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Defect-influenced particle advection in highly
confined liquid crystal flows†

Magdalena Lesniewska,a Nigel Mottram b and Oliver Henrich *a

We study the morphology of the Saturn ring defect and director structure around a colloidal particle

with normal anchoring conditions and within the flow of the nematic host phase through a rectangular

duct of comparable size to the particle. The changes in the defect structures and director profile

influence the advection behaviour of the particle, which we compare to that in a simple Newtonian host

phase. These effects lead to a non-monotonous dependence of the differential velocity of particle and

fluid, also known as retardation ratio, on the Ericksen number.

1 Introduction

Microfluidics is concerned with the manipulation and control
of fluid flow at the microscale and sits as a multidisciplinary
field at the intersection of physics, engineering, and biology.
During the last two decades it has seen a tremendous rise in
importance as it entered the main stream with many practical
applications ranging from medical diagnostics1,2 and drug
delivery3,4 to chemical synthesis5 and lab-on-a-chip technologies.6–8

The essential physics of a microfluidic system is dictated by
a competition between various phenomena, which is captured
by a series of dimensionless numbers expressing their relative
importance.9 The Reynolds number, for instance, is often
considered to be small in microfluidic applications. However,
relatively recently a focal point has been on inertial
microfluidics,10–12 which gives rise to some interesting and
counter-intuitive phenomena.

When particle-laden flows are considered, aspects of con-
finement become central to microfluidics. Characteristic
dimensions of channels and chambers are in the range of tens
to hundreds of micrometres, and can be comparable to the size
of the particles being transported, and interactions between the
fluid and solid boundaries become increasingly important. In
the simplest case the fluid is Newtonian, without internal
structure, and the geometry is a uniform duct. The first
theoretical results for migrating, rigid spheres in unidirec-
tional, two-dimensional flow were provided by Ho and Leal.13

These were later extended to three dimensions and refined by

Ganatos14 and Staben,15 who also verified their theoretical
results with an experimental study.16 Owing to the rise of
computer power and the advent of sophisticated simulation
methodologies, increasingly complex geometries can now be
investigated.17

For similar reasons, the study of particle advection (i.e.
movement in flow direction) in non-Newtonian fluids with
internal order structure has evolved only slowly. Suspensions
of colloidal particles in a nematic liquid crystalline host phase
may serve here as prototype of systems that cannot be described
with standard continuum theories, but require additional order
parameters to capture the microstructure and its change under
flow conditions. After first theoretical studies on the drag of
colloidal particles in nematic hosts by Stark,18 a main research
focus in colloid-liquid crystal suspension has been on confine-
ment effects19–21 and topology properties.22,23 Confinement
effects, often in combination with the behaviour in external
electric fields, were also investigated in liquid crystalline
emulsions24 as well as in droplets and shells.25 The study of
flowing liquid crystals covered primarily pure and confined
phases23,26–29 as they appear frequently in microfluidic setups.

On the theoretical side, studies have been extended to
multiple, explicitly resolved particles and the full nemato-
hydrodynamic problem that solves for the tensor order para-
meter and velocity field.30 These approaches are now comple-
mented by various simulation methods.31–33 Recently, the
dynamics of anisotropic particles in nematic liquid crystals
under shear flow was investigated.34 However, the advection of
colloidal particles in pressure driven flow and extreme confine-
ment, which forms the focus of this work, has to our knowledge
so far not been addressed.

Our paper is organised as follows: Section 2 introduces our
theoretical modelling framework, the Landau–de Gennes free
energy and Beris–Edwards model, while Section 3 gives details
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of our lattice Boltzmann simulation method. Section 4 shows
simulation results for scalar order parameter and director field
at various confinement ratios and flow velocities and them to
those obtained for simple Newtonian fluids. Section 5 sum-
marises our results and conclusions.

2 Theory
2.1 Landau–de Gennes free energy

The local order of the liquid crystal is described by a traceless
and symmetric second-order tensor Q(r,t).35,36 Its largest eigen-
value q o 2/3 is referred to as the scalar order parameter and
provides a measure of the liquid crystalline order at a certain
position and time. The eigenvector, d, associated with q is
called the director and describes the corresponding average
orientation of the liquid crystal molecules.

In equilibrium, the liquid crystal order is determined
through minimisation of its free energy, commonly described
by the Landau–de Gennes free energy functional

F½Q� ¼
ð
V

f ðQÞdV þ
ð
S

fsðQÞdS; (1)

which includes the volume contribution f = fb + fg, that itself
consists of a bulk contribution fb and a gradient contribution fg,
and a surface contribution fs. The bulk free energy density is
given by

fbðQÞ ¼
A0

2
1� g

3

� �
Qab

2 � A0

3
gQabQbpQpa þ

A0

4
g Qab

2
� �2

; (2)

where we use the Einstein summation convention, so that Greek
indices that appear twice are summed over. In eqn (2), A0 is a
constant that sets the overall energy scale and the parameter g
controls the temperature difference from the isotropic–nematic
transition, and is related to a reduced temperature t by

t ¼ 27

g
1� g

3

� �
: (3)

For g 4 3 or t o 0 the ordered, nematic state is the equilibrium
phase, whereas for 2.7 r gr 3 or 0 r tr 1 the nematic state is
metastable. For g o 2.7 or t 4 1 the isotropic state is the
equilibrium phase.

The gradient free energy density fg contains the contribu-
tions of splay, bend and twist deformations of the director field
as well as order-elastic effects due to gradients of the scalar
order parameter,

fgðQÞ ¼
1

2
k0 @aQab
� �2þ1

2
k1 easn@sQnb
� �2

; (4)

where qa = q/qxa and easn is the Levi-Civita symbol in three
dimensions. In principle, the elastic constants k0 for splay and
bend deformations, and k1 for twist deformations can be
different. However, in our simulations we use the one-elastic-
constant approximation k0 = k1.

The director is assumed to have a preferred normal orienta-
tion to the wall surfaces and to the surface of the colloidal
particle, known as a homeotropic anchoring, and is described

using a surface free energy term

fsðQÞ ¼
1

2
w Qab �Q0

ab

� �2
; (5)

where w is the surface anchoring strength with values wwall and
wpart at the wall and particle surfaces, respectively. The pre-
ferred orientation Q0

ab is assumed to be uniaxial and is given by

Q0
ab ¼

1

2
S0 3nanb � dab
� �

; (6)

where n is the surface unit normal, dab is the Kronecker
delta and S0 is the preferred surface scalar order parameter
given by

S0 ¼
2

3

1

4
þ 3

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8

3g

s !
: (7)

The anchoring strength at the surface of a colloidal particle
is often compared to the bulk fluid elastic constant by means of
the dimensionless parameter

o ¼ wR

k
; (8)

where R and k are the radius of the particle and the elastic
constant, respectively. For small values of this parameter, the
presence of a particle surface should have little impact on the
local bulk liquid crystalline ordering.

