Because no difference is observed in the avalanche statistics
between the active and passive systems in the quasistatic
regime, attention needs to shift towards studying the dynamic
properties, specifically the relaxation process of avalanches. For
passive systems, a single scaling relation connecting the dura-
tion of avalanches with their size has been suggested to link the
flow state with _g a 0 and avalanche statistics in the AQS
regime.21,28,29 This property is characterised by the z-exponent
introduced in Section 4. However, despite its significance,
measurements of this exponent in molecular dynamics systems
are scarce.50,51

A preliminary measurement of the z-exponent under CG
dynamics revealed a value much lower than expected, as pre-
dicted by the scale relation derived from mesoscopic

Fig. 8 (a) and (b) Distribution P(t*) for different sizes in the SS and SRF
models, respectively. (c) and (d) The same data collapsed by L0.9 and L0.8.

Fig. 9 P(S) for a N = 1024 and the Hertzian potential using three relaxa-
tion methods. In red: FIRE, in blue: conjugate gradient (GC), and in yellow:
steepest descent (SD).
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elastoplastic models.29,30 However, this difference is largely
explained by the relaxation method used in the simulations,
or it could be because of the calculation methodology employ-
ing a pseudo-time definition derived from the relaxation
method.
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Appendix
A. P(S) consistency for different relaxation methods

This Appendix verifies that the probability distribution curve
P(S) does not vary with the relaxation method used. Fig. 9
shows the results for P(S) for N = 1024 and the Hertzian
potential. The coincidence of the curves can be interpreted as
a difference in the relaxation method that did not affect the
final equilibrium states.
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