
152 |  Soft Matter, 2024, 20, 152–166 This journal is © The Royal Society of Chemistry 2024

Cite this: Soft Matter, 2024,

20, 152

Rheological effects on purely-elastic flow
asymmetries in the cross-slot geometry†

Arisa Yokokoji, Stylianos Varchanis, ‡ Amy Q. Shen and
Simon J. Haward *

Viscoelastic flows in the cross-slot geometry can undergo a transition from a steady symmetric to a

steady asymmetric flow state, ostensibly due to purely-elastic effects arising beyond a critical flow rate,

or Weissenberg number Wi. However, some reports suggest that shear thinning of the fluid’s viscosity

may also play an important role in this transition. We employ a series of polymer solutions of varying

rheological properties to investigate in detail how the interplay between fluid elasticity and shear

thinning affects the onset and development of asymmetric flows in the cross-slot. Flow velocimetry is

performed on each of the polymer solutions, and is used to assess the degree of flow asymmetry I in

the cross-slot as a function of both Wi and a dimensionless parameter S quantifying the flow-rate-

dependent extent of shear thinning. Typically, the flow field breaks symmetry as Wi is increased beyond

a critical value, but the magnitude of I is found to also be dependent on S. For a few specific polymer

solutions, the flow field recovers symmetry above a second, higher critical Wi as S becomes small. The

experimental results are summarized in a flow state diagram in Wi–S space, showing the relationship

between flow asymmetry and fluid rheology. Finally, to gain a deeper understanding of the effects of

shear thinning, numerical simulations are performed using the linear simplified Phan–Thien–Tanner

model. We demonstrate that the degree of both shear thinning and elasticity of the fluid, and their inter-

play, are important factors controlling elastic instabilities in the cross-slot geometry.

1 Introduction

Understanding the onset conditions of instabilities in visco-
elastic flows is of ongoing academic interest and practical
importance.1 Such instabilities can arise due to purely elastic
forces, leading to symmetry breaking bifurcations, time-
dependent flows and complex nonlinear dynamics even when
inertia is negligible and an equivalent flow of a Newtonian fluid
would remain perfectly steady and laminar.1 Similar to a Newtonian
flow, in which instability can lead to turbulence as inertia increases,
in a viscoelastic flow an initial instability can be a precursor for a
self-sustaining chaotic state known as ‘elastic turbulence’, which
arises as elastic forces increase.1,2 Elastic turbulence is implicated in
the increased flow resistance and increased dispersion observed in
viscoelastic porous media flows,3 and can also lead to drag reduced
turbulent states,4 so is thus of great interest. While inertial forces are
quantified by a Reynolds number Re = Uc/n (where n is the

kinematic viscosity, and U and c are representative velocity and
lengthscales, respectively), elastic forces are quantified by a Weis-
senberg number Wi = lU/c (where l is the relaxation time of the
fluid). Elasticity is generally imparted to a fluid by the presence of
dissolved long-chain polymers (like DNA, proteins, or synthetic
polymers), which deform at Wi \ 0.5, modifying the stress in the
bulk fluid. In a steady shearing flow, the rotational kinematics limit
the deformation of the polymer and the typical response of the fluid
is shear thinning; a progressive reduction in the shear viscosity as
the shear rate is increased. In contrast, in irrotational elongational
flows, a high degree of polymer chain deformation can be achieved
via the coil–stretch transition5–7 and extra tensile stresses arising
due to the entropic elasticity of the polymer lead to a nonlinear
increase in the extensional viscosity.8,9

A wide class of instabilities in viscoelastic flows are driven by
the generation of elastic tensile stress along curving stream-
lines, as per the well-known ‘Pakdel–McKinley’ criterion,10–12

which predicts onset conditions for purely-elastic flow instabilities.
As such, shear dominated viscoelastic flows with curving stream-
lines (e.g., in rotational rheometer fixtures13–16 or in curvilinear
channels17–19) are subject to elastic instability and elastic tur-
bulence. However, probably the most spectacular examples
occur in flows with strong extensional kinematics (e.g., flow
past a cylinder,20–22 or through channels with cross-sectional
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variations23–25) due to the large elastic tensile stresses that are
induced in the fluid. Due to having a small characteristic
lengthscale c B 100 mm, microfluidic extensional flow devices
are ideal for the study of elastic instabilities since they permit
high Wi to be achieved for moderate to negligible Re. Of
particular relevance to the present work are studies involving
the microfluidic cross-slot geometry.26–31

The cross-slot geometry consists of bisecting rectangular
channels, forming two opposing inlets and two opposing out-
lets (see Fig. 1). Imposing equal volumetric flow rates through
all four channels facilitates the creation of an irrotational
planar elongational flow field around a free stagnation point
at the center of the geometry. These conditions are ideal for
extending the polymer chains in viscoelastic fluids for
Wi \ 0.5, consequently leading to a strong elastic response.7,32

This, combined with highly curving streamlines around the
stagnation point suggest the system should be prone to elastic
instability.11,12,33 Gaining an improved understanding of the flow
stability conditions in such a model system is highly relevant to
understanding the dynamics of viscoelastic materials in general.
Thus the cross-slot channel has been extensively used to study
viscoelastic flow instabilities.26–38

Arratia et al.26 reported experimental results demonstrating
two different elastic instabilities in the cross-slot geometry
using a solution of flexible high molecular weight polyacrylamide
with nearly constant shear viscosity. At low Wi o 4.5 the flow was
steady and symmetric with the flow through each inlet dividing
equally between each outlet. At the onset of the first flow
instability (at critical Weissenberg number Wic = 4.5) the flow
remained steady but transitioned to an asymmetric state in which
the flow through each inlet selected a preferential (opposite)
outlet channel. This instability was characterized as a super-
critical pitchfork bifurcation, with the selection of outlet
channel being random for each inlet. The second instability
(at a higher critical value Wic2 = 12.5) was time-dependent with
oscillation between the two possible asymmetric flow states.
Time-dependent flows with characteristics of elastic turbulence

have also been reported for viscoelastic fluids in a microfluidic
cross-slot geometry.31 Arratia et al.26 also examined the flow of a
dilute solution of a semi-rigid polymer (xanthan gum), which
exhibits shear thinning but negligible elastic effects due to its
low extensibility. Interestingly, they were unable to observe the
same flow instability in the xanthan gum solution as they did in
the case of the polyacrylamide solution, suggesting that the
instability could be attributed to the elastic effect resulting from
polymer chain stretching.

Subsequently, Poole et al.34 obtained the first numerical
prediction of the steady flow asymmetry in the cross-slot geo-
metry for Re = 0 using the upper-convected Maxwell (UCM)
model, which exhibits a constant shear viscosity in steady flows,
ostensibly confirming that the instability is caused solely by the
elasticity of the fluid. The introduction of moderate inertia (Re
up to 5) was shown to increase the value of Wic and to reduce the
degree of flow asymmetry above Wic, but not to qualitatively
change the nature of the supercritical bifurcation.