2.2 Beris–Edwards model

The time evolution of Qab is governed by the Beris–Edwards
equation37

@tQab + qp(upQab) + Sab(W,Q) = GHab, (9)

where qt = q/qt, u is the flow velocity, S(W,Q) denotes the
response to shear, W is the velocity gradient tensor, H is the
molecular field and G is a mobility parameter. The shear term
is given by

SabðW ;QÞ ¼ xDap þ Oapð Þ Qpb þ
1

3
dpb

� �

þ Qap þ
1

3
dap

� �
xDpb � Opb
� �

� 2x Qab þ
1

3
dab

� �
QpsWsp

(10)

where Dab ¼
1

2
Wab þWba
� �

and Oab ¼
1

2
Wab �Wba
� �

are the

symmetric and antisymmetric contributions to the velocity gra-
dient tensor Wab ¼ @aub, respectively, and x is the so-called flow
alignment parameter, a material constant representing an effec-
tive molecular aspect ratio which determines whether the liquid
crystal exhibits a flow-aligned state at the Leslie angle or tum-
bling state. The molecular field H is the functional derivative of
the free energy functional with respect to the order parameter,

Hab ¼ �
dF
dQab

þ dab
3
Tr

dF
dQab

: (11)

The second term in eqn (11) involving the trace ensures trace-
lessness of the tensor order parameter as it evolves through
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eqn (9). This leads to the following molecular field:

Hab ¼ � A0ð1� g=3ÞQab þ A0g QasQsb �
1

3
Qsn

2dab

� �
� A0gQsn

2Qab þ k0@a@sQsb þ k1@s @sQab � @aQsb
� �

(12)

The governing equations of hydrodynamic motion are the equa-
tion of mass conservation, also known as the continuity equation,
and the Navier–Stokes equation that describes the balance
between the rate of change of linear momentum density and
the gradients of the pressure and viscous stresses. In tensor
notation they read

qtr + qa(rua) = 0 (13)

and

qt(rua) = qbP
(LC)
ab + qbP

(HD)
ab , (14)

respectively. Eqn (13) relates the local rate of change of the
density r to the advection of mass by the fluid velocity u.
Eqn (14) is Newton’s second law of momentum change for
the fluid and involves the thermotropic stress tensor P(LC)

ab and
the hydrodynamic stress tensor P(HD)

ab . The thermotropic stress
arises due to the liquid crystal and is given by

PðLCÞab ¼ sab þ tab � @aQsn
dF

d@bQsn
: (15)

In eqn (15), sab and tab are the symmetric and antisymmetric
stress contributions, respectively, defined as

sab ¼ � p0dab � xHas Qsb þ
1

3
dsb

� �
� x Qas þ

1

3
das

� �
Hsb

þ 2x Qab þ
1

3
dab

� �
QsnHsn ;

(16)

where p0 ¼ � @F=@Vð ÞT¼ �f is the isotropic contribution
from the nematic liquid crystal to the total pressure, and

tab = QasHsb � HasQsb. (17)

The final term in eqn (15) may be expanded as

@aQsn
dF

d@bQsn
¼ � k0@aQsb@nQsn

� k1@aQsn @bQsn � @sQnb
� �

:

(18)

The hydrodynamic stress tensor is defined as

P(HD)
ab = �pdab � ruaub + m(qbua + qaub) + zqsusdab, (19)

where m and z are the dynamic and bulk viscosity, respectively.
The hydrostatic pressure p is related to the density via an
ideal gas equation of state as p = cs

2r with cs as lattice speed
of sound as is standard in the lattice Boltzmann method. The
last term vanishes in incompressible fluids as eqn (13) becomes
qaua = 0.

No-slip and no-penetration boundary conditions are applied
on the walls and particle surfaces, and the boundary conditions

for Q are found from the minimisation of the free energy38

ng
@f

@Qab;g
þ @fs
@Qab

¼ 0; (20)

where Qab,g = qQab/qxg.

3 Simulation method
3.1 Simulation setup

Fig. 1 shows a diagram of the three-dimensional computational
geometry, which consists of a duct of Lx = 24, 32 or 48 and Ly �
Lz = 256 � 384 lattice sites. Solid walls are positioned at x = 0
and x = Lx, y = 0 and y = Ly. We define the measure of confinement
as the ratio of the particle diameter to the height of the duct, which
leads in our case to confinement ratios 2R/Lx = 0.8, 0.6, and 0.4.
The value of Ly means that, with the particle at the centre of the
duct, the system is effectively unconfined in y-direction since 2R/Ly

= 0.075. Periodic boundary conditions are applied in the z-
direction with the z-boundaries acting as inlet and outlet of the
duct. A pressure gradient C = Dp/Lz is applied in z-direction,
leading to a body force density acting on all sites.

We use a hybrid lattice Boltzmann scheme39 that applies a
finite-difference method for the dynamics of the Q-tensor order
parameter and solves the hydrodynamic part of the problem by
means of the lattice Boltzmann method. The colloidal particle
is discretised as a solid, mobile particle with a radius R = 9.6.
The longitudinal and angular momenta of the colloidal particle
are evolved according to Newton’s second law of motion. We use
a mixed explicit–implicit velocity update, which minimises the
number of linear equations that must be solved, while main-
taining absolute stability.40 On both the walls and the particle
surface no-slip and no-penetration boundary conditions are
applied by using a bounce-back on links scheme.41–43

Fig. 1 Overview of the computational geometry: we apply no-slip and
no-penetration boundary conditions and homeotropic anchoring condi-
tions at the walls which bound the region in x-direction and y-direction
and at the particle surface, with periodic boundary conditions at the
z-boundaries. The top part shows the top view, looking along the
x-direction, and the bottom part shows the side view, looking along
the y-direction.
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Lubrication corrections are applied normal to the walls within a
distance of 0.1 lattice sites.40 The surface free energy in eqn (5)
invokes a homeotropic anchoring condition with a preferred
orientation of the director normal to the surfaces.

There are technical limitations to our model that should be
borne in mind. While the centre of mass of the particle is
integrated off-grid according to Newton’s equation, the particle
itself is discretised using a stair-case geometry. This can result
in some inaccuracies, especially for highly confined regimes.
For instance in our case 2R/Lx = 0.8 only about two lattice sites
are between the particle and the walls surfaces at its narrowest
point. The ideal gas equation of state that the pressure obeys,
as well as the modelling of the constant pressure gradient
through an additional body force density on all sites are both
common treatments in the lattice Boltzmann methodology and
allow for an accurate modelling of a weakly compressible fluid.
But the assumption of a constant pressure gradient represents
a simplification over the real situation. Thermal fluctuations
have not been included since our simulations were carried out
using a temperature well away from the isotropic–nematic
transition line, and so elastic forces from the anchoring of
the liquid crystal dominate over thermal forces by orders of
magnitude. The one-elastic-constant approximation is com-
monly used as first approach and does not compromise our
results qualitatively. However, relaxing this approximation
could lead to quantitative differences, and potentially also
richer phenomenology. The Beris–Edwards model uses a simplified
approach to viscosities compared to the Ericksen–Leslie theory,
which has six viscosity coefficients a1, . . ., a6

35 (only five are
independent as the Parodi relation applies44). The viscosities in
the Beris–Edwards model are implicitly given through the isotropic
dynamic shear viscosity m, the rotational diffusion constant G, the
flow alignment parameter x, and the scalar order parameter S0.
They can be directly related to the Ericksen–Leslie viscosities a1,
. . ., a6,39 but parameterise only a subset of possible values.

The simulations were run with our lattice Boltzmann code for
complex fluids Ludwig version 0.15.0.45 A typical simulation is
first initialised with no applied pressure gradient for 5 � 104

iteration steps for each anchoring strength. After this initial
equilibration phase, the simulations are restarted with various
pressure gradients that are kept constant for 4 � 105 iteration
steps. Typical runtimes are approximately 26 hours using a
hybrid MPI/OpenMP parallelisation with 2 MPI tasks each run-
ning on 20 OpenMP threads. The overview of the simulation
parameters is included in Table 1. For further information about
the exact implementation used in this work, we guide the reader
to the Ludwig code repository and related literature.46,47

3.2 Parameter mapping

Our simulation units can be mapped to physical units by
calibrating the units of pressure, time, and length. To achieve
this, we assign the lattice spacing Dx, the algorithmic time step
Dt and the reference pressure p* from unity in lattice Boltz-
mann units (LBU) to their corresponding values in SI units.
The principle of this parameter mapping was also shown in our
previous work33 using a different characteristic length scale.

The calibration of the length scale is straightforward as it is
simply set by considering the dimensions of the microfluidic
duct. If we associate the narrowest gap size Lx = 24 in LBU
corresponds to Lx b¼ 1:2� 10�6 m in SI units, we obtain an LBU
length of Dx b¼ 5� 10�8 m ¼ 50 nm in SI units.

To obtain the pressure scale, we use the measurements of the
Landau–de Gennes parameters36 (Appendix D therein) which give

27

2A0g
’ 5� 10�6 J�1 m3 ¼ 5� 10�6 Pa�1:

Using A0 = 0.01 and g = 3.1 in our simulations results in a reference
pressure of p� ¼ 1 LBU b¼ 108 Pa in SI units.

For the calibration of the timescale we use the following
formula, which relates the rotational viscosity g1 of the director
to the equilibrium scalar order parameter q and the order
parameter mobility G:

g1 ¼
2q2

G

We use G = 0.5 in LBU and bulk energy density parameters that
lead to q E 0.5 since it is assumed that the system is well within
the nematic phase. Therefore, the rotational viscosity g1 = 1
in LBU. Typical values for liquid crystals in SI units are
g1 = 0.1 Pa s.35 Together with 1 Pa equating to a pressure of 10�8

in LBU, we obtain for the algorithmic time step Dt b¼ 10�9 s ¼ 1 ns.
The Ericksen number characterises the ratio of viscous to

elastic forces and is defined as

Er ¼ ZuL
k
;

where u is a characteristic flow velocity, in our case the velocity at the
centre of the duct Uc, Z is the dynamic viscosity, L is a characteristic
length scale which is set by the narrowest gap size Lx (see Table 2 for
L = 2R, which allows direct comparison with our previous work33),
and k is the bulk elastic constant of the liquid crystal.

The dynamic viscosity Z is calculated as an apparent viscos-
ity, defined as the ratio, Z = mF0/F of the volumetric flux F0 of a
simple Newtonian fluid and the volumetric flux of the liquid
crystalline system F, through a plane perpendicular to the flow
in the z-direction, namely

F ¼
ðLx

0

ðLy

0

uzðxÞdxdy; (21)

Table 1 Overview of simulation parameters

Bulk energy scale A0 0.01
Effective temperature t �0.29
Elastic constants k0, k1 0.01
Wall anchoring strength wwall 0.02
Particle anchoring strength wpart 0, 0.001, 0.01, 0.05
Anchoring parameter o 0, 0.96, 9.6, 48
Flow alignment parameter x 0.7
Mobility parameter G 0.5
Density r 1.0
Shear viscosity m 5/6
Bulk viscosity z 5/6
Particle radius R 9.6
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with the flow being driven through the pressure gradient
C = Dp/Lz with Dp being the pressure difference between inlet
and outlet. The volumetric flow rate F0 of a Newtonian fluid
with dynamic viscosity m through a gap Lx driven by a pressure
gradient C in plane Poiseuille flow can be calculated as

F0 ¼
ðLx

0

ðLy

0

Lx
2

2m
C

x

Lx
� x

Lx

� �2
 !

dxdy (22)

¼ Lx
3LyC
12m

: (23)

Fig. 2 shows fluid velocity profiles for a representative confine-
ment ratio of 2R/Lx = 0.6 that have been normalised to the peak

flow velocity of a simple Newtonian fluid in Poiseuille flow at the
same pressure gradient and scaled using the x-dimension of the
duct. The apparent viscosity Z is the ratio of the areas under
the Poiseuille curve and the curves at finite Ericksen numbers.

More specifically, in Fig. 2 the flow velocities have been
normalised against the maximum flow velocity of the Poiseuille
flow uc,Poiseuille(x = Lx/2) = Lx

2Dp/8mLz at the centre line of the duct
with m as dynamic viscosity and Dp as pressure difference between
inlet and outlet, respectively. Away from the walls at x/Lx = 0 and
x/Lx = 1 the velocity profiles of the flowing nematic are parabolic
and deviations form the parabolic profile occur only close to the
walls. This is a result of shear thinning as the director field flow-
aligns further away from the walls, which is prevented by the
normal wall anchoring in the vicinity of the walls. In all simula-
tions that contain a colloidal particle the fluid flow velocity uc at
the centre line was taken at x = Lx/2 and a point in a distance Lz/2
upstream/downstream from the particle, which is the point
farthest away from the particle in the z-direction due to the
periodic boundary conditions. However, owing to this large dis-
tance the values we obtained for uc in this manner are virtually
identical to those of a pure liquid crystal without particle. Profiles
for other confinement ratios are not shown as they look very
similar.