Further detailed numerical simulations were conducted by
Rocha et al.36 using two different versions of the finitely-
extensible nonlinear elastic dumbbell model (FENE-P and
FENE-CR). The FENE-P model exhibits shear thinning, while
the FENE-CR model is non-shear thinning in steady shear flows,
otherwise the two models are similar. The extensibility, expressed
through a parameter L, determines the fluid elasticity, while
shear thinning is expressed through the solvent-to-total viscosity
ratio b = Zs/(Zs + Zp), with Zs and Zp being the solvent and
polymeric contributions to the viscosity, respectively. Unexpect-
edly, it was found that for equal values of L and low b = 0.1 in the
two FENE models, the shear thinning in the FENE-P model
destabilized the flow resulting in the onset of asymmetry at lower
Wic than in the FENE-CR model. The authors expressed surprise
at this result, remarking that shear thinning usually stabilized
their numerical code allowing higher Weissenberg numbers to be
reached.36 Shear thinning has also been shown to stabilize flows
to elastic instability in both serpentine microchannels19 and in
the Taylor–Couette geometry.39

Although it is clear that the elasticity of the fluid is essential
in order for the steady flow asymmetry in the cross-slot device to
occur, and indeed several studies (experimental and numerical)
have indicated a broad consistency with the predictions of the
Pakdel–McKinley criterion,33,36,40,41 there have been a number
other studies indicating the influence of shear thinning (induced
by the shear stress at the walls of the cross-slot channel). In a
numerical study, Xi and Graham35 employed the FENE-P model,
but with a high value of b = 0.95, which better represents a dilute,
and very weakly shear thinning, polymer solution than the value
of b = 0.1 employed in the simulations of Rocha et al.36 In
contrast to the results of Rocha et al. for which the shear thinning
in the FENE-P model resulted in a low Wic, by increasing the
value of b in the FENE-P model, Xi and Graham did not observe
the steady flow asymmetry in the cross-slot at all.35 Instead they
found distinct time-dependent flow instabilities, localized along
the outflowing symmetry axis, which they attributed to the feed-
back between the stress and flow fields around the stagnation
point streamline. In addition, numerical simulations by Canossi

Fig. 1 Light micrograph of the cross-slot microchannel used in the
present work. The width of each channel arm is W = 500 mm and the
uniform height of the channel through z (into the page) is H = 2.0 mm. The
imposed volumetric flow rate through each of the four channel arms is
denoted Q, with the direction indicated by arrows. The coordinate system,
with origin at the center point of the geometry, is also shown.
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et al.42 using the Oldroyd-B model in the cross-slot geometry
found that steady asymmetric flow states were only supported for
values of b t 0.5. For higher values of b, the flow transitioned
from steady and symmetric directly to a time-dependent state.

The difference between numerical results obtained with
ostensibly non-shear thinning fluid models such as Oldroyd-B
and FENE-CR with different values of b may be explained by
their propensity to exhibit transient variations in viscosity when
subjected to changes in the shear rate (in either the Eulerian or
the Lagrangian reference frame).43 For low values of b, due to a
synergy between the lag time for stress to respond to a change
in the shear rate, and the act of normal stresses along curving
streamlines, a decreased flow resistance occurs along stream-
lines that experience increasing shear rates (and increased flow
resistance occurs along streamlines that experience decreasing
shear rates). Such models should only be considered of spatio-
temporally uniform viscosity in either steady simple shear flows
or for high values of b - 1.43 We note that there is a change in
shear rate along streamlines turning the corners of the cross-
slot device and we suspect that flow resistance variations in
these regions may be sufficient to promote the existence of a
preferred flow path through the device in ‘‘non-shear thinning’’
models with sufficiently low b, and thus to support steady
asymmetric flow states.

Experimentally, Haward et al.28,37 studied the flow of viscoe-
lastic wormlike micellar solutions in the cross slot geometry. By
varying the concentration of the micelle-forming surfactant in
the solution, they varied the strength of the shear thinning (i.e.,
the power-law index n) and also the range of shear rates _g over
which the shear thinning was observed in the steady shear flow
curve. Based on the nominal wall shear rate _gw in the channels
of the cross-slot device, the occurrence of steady flow asymme-
tries correlated with the most strongly shear thinning region of
the flow curve. At wall shear rates below the onset of shear
thinning, the flow in the cross-slot device remained symmetric.
At wall shear rates beyond the shear thinning region of the flow
curve, the flow in the cross-slot device became time dependent.

Furthermore, Sousa et al.30 examined the behaviour of a
wide range of polymer solutions of different b in cross-slot devices
of various dimensions. Across all of their experiments, they found
that steady flow asymmetries only occurred in fluids with a low
value of bt 0.05. For higher values of b the steady flow asymmetry
was not observed and instead the flow transitioned directly from
steady and symmetric to a time-dependent state. These existing
experimental and numerical studies28,30,35–37,42 suggest that both
shear thinning and elasticity play a role in controlling flow
asymmetry in the cross-slot geometry.

In this work, we seek to gain a deeper understanding of how
shear thinning and elasticity interact to control the stability
behaviour in the cross-slot device. Taking inspiration from a
similar study examining viscoelastic instabilities around a micro-
fluidic cylinder,20,44 we examine the flow behaviour of a range of
viscoelastic fluids composed of hydrolyzed polyacrylamide. By
varying the polymer and salt concentration in the aqueous
solutions, the viscoelastic and shear thinning properties of the
fluids are varied widely, enabling their effects to be effectively

decoupled. Flow velocimetry is used to characterize the flow state
in the cross-slot device as a function of the imposed Wi and as a
function of a parameter S that quantifies the strength of shear
thinning at a given applied shear rate. Interestingly, we find that
a combination of strong shear thinning and viscoelasticity pro-
motes the formation of steady asymmetric flow states in the cross-
slot device, while weaker shear thinning results in time-dependent
asymmetric states. For very weak shear thinning, we find that the
flow field remains symmetric for all Wi. Perhaps most interest-
ingly, for a few polymer concentrations that exhibit asymmetry
over a range of Wi, we find that the flow can recover symmetry at
sufficiently high flow rates such that S becomes small.

Our experimental results are compared qualitatively against
creeping flow numerical simulations using the linear Phan–
Thien–Tanner model, allowing parametric control of the shear
thinning for constant extensional elastic properties of the
fluids. Our results highlight how the interplay between elastic
and shear thinning effects influence the transitions between
flow states in the cross-slot device.

2 Experimental methods
2.1 Microfluidic device

The microfluidic cross-slot device is fabricated by selective
laser-induced etching in fused silica glass using a commercial
LightFab three-dimensional (3D) printer (LightFab GmbH,
Germany).45–47 An image of the same device used in the
experiments is shown in Fig. 1 indicating the channel dimen-
sions, the flow scheme, and the Cartesian coordinate system
with the origin at the center of the geometry. The channels of
the device each have a width of W = 500 mm, and a height of
H = 2.0 mm (aspect ratio a = H/W = 4.0). The length of each of
the four arms is 20 mm, allowing the flow to become fully
developed within both the inlets and the outlets.