4 Results and discussion

We study the advection behaviour of a single particle moving in a
nematic host phase in highly confining ducts and investigate the
effect that varying pressure gradient C, confinement ratio 2R/Lx

and homeotropic anchoring strength have. In a simple New-
tonian fluid, or in a liquid crystal at temperatures above the
isotropic–nematic transition point, the motion of a freely sus-
pended spherical particle between two parallel plane walls has
been studied previously theoretically,14,15 with simulations17 and
experimentally.16 The main effect is that the retardation of the
particle motion to the fluid motion is primarily independent of
the applied pressure gradient, but greater for particles closer to
either of the walls, and therefore more so for highly confined
particles due to the proximity to the walls.

In a nematic liquid crystal with homeotropic anchoring
conditions at the walls the director orientation is forced to be
parallel to the wall normals. The degree of alignment depends
on the strength of the anchoring, but also on the velocity
gradient, and therefore the pressure gradient. At low pressure
gradients, the nematic order will be enforced throughout the
duct. But for higher pressure gradients the director field flow-
aligns at the Leslie angle. Two conformations are persistent in
flowing nematics, namely the so-called bend state or H-state
and the splay state or V-state. For both H- and V-state the
director flow-aligns to a positive (negative) Leslie angle in the
lower (upper) half of the channel. The difference between the
two states is determined by the way the director rotates between
the positive and negative Leslie angles at the centre: in the bend
state, the director at the centre is perpendicular to the walls,
whereas in the splay state the director is almost parallel to the

Table 2 Conversion of Ericksen numbers for different confinement ratios
using different characteristic length scales, namely the size of the channel
(odd columns) or as in ref. 33 the diameter of the particle (even columns)

2R/Lx = 0.4 2R/Lx = 0.6 2R/Lx = 0.8

Er (Lx) Er (2R) Er (Lx) Er (2R) Er (Lx) Er (2R)

1.65 0.658 4.38 2.63 6.15 4.92
8.30 3.32 9.84 5.90 10.37 8.30
18.10 7.24 21.25 12.75 17.95 14.36
35.55 14.22 39.18 23.51 22.32 17.86
52.72 21.09 51.86 31.11 64.85 52.16
69.77 27.91 102.12 61.27 86.06 69.10

Fig. 2 Scaled magnitude of the fluid velocity u(x) = |u(x)| normalised
against the peak flow velocity uc,Poiseuille of a simple Newtonian fluid in
Poiseuille flow at the centre line of the duct at x = Lx/2. The image shows
representative results for the confinement ratio 2R/Lx = 0.6. The black line
is the parabolic flow profile of Poiseuille flow. Away from the walls the
velocity profiles of the flowing nematic are parabolic and deviations from
the parabolic profile occur only close to the walls. The inset shows the
dependence of the centre line fluid velocity uc on the Ericksen number Er.
Profiles for the other confinement ratios are not shown as they look very
similar once normalised.
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walls at the centre. The bend state is generally adopted at low
flow velocities, whereas the nematic transitions to the splay
state at higher flow velocities.

Fig. 3 shows the director field, defect structure and magni-
tude of the fluid velocity at a medium confinement ratio 2R/Lx =
0.6 and different Ericksen numbers. The left column displays
the bend state at Er = 4.38 prior to the transition to the splay
state, whereas the right column shows the splay state at Er =
51.86 after transitioning from the bend state. The two top rows
contain slices in the xz-plane (narrowest duct dimension and

flow direction) at y = Ly/2 with walls at the x-boundaries at the
top and bottom, whereas the two bottom rows show slices in
the yz-plane (widest duct dimension and flow direction) at x =
Lx/2 cropped to the vicinity of the colloidal particle.

The director field in the first and third row is colour-coded
with red indicating an orientation parallel to the flow or
z-direction and blue indicating an orientation perpendicular
to the flow direction or in xy-plane. The bend state at low
Ericksen number shows the Saturn ring defect oriented parallel
to the walls with only very minor deformations, while the splay
state has the Saturn ring defect oriented approximately
perpendicular to the walls and displaced slightly downstream
from the meridian of the particle in positive z-direction.

The second and fourth row show the magnitude of the fluid
velocity u(x,z) = |u(x,z)| in the xz-plane and u(y,z) = |u(y,z)| in the
yz-plane normalised to the maximum velocity uc at the centre
line of the duct. It is interesting to see that despite the striking
differences in the director field structure and defect ring
orientation at the two different Ericksen numbers both flow
profiles are very similar. A minor exception is that at the lower
Ericksen number the peak velocity is attained very close to the
particle, whereas at the higher Ericksen number the relative
fluid velocity is slightly reduced around the particle. This is a
consequence of the different differential velocities between the
colloidal particle and the fluid in both cases (see Fig. 8).

As a quantitative overview of our findings, we include in
Fig. 4, snapshots of the particle and its defect in the steady state
for varying confinement ratios and Ericksen numbers. In each
cell the left images show the side view looking in the negative y-
direction with walls at the top and bottom. The images on the
right show the view from the top looking in the positive x-
direction. The confinement increases from left to right from
confinement ratios 2R/Lx = 0.4 to 2R/Lx = 0.6 to 2R/Lx = 0.8, and
Ericksen numbers increase from top to bottom. The defect is
shown as a green isosurface defined by a local order parameter
q r 0.188 and the particle anchoring strength and dimension-
less anchoring parameter are wpart = 0.05 and o = 48, respec-
tively, as lower anchoring strengths do not result in defects that
could be distinctively visualised.

At low Ericksen numbers, below the bend-to-splay transi-
tion, the particle has a Saturn ring defect whose ring plane
remains parallel to the walls. This is the case for all confine-
ment ratios and Ericksen numbers below Er = 10.37, as shown
in the first and second row of Fig. 4. Two aspects are note-
worthy: firstly, there is a slight increase of the defect isosurface
radius downstream of the particle, for which both Ericksen
number (see images for 2R/Lx = 0.4 with Er = 1.65 and Er = 8.30)
and confinement ratio (see image for 2R/Lx = 0.6, Er = 4.38 and
image and Movie S1 (ESI†) for 2R/Lx = 0.8, Er = 6.15) seem
responsible. However, confinement appears to play a more
important role in this context.