2.2 Sample preparation and rheological characterization

The sample fluids are prepared by dissolving a high molecular
weight hydrolyzed polyacrylamide (HPAA; Mw = 18 � 106 g mol�1;
degree of substitution 0.30%; Polyscience Inc.) in deionized
(DI) water. A stock solution at a polymer concentration of cp =
3000 parts-per-million (ppm, by weight) is first prepared by
mixing the appropriate quantities of polymer powder and DI
water on a laboratory roller for at least four days, and ensuring
complete dissolution. Solutions with lower polymer concen-
tration (down to 20 ppm) are subsequently prepared by dilution
with additional DI water. To study the effects of salt addition, a
cp = 3000 ppm HPAA solution is prepared by adding the
polymer powder to a 0.5 mol L�1 sodium chloride (NaCl)
solution, and again mixing on a laboratory roller for at least four
days. Based on an earlier rheometric analysis of HPAA solutions in
a similar range of concentration in the absence of NaCl, we expect
the salt-free test fluids to be in the semidilute entangled
concentration regime, at least for cp Z 60 ppm.20,48 Given the
high cp of the solution with added NaCl, it is also expected to be
semidilute and entangled.
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2.2.1 Shear rheology. The rheological characterization of
the samples is carried out at T = 25 1C using an Anton-Paar
MCR 502 stress-controlled rheometer. To obtain the steady
shear viscosities of all of the test solutions over a wide range
of shear rates 0.002 o _g r 500 s�1, a stainless steel double-gap
geometry is used.

Fig. 2(a) shows that all test fluids exhibit shear thinning
behavior. All flow curves are well described by the Carreau–
Yasuda model (solid lines in Fig. 2(a)):

Z ¼ Z1 þ
Z0 � Z1

1þ ð _g= _gcÞa½ �ð1�nÞ=a
; (1)

where Z0 is the zero-shear-rate viscosity, ZN is the infinite-shear-
rate viscosity, and _gc is the critical shear rate at the onset of shear
thinning.49 The dimensionless parameter a controls the abrupt-
ness of the transition between the low shear rate viscosity plateau
and the shear thinning region of the flow curve, and n is the power
law index in the shear thinning region. Table 1 lists the parameters
found by fitting eqn (1) to the experimental flow curves in Fig. 2(a).
In the insert to Fig. 2(a) we plot the zero-shear-rate viscosity Z0

from Table 1 as a function of the HPAA concentration for the salt-
free polymer solutions. The data follow a power-law scaling with
exponent 1.5, which is consistent with the prediction for salt-free
polyelectrolyte solutions in the semidilute entangled regime,48 and
also consistent with prior findings on HPAA solutions in a similar
concentration range.20

To quantify the degree of shear thinning of each polymer
solution, we introduce the shear thinning parameter S:

S ¼ 1� Zc
Zð _gÞ; (2)

where Zc = dtxy/d_g is the tangent viscosity (where txy is the shear
stress), and Z(_g) is shear-rate-dependent viscosity.20,28 Thus, the
shear thinning parameter can be readily found from the flow curve
data (or the corresponding Carreau–Yasuda fit) according to:

S ¼ 1� dðln txyÞ
dðln _gÞ : (3)

Fig. 2(b) plots S versus _g, with S being determined from
eqn (3) using the Carreau–Yasuda fits to the experimental flow
curves shown in Fig. 2(a). For all of the fluids at low shear rates, S
is close to zero, corresponding to the zero-shear-rate plateau in
the flow curve. At intermediate shear rates (_gE 1 s�1), S reaches a
maximum that corresponds to the highest slope in the flow curve.
Finally, S decreases as the shear viscosity reaches towards the
high-shear-rate plateau (i.e., for _g \ 100 s�1). All of the curves in
Fig. 2(b) display similar shapes, with S generally showing higher
values over a wider range of shear rates as the HPAA concen-
tration increases for salt-free solutions. The addition of salt to the
polymer solution results in a lower zero-shear-rate viscosity and a
lower degree of shear thinning (see open diamonds in Fig. 2(a)).
When salt is added to the solution, it effectively screens the
electrostatic interactions between polymer chain segments, redu-
cing their repulsion. As a consequence, the segments are allowed
to come closer to each other, leading to a more compact chain
conformation. This reduced interaction between polymer chains

Fig. 2 Rheological characterization of the aqueous HPAA test solutions in
steady shear. (a) Flow curves measured for all sample solutions in a
double-gap Couette geometry. Solid lines show the fits of the Carreau–
Yasuda model. The insert shows the zero-shear-rate viscosity Z0 as a
function of the polymer concentration for salt-free solutions, where the
dashed line is a power-law fit to the data with exponent 1.5. (b) The shear
rate dependence of the shear thinning parameter S, which is calculated
from the Carreau–Yasuda fits to the steady flow curves in part (a) based on
eqn (3), see main text. (c) Shear stress txy and first normal stress difference
N1 measured (where possible) in a cone-and-plate geometry. The insert
shows the shear rate dependence of txy/N1.
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contributes to the decrease in viscosity at low shear rates and
reduces the shear thinning behavior of the solution.

Where possible, we also employ a 50 mm diameter 11 cone-
and-plate geometry to evaluate the first normal stress difference
generated in the fluids as a function of the shear rate (see
Fig. 2(c)). Note that this is only achievable for fluids of higher
polymer concentration and over a limited (high) range of shear
rates 10 r _g r 800 s�1, due to the negligible normal forces at
lower concentrations and shear rates. For the fluids which
permit a measurement, N1 increases monotonically over the
accessible shear rate range in an approximately power law
fashion.

2.2.2 Extensional rheology. The extensional rheology of the
samples at T = 25 1C is obtained using a capillary breakup
extensional rheometer (Haake CaBER 1, Thermo Scientific),
fitted with plates of diameter D0 = 6 mm. For this measurement
the fluid sample is loaded between the top and bottom plates
with their initial separation set at 1 mm. The plates are
separated from each other at a constant rate of 0.1 m s�1 until
they reach their final separation of 6 mm. When the final
position is reached, a laser micrometer positioned at the
midpoint between the plates measures the diameter D of the
resulting liquid bridge as a function of time t (as plotted in
Fig. 3(a)). The most dilute solution (cp = 20 ppm) shows an
almost Newtonian-like behavior, with a very brief ‘‘elastocapil-
lary’’ regime, where D(t) decays exponentially. This elastocapil-
lary regime spans an increasing range of time as the polymer
concentration is increased for salt-free polymer solutions. In the
case of the polymer solution with added NaCl, the electrostatic
screening effect manifests via a reduced elastocapillary regime.
The characteristic time for the coil–stretch transition of the
polymer chains, l, can be estimated from the slope of D(t) in
the elastocapillary regime according to D(t) B exp(�t/3l).50,51 The
resulting values of l obtained for each of the HPAA test solutions
are summarized in Table 1.

Within the elastocapillary thinning regime, the capillary thin-
ning measurement can also be used to estimate the extensional
viscosity ZE = �s/(2dD(t)/dt) of the viscoelastic liquids, where
s = 72 mN m�1 is the surface tension of the fluids.50,51 In
Fig. 3(b) we present the scaled extensional viscosity ZE/Z0 as a
function of the accumulated Hencky strain eH = 2 ln D0/D(t). All
of the solutions show strain hardening behaviour, with values
of 10 t ZE/Z0 t 100, for the salt-free solutions. The polymer
solution with added salt shows a significantly higher value of

ZE/Z0 E 104 than the other polymer solutions. This can be
understood by the contraction of polymer chains due to the
electrostatic screening effect of the salt, which causes an
increase in chain extensibility and a reduction in Z0.

2.3 Dimensionless numbers

The sample solutions are driven through the cross-slot device at
precisely controlled volumetric flow rates Q using four Nemesys
low-pressure syringe pumps (Cetoni, GmbH). Two pumps inject
fluid into the microchannel through the inflow arms, while two
pumps withdraw fluid at the same rates from the outflow arms
(see Fig. 1). The pumps are each fitted with Hamilton Gastight
syringes of appropriate volumes such that the specified
pulsation-free dosing rate is always exceeded even at the lowest
imposed flow rates. Flexible silicone tubing is used for all
connections between the microchannel and the syringes.

To parameterize the various flow regimes and to understand
how the degree of shear thinning and elasticity of the fluid
depend on the imposed flow conditions, a few key dimension-
less numbers are used.

Table 1 Parameters extracted from fitting the Carreau–Yasuda model to
the steady flow curves, and coil–stretch relaxation time obtained from
capillary breakup extensional rheometry with the various HPAA test
solutions

cp [ppm] Z0 [Pa s] ZN [mPa s] _gc [s�1] n a l [ms]

20 0.043 1.0 0.083 0.40 1.9 5
60 0.137 1.4 0.076 0.37 1.9 30
200 1.26 2.8 0.025 0.28 1.4 75
500 5.64 4.4 0.017 0.25 1.7 182
3000 65.8 4.5 0.011 0.21 0.62 716
3000 + NaCl 0.127 4.0 0.670 0.56 1.4 182

Fig. 3 Characterization of the aqueous HPAA test solutions in uniaxial
extension in a CaBER device. (a) The filament diameter as a function of
time from capillary thinning measurements made on all of the sample
solutions. (b) The uniaxial extensional viscosity (scaled by the zero-shear-
rate viscosity) as a function of the Hencky strain, determined within the
exponentially-decaying region of the curves shown in part (a).
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The Reynolds number, Re, quantifies the relative strength of
inertial to viscous forces and in the cross-slot device can be
defined as:

Re ¼ rUW

Zð _gÞ ; (4)

where r = 1000 kg m�3 is the fluid density, U = Q/(WH) is the
average flow velocity in each arm of the cross-slot device, and
Z( _g) is the shear rate-dependent viscosity calculated from the
Carreau–Yasuda model, evaluated at a shear rate _g = _gw, where
_gw = 6U/W is the nominal wall shear rate in the cross-slot
channel arms. In most of our flow experiments in the cross-
slot device, Re o 1 and can be safely neglected. For some of the
more dilute and less viscous samples the Reynolds number can
reach up to Re E 5 at the highest imposed flow rates. Previous
numerical simulations (e.g., those presented in ref. 34) have
shown that such a level of inertia does not qualitatively affect
the elastic flow phenomena in the cross-slot device, but does act
to suppress elastic instability. We will use our own numerical
simulations (described in Section 3, below) to confirm that the
phenomena we report from our experiments are not caused by
inertial effects.

We define the Weissenberg number of our experiment,
which describes the relative strength of elastic to viscous forces
in the flow as:

Wi = l _e, (5)

where the extension rate _e = 1.87U/(W/2). This nominal value for
the extension rate is based on consideration of the steady sym-
metric flow of a Newtonian fluid and represents the average
extension rate between the center of the cross-slot geometry (i.e.,
the stagnation point, where the flow velocity would be zero) and
the entrance to each outlet channel. The value of 1.87U in the
numerator represents the streamwise flow velocity on the center-
line of the outlet channel, and is estimated based on an infinite
series analytical solution for fully-developed Poiseuille flow in a
rectangular duct of aspect ratio a = 4.52 The Weissenberg number
as defined here characterizes the strength of elastic effects near
the stagnation point. Broadly, as Wi exceeds E0.5 nonlinear
elastic effects are expected to become dominant.5,7,53 However,
shear thinning in the fluid properties (Fig. 2(a)) will lead
to a shear-rate-dependent relaxation time that reduces with
increasing shear rate. This can be accounted for by considering
a shear-rate-dependent effective Weissenberg number
evaluated as Wieff( _g) = N1( _g)/txy( _g). As can be seen from the
insert in Fig. 2(c), for fluids where a measurement of N1 is
available, this quantity increases monotonically with the
shear rate. Furthermore, by evaluating Wieff at a shear rate
_g = _gw = 6U/W[ = 6 _e/(2 � 1.87)], we can see that for each fluid
Wieff increases monotonically with Wi (Fig. 4).

The strength of shear thinning effects in the cross-slot device
is assessed using the shear thinning parameter S (eqn (3),
Fig. 2(b)), which similar to both Re and Wieff, is evaluated at a
shear rate _g = _gw = 6U/W.

2.4 Microparticle image velocimetry and experimental
protocol

The flow states of the sample solutions in the cross-slot device are
determined based on quantitative flow velocimetry performed
using a volume illumination microparticle image velocimetry
(m-PIV) system (TSI Inc.). All test solutions are seeded with a low
concentration (E0.02 wt%) of red fluorescent polystyrene particles
(Thermo Fisher Scientific Inc.) with 2 mm in diameter and with
excitation and emission wavelengths of 530 nm and 607 nm,
respectively. The z = 0 plane of the flow geometry (see Fig. 1) is
brought into focus on an inverted microscope (Nikon Eclipse Ti)
with a Nikon PlanFluor objective lens (5� magnification, numer-
ical aperture NA = 0.15). These conditions result in a measurement
depth of E125 mm,54 which is EH/16. In the experiment, particle
fluorescence is induced by excitation with a dual pulsed Nd:YLF
laser with a wavelength of 527 nm. The laser pulses are separated
in time by a duration Dt. A high-speed imaging sensor (Phantom
MIRO) operating in frame-straddling mode is able to capture pairs
of particle images synchronized with the laser pulses.

At each flow rate examined, the time Dt is set so that the
average displacement of particles between the two images in
each pair is E4 pixels. For most of the range of imposed
Weissenberg numbers, the flow in the cross-slot is steady and
hence the data can be time-averaged. Accordingly, 250 image
pairs are processed using an ensemble-averaged cross-
correlation PIV algorithm (TSI Insight 4G). In a few cases, the
flow is observed to vary in time. In such instances, we perform
both an ensemble-average cross correlation in order to obtain
an overall picture of the flow field, and we also process image
pairs individually for the purpose of generating movies. In
either case, a recursive Nyquist criterion is employed to
enhance the spatial resolution of the processing algorithm
and obtain 2D velocity vectors u = (u,v) on a square grid of
spacing 12.8 mm � 12.8 mm. Subsequent generation of contour

Fig. 4 Comparison between a shear-rate-dependent Weissenberg num-
ber Wieff and the Weissenberg number Wi based on the measured relaxa-
tion time and the extension rate near the stagnation point. Data is only
shown for fluids for which a measurement of N1 is available.
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plots and streamline traces is performed using the software
Tecplot (Tecplot Inc., WA), and image analysis is performed
using Matlab.