Secondly, at slightly increased Ericksen numbers (see
images for 2R/Lx = 0.6, Er = 9.84 and 2R/Lx = 0.8, Er = 10.37),
the Saturn ring becomes angled such that the part downstream
of the particle is closer to the bottom wall, while the other part
upstream of the particle remains virtually unchanged. These

Fig. 3 Director field, defect structure and fluid velocity profiles for con-
finement ratio 2R/Lx = 0.6 and anchoring parameter o = 48 before and
after the bend-to-splay transition. The left column shows the bend state
(H-state), while theright column shows the splay state (V-state). The first
and third row show the director field d with the magnitude dz of its
z-component indicated through the colour code. The second and fourth
row show the magnitude of the fluid velocity u(x,z) and u(y,z) through the
centre of the particle, normalised to the maximum velocity uc at the centre
line of the duct, where arrows give a sense of the vectorial dependence of
the fluid velocity field. The images in the two top rows represent slices
through the middle of the channel in the xz-plane (narrowest duct
dimension and flow direction) and have the view along the negative
y-dimension. Those in the two bottom rows show slices in the yz-plane
(widest and narrowest duct dimension) and have the view in positive
x-direction. The flow direction is from left to right in positive z-direction.
The opacity of the defect rings (green isosurfaces) has been slightly
reduced to enhance the visibility of the local director field.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
Ja

nu
ar

y 
20

24
. D

ow
nl

oa
de

d 
on

 7
/2

9/
20

25
 9

:1
6:

47
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sm01297b


2224 |  Soft Matter, 2024, 20, 2218–2231 This journal is © The Royal Society of Chemistry 2024

two particular cases reached steady state positions that are
offset somewhere between the centre of the duct and the walls
in the x-direction, which contributes to this asymmetric appear-
ance. This can be explained with the migration (i.e. lateral
movement perpendicular to the flow direction) to the weak
attractor region that we observed in our previous work on
controllable particle migration33 in practically unconfined con-
ditions using a much wider duct and lower confinement ratio
2R/Lx = 0.15. For direct comparison we provide in Table 2 an
approximate conversion between particle Ericksen numbers, as

used our previous publication, and Ericksen numbers based on
the smallest duct dimension, as used in this work.

Fig. 5 shows a direct comparison of the defect rings around
the particle for the lowest and highest simulated Ericksen
numbers below the bend-to-splay transition, at confinement
ratios (a) 2R/Lx = 0.4 (b) 0.6 and (c) 0.8. The defects at the lowest
Ericksen numbers, depicted in grey, are distinctive Saturn rings
that are oriented parallel to the walls in the x-direction. As
previously mentioned, increasing confinement leads to a defect
ring that is thicker at the downstream side of the particle, while

Fig. 4 Snapshots of the director field and defect structure in the steady state at various Ericksen numbers and strongest particle anchoring parameter
o = 48. The bright green region corresponds to the defect where liquid crystalline order is reduced. In each cell the left images in each cell show the side
view looking in the negative y-direction with walls at the top and bottom. The images on the right in each cell show the view from the top looking in the
positive x-direction. The flow is in the horizontal positive z-direction from left to right. The confinement increases from left to right, and Ericksen
numbers increase from top to bottom. While in most cases the particle stays at the centre of the duct throughout the simulation, there are a small
number of cases where they migrate away from it. Specifically, there are two cases where the particle migrates fully to a wall (for the two highest Ericksen
number and confinement ratio 2R/Lx = 0.8), and three cases where the particle migrates to a stable position between the wall and the centre (for Er =
18.10 and 2R/Lx = 0.4, for Er = 9.84 and 2R/Lx = 0.8, and for Er = 10.37 and 2R/Lx = 0.8).
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it remains oriented parallel to the wall at the x-boundary.
Increasing the Ericksen number alone does not change the
orientation of the defect ring, but leads to a very slight shift
in position upstream (see grey and yellow defect rings in
Fig. 5(a)). However, increasing the Ericksen number and con-
finement ratio induces a noticeable tilt of the defect ring, shown
in Fig. 5(b) and (c), as the particle migrates into the off-centre
steady state position somewhere between the centre of the duct
and one of the walls. Despite the difference in confinement ratio
and Ericksen number (2R/Lx = 0.6 and 0.8, Er = 9.84 and 10.37,
respectively) the shape of the defect rings is almost the same.

Upon increasing the Ericksen number, a bend-to-splay tran-
sition takes place somewhere between 8.30 o Er o 18.10 (for
2R/Lx = 0.4), 9.84 o Er o 21.25 (for 2R/Lx = 0.6) and 10.37 o Er
o 17.95 (for 2R/Lx = 0.8). The defect ring is now reoriented with
its ring plane approximately perpendicular to the walls and flow
direction, as shown in Fig. 4, for instance in the third row, and
retains a similar shape at higher Ericksen numbers (see images
for 2R/Lx = 0.4, Er = 18.10, 2R/Lx = 0.6, Er = 21.25, and 2R/Lx =
0.8, Er = 22.32). The case for 2R/Lx = 0.4, Er = 18.10 forms an
exception in that the particle moves very slightly away from the
centre into a stable off-centre position, while in the other cases
the particle remains at the centre of the duct, which can be also
understood with the migration to the previously observed weak
attractor region at similar Ericksen numbers33 (see Table 2 for
conversion of Ericksen numbers). A noticeable difference is
that with increasing confinement the defect ring appears
compressed in the smallest duct dimension due to the relative
proximity of the walls (see image and Movie S2 (ESI†) for 2R/Lx =
0.8, Er = 22.32).

With increasing Ericksen numbers the shape of the verti-
cally oriented defect ring remains largely unchanged for low
and medium confinement, as shown in the first and second
column, forth and fifth row, of Fig. 4 (2R/Lx = 0.4 and 0.6) for
Ericksen numbers Er = 52.72, 69.77 and Er = 51.86, 102, 12,
respectively. At Er = 102.12 a slight change occurs such that the
defect close to the mid-plane of the duct in the x-direction are
distorted and pulled in the upstream direction, i.e. against the
flow. This effect is a precursor of the more dramatic elongation
of the Saturn ring that will become even more evident as the
confinement ratio increases.

At even higher Ericksen numbers Er = 64.85 and Er = 86.06
and confinement 2R/Lx = 0.8, shown in the third column forth
and fifth row of Fig. 4, we observe defects that differ substan-
tially from those discussed before. In these cases the particle
migrates fully to one of the walls. This has also been previously
observed for similar Ericksen numbers in much lower
confinement.33 But there it occurred when the particle was
within a distance of one and a half to two diameters from the
walls, depending on the Ericksen number (see Table 2 for a
conversion of Er). Given the proximity of the walls in the
present work with increased confinement, this means that
attraction to the walls should occur in practically all situations.
This, however, is not the case as we observe attraction to the
walls only for the highest Ericksen numbers and the largest
confinement. Thus, increased confinement prevents particle
migration to the walls and stabilises trajectories around the
centre of the duct. The migration to one of the walls results in a
different defect shape such that there is a pronounced elonga-
tion of the Saturn ring defect in the upstream direction. There
is also the indication of a small satellite region of low order,
upstream of the particle that never merges up with the rest of
the defect (see image and Movie S3 (ESI†) for 2R/Lx = 0.8 and
Er = 86.06).