For each test fluid, the flow is driven through the cross-slot
at a given Wi by imposing the appropriate value of Q in each of
the four intersecting channels. The motion of tracer particles is
observed in real time until the flow is deemed to have reached a
steady state (where the waiting time is both fluid and flow rate
dependent), before m-PIV images are captured. The flow is then
stopped while the captured images are processed into vector
fields and briefly examined in order to assess whether the flow is
steady or time-dependent, or if a longer waiting time is needed
before image capture. Subsequently, the process is repeated at
the next value of Wi by increasing the imposed Q, and so on until
a complete sweep of Wi is achieved. Note that in order to perform
such a sweep with a given syringe while maintaining the flow rate
above the pulsation free limit throughout, a range of Wi spanning
a factor E5000 is possible. In our experiments we explore a range
spanning 0.02 t Wi t 100.

From the velocity fields measured by m-PIV performed over a
range of Wi, we assess the degree of flow asymmetry inside the
cross-slot by using the following asymmetry parameter:

I ¼ Q1 �Q2j j
Q1 þQ2

¼ Q1 �Q2j j
Q

: (6)

Here, Q1 represents the fraction of the total volumetric flow rate
Q through the upper (lower) inlet channel that flows into the
left (right) outlet channel, and Q2 is the fraction that flows into
the right (left) outlet channel. This asymmetry parameter is
similar to that used in previous related numerical and experi-
mental works.20,28,34,36,55 A value of I = 0 indicates a symmetric
flow state where the flow through each inlet divides equally
between the outlets. A value of 0 o I o 1 indicates an unequal
division of the inflows, hence an asymmetric flow state, while I
= 1 indicates a completely asymmetric flow state, where each
inlet channel supplies fluid to only one outlet channel.

3 Theoretical approach

In the numerical simulations, we consider the 2D, steady, creeping
flow of a polymer solution in a planar cross-slot, as illustrated in
Fig. 1. The flow is described by the incompressible and isothermal
Cauchy equations coupled with a constitutive equation, which
accounts for the contribution of the non-Newtonian stresses.
Neglecting inertia, the continuity and momentum equations are
given as:

r�u = 0, (7)

r�(�PI + s + Zs _c) = 0, (8)

where, u is the velocity, P is the thermodynamic pressure, I is
the identity tensor, s is the non-Newtonian contribution to the
total stress tensor, and Zs is the solvent viscosity.

The linear version of the simplified Phan–Thien–Tanner
(l-PTT) model,56 under steady-state, is expressed as:

l[u�rs � (ru)T�s � s�ru] + Ys = Zp _c, (9)

where l is the relaxation time, Zp is the polymeric viscosity, and
_c is the deformation rate tensor, defined as:

_c = ru + (ru)T, (10)

where the superscript ‘‘T’’ denotes the transpose operator. The
function Y is given as:

Y ¼ 1þ ltrðsÞ
Zp

; (11)

where tr(s) denotes the trace of s, and E is a parameter that
governs the rheological response of the fluid. The l-PTT model
predicts shear thinning effects in steady simple shear, and a
bounded extensional viscosity in steady extension. With
increasing E, the fluid becomes less strain hardening and the
onset of shear thinning is translated to lower values of the
shear rate. We also define the solvent-to-total viscosity ratio:

b ¼ Zs
Zs þ Zp

¼ Zs
Z0
; (12)

which mainly governs the degree of shear thinning; with
increasing b, the fluid becomes less shear thinning.43

The usual no-slip and no-penetration boundary conditions
(i.e., u = 0) are imposed on all walls of the channels. At the channel
inlets, we impose fully-developed velocity and stress fields. At the
channel outflows, we apply the open boundary condition (OBC).57

The Petrov–Galerkin stabilized finite element method for visco-
elastic flows (PEGAFEM-V)58–60 is used to solve the governing
equations. We solve directly for the steady-state solution, using a
pseudo-arclength continuation algorithm for finite element
simulations61 to track the solution branches in the parametric
space. The flow variables, u, P, and s, are interpolated by linear
triangles in a structured mesh. Details about the numerical
implementation and validation studies can be found in ref. 58–60.

4 Results and discussion
4.1 Experimental flow fields

Representative flow fields measured for three of the tested
HPAA solutions are shown for a range of Weissenberg numbers
in Fig. 5, illustrating the various flow states that can be
observed. Note that when the Weissenberg number is low
(Wi t 0.2), all of the fluids tested (regardless of the extent of
shear thinning) display flow fields with a high degree of
symmetry, and that appear in fact, quite Newtonian-like (as
exemplified by the top row of images in Fig. 5). Apart from the
lowest concentration HPAA solution tested (with cp = 20 ppm),
for which the flow remains symmetric over the whole range of
imposed Wi, all of the fluids display a transition to a state of
steady flow asymmetry (as exemplified by the middle row
of images in Fig. 5). At a rather low HPAA concentration
cp = 60 ppm (Fig. 5(a)) at Wi = 1.9 and S = 0.41, the flow
asymmetry is relatively mild. However, it is clear that most of
the fluid that enters via the upper arm of the device selects the
left arm by which to exit, while the majority of fluid that enters
via the lower arm exits via the right arm. For the cp = 3000 ppm
HPAA solution without salt (Fig. 5(b)) at Wi = 4.2 and S = 0.77,
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the asymmetry is intense, with essentially all of the fluid from the
top inlet exiting to the right and all of the fluid from the bottom
inlet exiting left. With the addition of salt to the cp = 3000 ppm
HPAA solution (Fig. 5(c)) at a similar Wi = 3.0 but lower S = 0.33,
the asymmetry is distinctly less intense than that observed for
the same polymer concentration but without salt. Increasing
the Weissenberg number further, each of the fluids responds
rather differently (bottom row of images in Fig. 5). After passing
through a state of time-dependence for 10 t Wi t 20 (see
Movie M1, ESI†), remarkably the cp = 60 ppm solution recovers
steadiness and symmetry of the flow field, see Fig. 5(a) at
Wi = 19 and S = 0.19. However, this symmetric state is distinct
from the low-Wi pseudo-Newtonian symmetric state described
previously. At high Wi = 19 there is a clear band of low flow
velocity located about the x-axis, which is not seen at low Wi =
0.1. This region of low flow velocity is considered to be due to
the stretching of polymer chains that flow through the high
velocity gradients near the stagnation point, and the resulting
high elastic tensile stress that feeds back onto the flow field. For
the cp = 3000 ppm HPAA solution (no salt), the state of strong
and time-steady flow asymmetry is maintained up to high Wi
(see Fig. 5(b) at Wi = 29 and S = 0.73). Different behaviour is
observed for the cp = 3000 ppm HPAA solution with added salt,
which undergoes a transition to a time-dependent asymmetric
flow state as the Weissenberg number is increased (see Fig. 5(c)
at Wi = 29 and S = 0.29, and the corresponding Movie M2, ESI†).