Before focusing on the director structure at high Ericksen
numbers and large confinement in more detail (see Fig. 7), we
present briefly a synopsis of the defect rings at different
confinement ratios and Ericksen numbers. Fig. 6 shows super-
imposed, vertically oriented defect rings as they occur after the
bend-to-splay transition has taken place. At the lowest confine-
ment ratio 2R/Lx = 0.4, shown in Fig. 6(a), the defect ring
remains relatively undistorted across a range of medium to
high Ericksen numbers. However, comparing the images at the
top with the view along the y-direction across the narrowest gap
to those at the bottom with the view along the x-direction
across the widest gap gives evidence that the shape of the
Saturn ring defects is sensitive to confinement. When confined,
the defect rings are located slightly downstream from the
particle’s equator, whereas they remain situated along the
equator in the dimension of no or very small confinement
(2R/Ly = 0.075). This feature becomes more pronounced as the
confinement increases, discernible through the green defect
rings at ratios 2R/Lx = 0.6 in Fig. 6(b), and more so at 2R/Lx = 0.8
in Fig. 6(c) where it results in the compressed appearance
(Fig. 6(c) top row). This applies to lower (green isosurfaces)
and medium (orange isosurfaces) Ericksen numbers. Increasing

Fig. 5 Disclination lines around the particle for the lowest and highest
simulated Ericksen numbers below the bend-to-splay transition at

confinement ratios (a) 2R/Lx = 0.4, (b) 2R/Lx = 0.6 and (c) 2R/Lx = 0.8,
respectively. The top row has the view in negative y-direction, the widest
duct dimension, with the walls in the narrowest duct dimension at the
x-boundaries situated closely above and below the particle. The bottom
row shows the view in positive x-direction. The flow is in the horizontal
positive z-direction from left to right.
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both confinement and Ericksen numbers leads to the aforemen-
tioned different appearance of the defect rings (purple and
magenta isosurfaces).

It is worth mentioning that the confinement ratios we
studied are larger than those in similar studies31,32 (2R/Lx =
0.25 and 2R/Lx = 0.19, respectively), where the lower confine-
ment has been chosen to eliminate possible effects on the
results. However, our case of 2R/Lx = 0.4 is obviously already low
enough to feature defect rings that appear undeformed and
occur at unaltered relative positions to the particle.

The director field, defect structure and magnitude of the
fluid velocity at high Ericksen numbers and the largest confine-
ment ratio 2R/Lx = 0.8 are shown in Fig. 7. At this confinement
ratio the walls at the x-boundaries are close to the colloidal
particle. The two top rows contain slices in the xz-plane (nar-
rowest duct dimension and flow direction) at y = Ly/2 with walls
at the x-boundaries at the top and bottom, whereas the two
bottom rows show slices in the yz-plane (widest duct dimension
and flow direction) at x = Lx/2 cropped to the vicinity of the
colloidal particle. The director field in the first and third row is
colour-coded with red indicating an orientation parallel to the
flow or z-direction and blue indicating an orientation perpendi-
cular to the flow direction or in xy-plane. The left column shows
the situation at moderately high Ericksen numbers Er = 22.32.

The defect ring is vertically oriented, noticeably displaced
downstream close to the walls at the boundary in x-direction
(see Fig. 7 first row first column), and situated at the equatorial
region of the particle in the non-confined y-dimension (see

Fig. 7 third row first column). The director field structure in
yz-plane shows that flow alignment occurs in a short distance
from the particle and entails a defect in the equatorial region.
Focusing again on the director field in xz-plane reveals that the
situation is different in the confined x-dimension. Here, the
homeotropic anchoring conditions at the wall and particle
surfaces prevent any kind of flow alignment in the narrow
gap between the particle and the walls. Considering the left-
hand upstream side of the particle it becomes evident that both
the normal anchoring conditions on the surface and the flow-
alignment close to the surface work in the same sense and
promote the same director orientation. This is different on the
right-hand downstream side. While downstream directly right
from the particle’s centre flow-alignment and anchoring are
also working in the same sense, this is not the case downstream
above right and below right from the centre where flow-align-
ment invokes a northwest–southeast orientation of the director
field, while surface anchoring promotes a northeast–southwest
orientation. This leads to the slight downstream displacement
of the defect ring.

At higher Ericksen numbers Er = 64.85 and Er = 86.06 the
particle migrates readily to one of the walls33 and the shape of
the defect changes markedly (see Fig. 7 first and third row,
second and third column). The asymmetric positioning of the
particle in the duct is only partly responsible for this. In fact, we
observe large differential velocity between the particle and the
fluid, which means the particle acts now increasingly as obstacle.
Therefore, it is instructive to look again at fluid velocity profiles.

The second and fourth row in Fig. 7 show the magnitude of
the fluid velocity u(x,z) = |u(x,z)| in the xz-plane and u(y,z) =
|u(y,z)| in the yz-plane normalised to the maximum velocity uc

at the centre line of the duct. The profiles in xz-plane (second
row) show that compared to Fig. 3 where the confinement ratio
is 2R/Lx = 0.6, the now larger confinement ratio of 2R/Lx = 0.8
leads to much lower relative fluid velocities upstream and
downstream on the left and right of the particle. With increas-
ing Ericksen number a region with enhanced flow velocities
emerges immediately above the particle where the fluid is
forced upwards (see Fig. 7 second row third column). The fluid
velocity profiles in yz-plane (see Fig. 7 fourth row) demonstrate
even further how the relative fluid velocity drops around the
particle with increasing Ericksen number. However, what the
colour code and normalisation to the peak flow velocity uc hide
is that the velocity gradients in absolute terms are even larger for
larger pressure gradient, a direct consequence of higher absolute
values of the peak velocity uc. In view of the director field and
defect structure, it becomes evident that the regions with large
fluid velocity gradients are also the regions where the director
structure becomes noticeably distorted. This effect in combination
with local flow-alignment and surface anchoring leads to local
regions of low order, for instance the satellite region of very low
order slightly upstream on the left of the particle (see Fig. 7 second
and third column), and causes the defect ring to become extended
further upstream, albeit never completely engulfing the particle.