We note that the recovery of steady symmetric flow at high
Wi shown in Fig. 5(a) for the cp = 60 ppm (and also observed for
the cp = 200 ppm solution), but with a signature in the flow field
of strong elastic effects, is highly reminiscent of prior results on
instabilities in similar fluids flowing around microfluidic
cylinders.20 However, we are unaware of any previous report
of an asymmetric to symmetric flow transition being reported
for increasing Weissenberg numbers in the cross-slot geometry.

4.2 Flow asymmetry

The degree of flow asymmetry inside the cross-slot is quantified
by using the asymmetry parameter I (eqn (6)), which is plotted as a
function of Wi in Fig. 6(a). The lowest concentration polymer
solution (cp = 20 ppm) shows negligible levels of asymmetry (I E 0)
over the whole range of accessible Weissenberg number. For a
slightly higher polymer concentration (cp = 60 ppm) the asymmetry
increases beyond a critical Weissenberg number Wic E 0.2 up to a
maximum value I E 0.8. With further increase in Wi, I decreases
before symmetry is regained at Wi E 10. A similar trend is also
observed for cp = 200 ppm, although in this case the maximum
value of I E 1 is higher than for cp = 60 ppm, and the flow
remains asymmetric to higher Wi, with symmetry being fully
recovered at Wi E 50. At higher polymer concentrations
(including cp = 3000 ppm with added salt) for Wi beyond the
onset of asymmetry, significantly high values of asymmetry
approaching I = 1 are reached and are maintained up to the

Fig. 5 Time-averaged velocity magnitude fields measured by microparticle image velocimetry with selected test solutions at the Weissenberg numbers
and S values indicated, exemplifying the range of flow states observed experimentally. (a) 60 ppm HPAA without salt, (b) 3000 ppm HPAA without salt,
(c) 3000 ppm HPAA with NaCl at 0.5 mol L�1. Note that in all cases the flow is steady in time, except for in the bottom image of column (c).
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highest Weissenberg numbers accessed. We point out that, at
least for the cp = 200 ppm polymer solution, the recovery of
symmetry cannot be attributed to any shear-induced reduction
in the relaxation time, since Wieff evaluated at the channel wall
increases monotonically with Wi over the range 20 t Wi t 40
through which the asymmetric to symmetric transition mostly
occurs (see Fig. 4).

Fig. 6(b) presents a flow state diagram showing the trajec-
tories of all the HPAA solutions through Wi–S state space as the
imposed flow rate through the cross-slot microchannel is
varied. Newtonian-like steady symmetric, steady asymmetric,
elastic steady symmetric, and time-dependent flow states are

denoted by white, light-gray, medium-gray, and dark-gray back-
grounds, respectively. We observe that for cases where the flow
becomes asymmetric, symmetry can be recovered if the shear
thinning parameter decreases to S t 0.2. This observation
suggests that the more concentrated polymer solutions do not
recover symmetry in the range of Wi tested because the degree
of shear thinning remains sufficiently high (i.e., S \ 0.2). The
trends revealed by Fig. 6 are qualitatively similar to those
observed in the case of HPAA solutions flowing around micro-
fluidic cylinders.20,22

4.3 Numerical results

The experimental results presented in the previous section
clearly suggest that shear thinning is closely related to the
degree of flow asymmetry in the cross-slot. Stronger shear
thinning promotes steady asymmetric states, time dependent
flow states occur for high elasticity but weaker shear thinning, while
asymmetric flows appear not to be supported for shear thinning
parameters that are below S E 0.2. However, we cannot ignore that
inertia is present when flow resymmetrization takes place (the
Reynolds number is up to Re E 5 in those cases). Poole et al.34

have numerically demonstrated that inertia opposes elasticity in the
cross-slot, suppressing the instability. Thus, one could argue that
inertia drives the recovery of symmetry in the low concentration
polymer samples. Furthermore, diluting the solution to decrease the
degree of shear thinning unavoidably results in a simultaneous
alteration in the degree of elasticity under extension. One could
argue that weaker elastic effects lead to a reduced degree of flow
asymmetry, in accordance with the observations by Rocha et al.36 A
loss of elasticity could also occur due to polymer chain fracture at
high extension rates. Numerical simulations with the two-species
Vasquez–Cook–McKinley model representing wormlike micellar
solutions have shown that such breakage can strongly suppress,
or even eliminate, the flow asymmetry in the cross-slot device.62,63

Also in the experiments we are not able to fully account for normal
stress effects through the evaluation of Wieff. Unfortunately, we
cannot completely isolate the effects of shear thinning, elasticity,
and normal stresses in a microfluidic experiment, and eventually
inertia will always come into play as the flow rate is increased.

By employing numerical simulations with the l-PTT model it
is possible to examine the effect of varying shear thinning in
the absence of inertia while maintaining constant extensional
properties and avoiding the complication of possible breakage
of polymer chains in the flow. Inertia can be simply ruled out by
neglecting the velocity material derivative in the momentum
equation (eqn (8)) and assuming creeping flow. Designing
fluids with the same extensional but different shear rheology
is more challenging. Our starting point is the paper by
Shogin,64 where analytical solutions of the l-PTT model in
homogeneous shear and extension are provided. After some
calculations, one can prove that for any Ea0 we have:

2
1� b
E
þ 4b ¼

ZPl;1
Z0

; (13)

where ZPl,N is the high extension rate ( _e -N) asymptotic value
of the first planar extensional viscosity, ZPl = (txx � tyy)/ _e + 4Zs,

Fig. 6 Evolution of flow asymmetry and characterization of flow states
for HPAA aqueous solutions in the cross-slot geometry. (a) The flow
asymmetry parameter I as a function of Weissenberg number Wi based
on time-averaged flow fields, (b) flow state diagram in Wi–S parameter
space: Newtonian-like steady symmetric flow in the white region, steady
asymmetric flow in the light-gray shaded region, elastic steady symmetric
flow in the medium-gray shaded region, and time-dependent flow in the
dark shaded region.
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as predicted by the l-PTT model. By setting ZPl,N equal to a
constant and selecting different values for b, we can use
eqn (13) to find the respective PTT parameters ðEÞ that generate
fluids with almost the same steady extensional viscosities, but
different steady shear viscosities. Based on the CaBER measure-
ments for the series of fluids without added salt, we select a
representative extensional viscosity of ZE E 40Z0 (see Fig. 3(b)).
Assuming that the high extension rate viscosity plateau is the
same in planar and uniaxial elongation, which is true for the
l-PTT model,64 we set ZPl,N/Z0 = 40 and generate a set of five
fluids with varying degrees of shear thinning, but nearly
identical extension hardening, as can be seen in Fig. 7.

Note that by our chosen approach we are not attempting to
obtain a quantitative match to the experimental data, but
rather to use a simplified numerical model to gain a deeper
insight into the physics underlying the observed flow instabilities.

Due to the entangled nature of the experimental test fluids, they
exhibit different relaxation times in shear (reptation time, 1/_gc,
Table 1) and extension (Rouse time l, Table 1). Obtaining a
quantitative match to their rheology would require using either a
multi-mode approach65 or an appropriate model for entangled
solutions (e.g., Rolie-Poly model66). However, either of these
approaches would induce many additional material parameters,
which would complicate the analysis of the physical mechanisms.
Consequently, we stick to the simplicity of the l-PTT model and
compromise with qualitative comparisons between the experiment
and the model.

In Fig. 8 we present the shear thinning parameter S and the
effective Weissenberg number Wieff for the series of model
fluids. Both S and Wieff are evaluated at a shear rate _g = _gw and
are plotted as a function of the Weissenberg number Wi = l _e
near the stagnation point of the cross-slot geometry (as defined
in eqn (5)). Note that here the extension rate in the cross-slot
device is given by _e = 1.5U/(W/2) since the simulations are
performed in 2D. The shear thinning parameter of the model

Fig. 7 Rheological response of the model l-PTT fluids employed in
numerical simulations. (a) Steady shear flow curves of normalized shear
viscosity versus normalized shear rate. (b) Steady planar extensional
viscosity presented in the form of ZPl/Z0 versus normalized strain rate.
The various combinations of b and E yield fluids of varying shear thinning
but near-identical elastic response in extension.

Fig. 8 (a) Shear thinning parameter S, and (b) effective Weissenberg
number Wieff = N1/txy for the model l-PTT fluids plotted as a function of
the Weissenberg number in the cross-slot. Both S and Wieff are evaluated
at the wall shear rate _gw = 2 _e, where _e is the extension rate near the
stagnation point of the cross-slot.
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fluids Fig. 8(a) is generally similar in form to that of the
experimental test fluids (Fig. 2(b)). However, Wieff for the model
fluids Fig. 8(a) shows a non-monotonicity that is not observed
in the experiment (Fig. 4). The implications of this will be
discussed further below.

Fig. 9(a) presents the flow asymmetry parameter I versus
Wi for the five different fluids with the same extensional
response and decreasing degree of shear thinning in the
range 0.02 r b r 0.2. For the most shear thinning fluids
(b = 0.02 and b = 0.05), the flow becomes asymmetric via
supercritical pitchfork bifurcations occurring between Wi =
1.5 and Wi = 1.8 and stays asymmetric up to the highest flow
rate examined (Wi = 200). However, for the fluid with b = 0.1, the
situation is strikingly different. As for the more shear thinning
fluids, the flow loses symmetry via a supercritical bifurcation
(here around Wi = 2.1), and a plateau in I is reached. However,
the plateau only persists up to Wi = 80, before for higher Wi, I
rapidly decreases and the flow becomes symmetric again via a
subcritical pitchfork bifurcation. For further increases in Wi, no
new asymmetric states are observed. The same trend is observed

for the fluid with b = 0.16, which exhibits weaker shear thinning
than b = 0.1 and for which asymmetric states exist only for a
limited range of 4 t Wi t 9. Finally, for the least strongly shear
thinning fluid with b = 0.2 asymmetric flow states are not
observed at any Wi.

By comparing Fig. 8 and 9(a), we can see that the recovery of
symmetry in fluids with b = 0.1 and b = 0.16 occurs for
Weissenberg numbers (WiE80 and Wi E 9, respectively) at
which the shear thinning parameter for both fluids has reduced
to S E 0.3 and is decreasing. However, for the same values of
Wi, the values of Wieff are both near their peak, but have not
decreased appreciably. Indeed, for b = 0.16 and Wi = 0.9, Wieff is
still increasing albeit gradually. Although both shear thinning
and normal stresses contribute to reduced flow resistance, the
earlier peak in the S curve suggests that shear thinning
reduction contributes more to symmetry recovery than the
reduction of Wieff. This is made more evident by plotting I as
a function of Wieff in Fig. 9(b), the effect of which is only to
distort and compresses each curve along the abscissa, but not
to prevent the recovery of symmetry for either of the two

Fig. 9 Creeping flow numerical simulations with the l-PTT model provide qualitative agreement with the experimental results. (a) The asymmetry
parameter I as a function of Weissenberg number Wi for fluids of similar elastic properties in extension, but having various values of b. More strongly shear
thinning exhibit the formation of highly asymmetric flow states over a wide range of Wi, while more weakly shear thinning fluids can recover symmetry as
Wi is increased. (b) Plotting I as a function of Wieff only compresses and distorts each curve along the abscissa, confirming that non-monotonicity in N1/txy

is not responsible for the recovery of symmetry in some of the fluids. The images (c)–(e) to the bottom illustrate various possible flow states that can be
observed in simulations for b = 0.1 and Wi = 60.
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particular fluids. We therefore attribute the recovery of sym-
metry in those two cases mostly to the reduction of shear
thinning at higher values of Wi, as quantified by the parameter
S shown in Fig. 8(a).

Although the rheology of the experimental test fluids and
the model numerical fluids do not quantitatively match, we note
a clear qualitative match between the simulations and the
experiments. Flows with strongly shear thinning viscoelastic
solutions become asymmetric and remain asymmetric up to very
high flow rates or Wi. Moderately shear thinning solutions
present asymmetric states only for a limited range of Wi, and
for very weakly shear thinning solutions, the instability does not
arise. Given that in the simulations we have excluded inertia and
we have examined the response of fluids with varying shear
thinning but the same steady extensional rheology, the present
theoretical analysis validates that the asymmetric to symmetric
transition is not related to either inertial or reduced elasticity
effects, but is somehow related to shear thinning. One possible
difference between the experimental and the numerical results
relates to the criticality of the asymmetric to symmetric transi-
tion. In the simulations this is subcritical, but in the experiments
it does not appear to be so. Although in the experiments we did
not specifically test for hysteresis effects in the transitions, by the
flow driving protocol we employed (Section 2.4) we would expect
a subcritical transition to appear very abrupt as opposed to the
quite gradual return to symmetry observed with increasing Wi in
Fig. 6(a). Although inertia is clearly not required to drive this
transition, it is possible that inertia affects the form of the
transition (Reynolds numbers in the experiments are 41 where
the asymmetric to symmetric transition is observed). It may
be interesting in future to examine hysteresis effects and the
possible influence of inertia on this transition in more detail.