We conclude our study with an analysis of the advection
behaviour of the colloidal particle at different Ericksen

Fig. 6 Saturn ring disclination lines around the particle for various Erick-
sen numbers after the bend-to-spay transition has taken place. The
confinement ratios are (a) 2R/Lx = 0.4, (b) 2R/Lx = 0.6 and (c) 2R/Lx =
0.8. In the top row the view is along the negative y-direction, the widest
duct dimension, with the walls in the narrowest duct dimension at the
x-boundaries situated above and below the particle. The bottom row is the
view in the positive x-direction. The flow is in the horizontal z-direction
from left to right.
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numbers and confinement ratios and compare it to that in a
simple Newtonian fluid. For this purpose we draw on the
theoretical results obtained by Staben et al.,15 which have been
reproduced in a number of studies. While our Reynolds num-
bers are typically between Oð10�2Þ and Oð10�1Þ and therefore
larger than those in ref. 15, it is worth emphasising that the
latter results form still a suitable reference as both regimes can
be classed as low-Reynolds number.

A suitable measure to characterise the advection behaviour is
the retardation ratio v/uc of particle velocity v to fluid velocity uc at
the centreline of the duct. In an isotropic Newtonian fluid under
Poiseuille flow this ratio is constant and depends only on the
distance of the particle from the walls of the duct and the

confinement ratio. In particular, v/uc is independent of the Rey-
nolds number. Without confinement the retardation ratio v/uc is
unity as the particle acts as a tracer and is simply advected with the
fluid. At finite confinement ratios below 2R/Lx = 1 the movement of
the particle is slowed down in the parabolic Poiseuille flow due to
the no-slip boundary conditions on the walls of the duct.

Fig. 8 shows the retardation ratio v/uc for different confine-
ment ratios 2R/Lx, particle anchoring strengths and Ericksen
numbers Er. Using the Ericksen number as abscissa has the
advantage that the bend-to-splay transition occurs at similar
values aiding the comparison across different confinement
ratios. The straight, horizontal lines represent the results for
a particle in a simple Newtonian fluid. Dashed-dotted lines give

Fig. 7 Director field, defect structure and fluid velocity profiles for confinement ratio 2R/Lx = 0.8 and anchoring parameter o = 48 after the bend-to-
splay transition for increasing Ericksen numbers Er = 22.32, 64.85 and 86.06, respectively. The first and third row show the director field d with the
magnitude dz of its z-component indicated through the colour code. The second and fourth row show the magnitude of the fluid velocity u(x,z) and
u(y,z) through the centre of the particle, normalised to the maximum velocity uc at the centre line of the duct, where arrows give a sense of the vectorial
dependence of the fluid velocity field. The images in the two top rows represent slices through the middle of the channel in the xz-plane (narrowest duct
dimension and flow direction) and have the view along the negative y-dimension. Those in the two bottom rows show slices in the yz-plane (widest and
narrowest duct dimension) and have the view in positive x-direction. The flow direction is from left to right in positive z-direction. The opacity of the
defect rings (green isosurfaces) has been slightly reduced to enhance the visibility of the local director field.
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the results from Staben et al.15 for particles at the centre of the
duct. We measure retardation ratios of v/uc = 0.946, 0.876 and
0.759 for confinement ratios 2R/Lx = 0.4, 0.6 and 0.8, respec-
tively, shown in Fig. 8 with solid lines. These results compare
well with those of Staben et al., which are v/uc = 0.945, 0.871 and
0.746 for the same confinement ratios and particles positioned
at the centre of the duct. It is worth emphasising that in our
setup the largest confinement ratio 2R/Lx = 0.8 has less than 3
lattice sites between the particle surface and the walls on either
side. Nevertheless, the relative deviation between ours and
Staben’s results for Newtonian host phases is less than 1.8%
in the worst case, which means our method is remarkably
accurate given the relatively sparse discretisation. However, it
should be borne in mind that when modelling a liquid crystal-
line host phases the sparse discretisation affects also the tensor
order parameter Q in addition to the fluid–solid interaction in a
Newtonian host phase. While these limitations affect the
results in Fig. 8 to a certain extent, there are nevertheless clear
and robust trends that we will now discuss.

At low Ericksen numbers we observe retardation ratios v/uc

that are close or identical to their corresponding values in
Newtonian fluids. Interestingly, and primarily for no or low
particle anchoring strength and low confinement ratios 2R/Lx =
0.4 and 0.6, the retardation ratio can be slightly larger in the
nematic host phase than in the Newtonian host phase (see light
and medium grey and blue data points in Fig. 8). We postulate

this occurs because for a particular pressure gradient the peak
flow velocity is lower in the flowing nematic than in the New-
tonian fluid. But as the same pressure gradients acts across the
particle, the latter does not slow down to the same degree in the
flowing nematic, leading to comparably higher retardation
ratios. For larger anchoring strengths or in higher confinement
both additional elastic forces are exerted on the particle and the
effective viscosity in the vicinity of the particle increases, both
to the effect of slowing down the particle, resulting in smaller
retardation ratios.

As the Ericksen number increases, the nematic host phase
undergoes a transition from the bend to the splay phase. This
occurs at Ericksen numbers 8.30 o Er o 18.10 (2R/Lx = 0.4),
9.84 o Er o 21.25 (2R/Lx = 0.6) and 10.37 o Er o 17.95 (2R/Lx =
0.8), respectively and is indicated by the vertical green dashed
lines in Fig. 8. The transition is accompanied by a noticeable
drop in the retardation ratio, which reaches a minimum
around Ericksen numbers Er C 20, so just beyond the bend-
to-splay transition. The minimum is smaller the larger the
particle anchoring strength is, but only for medium and large
confinement (see medium grey and green curves as well as
black and red curves in Fig. 8) and not so for small confinement
(see light grey and blue curves in Fig. 8).

Beyond Ericksen numbers in the range of Er C 20 the
retardation ratio v/uc begins to increase again, giving rise to
an overall non-monotonous dependence on the Ericksen number.

Fig. 8 Comparison of retardation ratios v/uc of particle velocity v to fluid velocity uc at the centre of the rectangular duct for confinement ratios 2R/Lx =
0.4 (blue squares), 0.6 (green triangles) and 0.8 (red circles) and different particle anchoring strengths. Horizontal lines show results in a Newtonian fluid
from Staben et al.15 (dashed-dotted lines) and our approach in the isotropic phase (stars). Open symbols indicate cases where the colloidal particle has
been fixed in x-direction for comparison as it would normally migrate away from the centre of the duct to either an off-centre position or to the walls.
The vertical lines indicate the approximate position of the bend-to-splay transition.
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This is the case across all confinement ratios, and the retardation
ratios begin to flatten out towards higher Ericksen numbers,
approaching or reaching the values of Newtonian fluids again.
This non-monotonous behaviour is therefore a consequence of
the decreasing importance of liquid crystalline elasticity and
consistent with the idea that with higher the Ericksen numbers
the liquid crystal behaves rheologically more like a simple fluid.

Regarding how the retardation ratio v/uc depends on the
particle anchoring strength the same tends as for the minima
prevail. Higher anchoring strengths entail smaller retardation
ratios unless the confinement is small. For our largest confine-
ment ratio 2R/Lx = 0.8 and strongest particle anchoring strength
wpart = 0.05 we observe a very strong decrease. This, however,
originates also from the migration of the particles to the walls. The
two empty circles in Fig. 8 (and similar empty symbols at the two
other confinement ratios) permit us to estimate how the trend
would continue if the particles had been prevented from leaving
the region of maximum flow velocity at the centre of the duct.

In order to explain these findings, we have to look at several
separate mechanisms: first of all, there is the transition from
the bend to the splay state, which all particles regardless of
their anchoring conditions are subject to. The data points for
vanishing particle anchoring strength wpart = 0 (light, medium
and dark grey in Fig. 8) are indicative of this. The transition
causes the general reduction of the retardation ratios from their
initially approximately Newtonian values at low Ericksen num-
bers to their minima around Er C 20. The reason for this
decrease is the drop in apparent viscosity and increase in flow
velocity uc around the centre of the duct, whereas the regions of
the particle closer to the walls act as anchor and do not allow
the particle to pick up velocity v at the same proportion.

The second mechanism at work is the reorientation of the
defect ring at the bend-to-splay transition, provided the particle
anchoring strength is large enough for a defect to emerge. The
vertical orientation of the defect ring with its ring plane
perpendicular to the flow direction and walls increases the
effective particle radius in the narrowest duct dimension and
therefore the effective confinement ratio. This leads to lower
retardation ratio v/uc the larger the anchoring strength is.
However, our results suggest this is only the case provided
the confinement is not too large. For instance, at 2R/Lx = 0.4
there is very little difference between vanishing and very strong
particle anchoring up to Ericksen numbers Er C 60, while at
2R/Lx = 0.6 and 0.8 differences are clearly visible at all Ericksen
numbers. This subtlety can be understood by realising that at
the different confinement ratios and flow velocities both velo-
city and order parameter gradients differ across the particle
diameter. At a given flow velocity the gradients are largest in
large confinement and vice versa. At a given confinement ratio
the velocity gradient is largest at large flow velocities and
Ericksen numbers. It is precisely this nonlinear order-flow
coupling and the interactions between flow and order structure
in the vicinity of the particle that cause the observed minor
variations in the retardation ratio.

Finally, there is also the possibility of a direct interaction
with the wall anchoring when Ericksen numbers and

confinement ratios are large. In these situations the colloidal
particle shows a tendency to leave the centre of the duct and
migrate to the wall regions. There, the advection velocity and
therefore the retardation ratio are reduced as a result of the no-
slip boundary conditions at the walls.

5 Conclusions

In microfluidic setups of particle suspensions, confinement is
often necessary as it allows a certain degree of lateral control
over the particle positions, for instance when techniques like
confocal or polarised microscopy are used. Our present study
has primarily the goal to address some knowledge gaps as to
how defects influence and alter the advection behaviour of
colloidal particles in moderate and large confinement.

In homeotropic anchoring conditions at the walls and sur-
face of the particle the director field is in the H- or bend state at
low Ericksen numbers and has a Saturn ring defect which is
oriented parallel to the walls. Increasing the confinement
changes the appearance of the defect ring downstream. It can
either thicken the defect ring, or invoke a migration to off-
centre off-wall positions which we identify with the weak
attractor region in our previous work.33 The latter entails a
slight distortion and tilt away from the centre plane.

At moderately high Ericksen numbers around Er C 20 we
observe the transition from the bend or H-state to the splay or
V-state. This leads generally to a reorientation of the defect ring
with a ring plane perpendicular to the flow direction and walls.
The defect ring is slightly peeled off downstream in the con-
fined dimension, but sits at the particle’s equatorial region in
the unconfined dimension, giving it the appearance of an open
mouth when viewed from the flow direction. These features are
retained at higher Ericksen numbers and in lower confinement.
Highly confined particles show a strong tendency to migrate to
the walls, a behaviour we observed also in our previous work.33

This leads to a highly asymmetric defect and induces a satellite
region of low order upstream of the particle, which acts partly
as an obstacle and forces the flow to slow down and divert
around it. Compared to our previous work we do not observe
migration to the walls for all but the highest Ericksen numbers
and confinement ratios that we tested. Therefore, increased
confinement entails stabilisation of trajectories at the centre of
the duct.

The interaction between nematic order and flow on one
hand, and the fluid–solid interaction on the other hand results
in a non-monotonous dependence of the retardation ratio, the
ratio of particle advection velocity to the maximum velocity at
the centre of the duct, on the Ericksen number. When the
Ericksen number is low, the retardation ratio is close to values
observed in a Newtonian host phase in all confinement ratios
and particle anchoring conditions. This is also the case for
vanishing or low anchoring strength and at high Ericksen
numbers, where the nematic liquid crystal behaves increasingly
like a simple Newtonian fluid as the relative importance of
elastic effects decreases. Intermediate Ericksen numbers,
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however, are characterised by a pronounced minimum in the
retardation ratio. We attribute this to a combination of two
effects: firstly there is the bend-to-splay transition, to which
particles in all anchoring conditions are subject. Secondly, the
defect ring undergoes a reorientation from horizontal alignment
with the ring plane parallel to the walls to a vertical orientation,
which has the ring plane perpendicular to the flow direction and
the walls. This increases the effective particle radius and there-
fore the confinement. The second effect is only present when the
defect ring is properly formed, i.e. for stronger particle anchoring
strengths, and when the confinement is lower. This is because
the increased retardation that the particle experiences is a
consequence of the interaction of the defect with the gradients
of the flow velocity and liquid crystalline order.

The present study leaves some questions untouched, for
example how planar degenerate or hybrid anchoring conditions
affects the defect morphology and advection behaviour of the
particles. Planar degenerate wall anchoring is fully compatible
with the flow alignment that takes place at higher Ericksen
numbers. Hence, there is no bend-to-splay transition, rather a
more gradual transition to a state where the director field is
flow-aligned at the Leslie angle. Furthermore, planar degener-
ate anchoring conditions on the particle surface invoke topo-
logically different boojum defects that occur at low Ericksen
numbers symmetrically upstream and downstream of the par-
ticle on an axis that goes through the centre of the particle.
Similarly, particles with homeotropic anchoring conditions as
used in the present study, but larger diameters, have also
topologically different defects. Instead of the half-integer bulk
defect loops with topological charge �1/2 they have dipolar full
integer satellite defects with topological charge �1 that sit in a
distance from the particle surface. It is not clear how these
topological differences would affect the advection and migra-
tion behaviour.
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