Before we proceed to the analysis of the physical mechanisms
underlying the observed flow transitions, it is worth taking a
closer look at the velocity magnitude contours presented beneath

the two plots in Fig. 9, for b = 0.1 and Wi = 60. As shown in the
plot in Fig. 9(a), three solution branches coexist for Wi = 60; the
upper solution branch (Fig. 9(c)), which is characterized by
strongly asymmetric steady states, the middle branch (Fig. 9(d)),
which incorporates asymmetric steady states, and the symmetric
branch (Fig. 9(e)), which carries only symmetric solutions with
I = 0. According to bifurcation analysis, the steady states on the
upper branch are stable (can be observed in nature). The steady
states on the symmetric branch are stable for all Wi values before
the supercritical (Wi o 2.1 for b = 0.1) and after the subcritical
(Wi 4 42 for b = 0.1) pitchfork bifurcations, while they are
unstable (cannot be observed in nature) for the range 2.1 o
Wi o 42 (for b = 0.1). Finally, the steady states that lie on the
middle branch are always unstable (cannot be observed in nature).
The stable asymmetric steady state in Fig. 9(c), exhibits all of the
flow characteristics observed in the strongly asymmetric states in
the experiment (see Fig. 5), with the stagnation point being absent
and almost all fluid coming from the upper (lower) inflow arm
ending up in the right (left) outflow arm. The same match is
observed in the case where symmetry is recovered, where we can
distinguish a low-velocity elastic ‘strand’ region, extending from
the stagnation point into the outflow arms, exactly as observed
in the experimental m-PIV data (see Fig. 5). One can also notice,
both in the experiment (Fig. 5) and the simulations (Fig. 9(e)), that
recirculation vortices exist upstream of both reentrant corners in
cases where symmetry is recovered, accompanied by a velocity
overshoot upstream of the stagnation point. We believe this is the
first time (either experimentally or theoretically) that a transition
from an asymmetric to a symmetric flow state has been reported as
Wi is increased in the cross-slot device.

4.4 Proposed physical mechanism

Based on present observations and knowledge gained from
previous studies,11,21,22,26,28,29,34–37 we can propose a physical mecha-
nism for the onset of steady flow asymmetry in the cross-slot.

Fig. 10 Schematic representation of the proposed physical mechanism involving the interaction between shear thinning and elasticity for viscoelastic
flow in the cross-slot device and illustrating their influence on the flow asymmetry arising beyond Wic. Elasticity is represented by the colour contours
depicting the principal stress difference obtained from numerical simulations, while the arrows of varying length schematically depict the flow profiles
(hence shear rates) across different flow paths (see main text for the full description).
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When the flow is symmetric for Wi o Wic, shear rates, hence
also the shear-rate-dependent fluid viscosity, are equal on both
sides of the stagnation point and the extensionally-thickened
elastic strand of fluid (indicated by the colour contours around
the stagnation point in Fig. 10) lies symmetrically about the
outflow axis. At the onset of critical conditions (i.e., Wi = Wic),
the accumulation of elastic tensile stress along the streamlines
curving near the stagnation point (as per the Pakdel–McKinley
criterion11,12,33,41) causes a disturbance that perturbs the elastic
strand randomly to one side or the other. As outlined in Fig. 10,
the deflection of the elastic wake to one side causes the shear rates
across the two fluid paths to differ, which due to shear thinning
results in an increased viscosity and flow resistance along one path
and a decreased viscosity and flow resistance along the other.
Thus, for a shear thinning viscoelastic fluid, an initial perturbation
of the elastic strand about the stagnation point can be sustained by
the positive feedback resulting from the shear thinning. If shear
thinning remains significant as Wi is increased beyond Wic, steady
and strongly asymmetric flow patterns like those in Fig. 5 and 9,
can arise. Thus, the instability is triggered and maintained by a
combination of elasticity and shear thinning. According to our
physical mechanism, both elasticity and shear thinning are
required for the steady flow asymmetry to manifest. The initial
bifurcation is induced by elasticity, but shear thinning is respon-
sible for keeping the flow steadily on one branch or the other once
the bifurcation has occurred.

The recovery of symmetry for some fluids as Wi is increased
to high values is attributed to the simultaneous approach
towards the high shear rate plateau of the steady shear flow
curve. At a sufficiently high flow rate through the cross-slot,
shear thinning effects will become negligible. As a result, a
symmetric (but highly elastic) flow state can be reestablished.

Note that in the preceding outline of our proposed physical
mechanism, we refer to ‘‘shear thinning’’ as being the cause of
the flow resistance variation between the two diverging flow
paths, as in most instances (i.e., for real viscoelastic fluids or for
constitutive models that incorporate shear thinning) we expect
shear thinning to provide the dominant effect. For non-shear
thinning fluid models that exhibit steady asymmetric flow states
(e.g., Oldroyd-B or FENE-CR with low values of b t 0.536,42), the
difference in flow resistance between the two flow paths is
attributed to more subtle effects arising from a synergy between
the lag time for stress to respond to a change in the shear rate,
and the act of normal stresses along the curving streamlines
passing around the corners of the cross-slot (as described in
Section 1).43

It is worthwhile mentioning the similarity between the
present results obtained in the cross-slot geometry and results
presented recently showing flow asymmetries around cylinders
in microchannels, which also exhibited the recovery of symme-
try for high Wi and low S conditions.20–22 The similarity
between the two flows may not be immediately obvious, but
both involve mixed shear and extensional flows with a location
where the flow divides into two paths causing a change in the
shear rate, and a nearby stagnation point where high elastic
stresses are generated at sufficient Wi. It may not then be

surprising if both instabilities are governed by similar mechan-
isms involving the interaction between shear thinning and
extension hardening effects. If this is indeed the case it would
provide a plausible explanation for the results of Davoodi
et al.,41 who found by numerical simulations that placing a
cylinder in the centre of a cross-slot geometry did not prevent
the instability from occurring but only shifted the onset con-
ditions depending on the cylinder radius.

5 Conclusion

In this study, we have examined the flow of HPAA solutions with
different degrees of shear thinning and elasticity in a cross-slot
microchannel. Our primary objective was to establish a compre-
hensive understanding of the relationship between steady asym-
metric flow states and the rheological properties of the test fluid.
To achieve this, our analysis focused on two key rheological
parameters: fluid elasticity, quantified by the Weissenberg num-
ber Wi, and the degree of shear thinning, expressed by the shear
thinning parameter S. Previous studies predominantly attributed
flow asymmetries in the cross-slot geometry to fluid elasticity
alone. However, our findings challenge this notion, suggesting a
coupling between the elasticity in the fluid induced by the
extensional flow at the stagnation point, and shear thinning of
the fluid due to the wall shear stress.

Particularly compelling, we discovered that at high Weissen-
berg numbers, where fluid elasticity dominates but shear thin-
ning becomes minimal, the flow can recover symmetry from an
asymmetric state. This observation strongly suggests that shear
thinning also plays a crucial role in the generation and main-
tenance of the asymmetric flow state. From numerical simula-
tions it became evident that achieving the right balance between
shear thinning and elasticity is vital for controlling the flow
state within the cross-slot geometry.

Our combined experimental and numerical approaches
provided the basis for a proposed physical mechanism under-
lying viscoelastic flow instabilities in the cross-slot device.
Furthermore, they offered valuable insights providing a deeper
understanding of these instabilities. The results obtained from
this study contribute to the existing knowledge and shed light
on the intricacies of flow behaviours in the cross-slot geometry.
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14 G. H. McKinley, A. Öztekin, J. A. Byars and R. A. Brown,

J. Fluid Mech., 1995, 285, 123–164.
15 A. Groisman and V. Steinberg, Nature, 2000, 405, 53–55.
16 S. J. Muller, Korea-Aust. Rheol. J., 2008, 20, 117–125.
17 A. Groisman and V. Steinberg, Nature, 2001, 410, 905–908.
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