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Numerical investigation of heterogeneous soft
particle pairs in inertial microfluidics

Benjamin Owen, Krishnaveni Thota and Timm Krüger *

The formation of pairs of particles or cells of different types in microfluidic channels can be desired or

detrimental in healthcare applications. It is still unclear what role softness heterogeneity plays in the

formation of these particle pairs. We use an in-house lattice-Boltzmann–immersed-boundary–finite-

element solver to simulate a pair of particles with different softness flowing through a straight channel

with a rectangular cross-section under initial conditions representative of a dilute suspension. We find

that softness heterogeneity significantly affects the pair dynamics, determining whether a pair will form

or not, and determining the lateral and inter-particle equilibrium behaviour in the pair. We also observe

close matches between the transient deformation of particles in a linear pair and single particles in

isolation. These results further our understanding of pair behaviour, providing a foundation for

understanding particle train formation, and open up the potential to develop reduced-order models for

particle pair formation based upon the behaviour of single particles.

1 Introduction

Pathological alterations in cell properties are associated with
various diseases, such as malaria1 and sickle cell anaemia.2

These alterations in cell properties can be exploited in disease
diagnostics3 and therapeutic tools.4 Inertial microfluidic (IMF)
devices are able to passively manipulate and separate cells
based on their properties, such as size, shape, and softness,
by focusing cells into axially ordered trains. IMF devices offer
advantages over traditional microfluidic methods due to higher
throughput, lower cost, and the ability to manipulate particles
in a label-free manner.5

Inertial microfluidics was first proposed by Di Carlo et al. in
the late 2000s.6,7 The basic premise is to increase the fluid
inertia within the microfluidic device (channel Reynolds num-
ber of order 10–100), usually by increasing the flow rate. In
doing so, not only does throughput of cells under analysis
increase, but also inertial effects can be exploited to manipulate
particles through focusing and separation.8,9

The particle focusing phenomenon was first observed by
Segré and Silberberg in a pressure-driven flow through a
cylindrical pipe.10 A single particle in a straight channel will
focus (migrate laterally) to a cross-sectional equilibrium posi-
tion. This focusing is caused by the balance of two main forces,
a shear gradient lift force, and a wall-induced repulsion force.
The shear gradient lift force usually pushes the particle away
from the channel centre toward the walls. Contrarily, the wall-

induced repulsion force pushes the particle toward the centre
of the channel. The balance of both forces dictates the location
of the lateral equilibrium positions.

Where more than one particle exists in an inertial micro-
fluidic device, these particles interact hydrodynamically. For
example, the existence of other particles causes changes in the
flow field which can modify the shear gradient lift force and
therefore modify the lateral equilibrium positions. Hydrodynamic
interactions in the inertial regime also cause an additional
phenomenon, the axial ordering of particles into trains with
regular inter-particle spacing.11,12 These trains can be exploited
in applications such as cell encapsulation13 and flow cytometry.14

The formation mechanism of particle trains is not fully
understood. However, Schaaf et al.15 demonstrated that parti-
cles form distinct pairs that later join together to form trains. It
is therefore crucial to understand the formation mechanism of
particle pairs.

Particle pairs can be classified by their locations within the
channel: in staggered pairs, particles are located on opposite
sides of the channel whereas in linear pairs particles are
located on the same side of the channel.15,16 The self assembly
of particle pairs due to reverse streamlines was first identified
by Lee et al.16 During pair formation, the axial distance between
both particles converges to an equilibrium value.11,17 Hood and
Roper18 further developed an asymptotic theory to describe
the interaction between pairs during formation analogous to
the motion of a damped spring. The damping of the spring is
due to inertial focusing forces, and the spring force arises from
the interplay of viscous particle–particle and particle–wall
interactions. As such, streamlines can help explain the
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mechanism of formation. It has been reported that linear
particle pairs do not form when both particles are of the same
size.15,19 In previous work,20 we reported that particles form
homogeneous pairs from a larger range of initial positions
when the particles are softer.

While we know how softness affects pair formation when
both particles have the same softness, the effect of softness
heterogeneity, as it would be expected in real-world applica-
tions, is less clear. Patel and Stark21 investigated the effect of
particle softness for mono- and bi-disperse particle pairs and
found that the presence of the second particle can change the
stability of the single-particle equilibrium positions. Li et al.22

investigated the formation of a heterogeneous particle pair
consisting of a rigid and a soft particle and demonstrated
the pair formation after a number of passing interactions in a
simulation with periodic boundary conditions. However, in
real-world applications, passing particles would not interact
repeatedly, thus, it is important to study the outcome of the
first interaction between two particles.

The formation of heterogeneous pairs and trains can be
desired (for example, for the generation of compound particles)
or detrimental (for example, for the separation of different
particle species). Thus, it is important to better understand
the conditions and mechanisms leading to the formation of
pairs of particles with different softness. In this paper, we
perform 3D simulations using a lattice-Boltzmann–immersed-
boundary–finite-element solver to numerically investigate the
dynamics and formation of a pair of particles of different
softness flowing through a straight rectangular channel at a
moderate Reynolds number (Section 2). We consider particle
pairs in the staggered and linear arrangements (Section 3). Our
study finds that softness heterogeneity strongly affects the pair
dynamics. We show that linear pairs can form when particles
are different, and we demonstrate that particles deform more
during close particle–particle interactions than when in isola-
tion. We demonstrate that particle deformation during the
formation of linear pairs can be predicted from the single-
particle behaviour, while the deformation during the formation
of staggered pairs is more complicated. Implications and future
directions are discussed in Section 4.

2 Methods and system
characterisation

The physical and numerical models are briefly outlined in
Section 2.1 and Section 2.2, respectively. Section 2.3 describes
the analysis of paticle deformation, and Section 2.4 sum-
marises the typical particle trajectories observed.

2.1 Physical model

2.1.1 Microfluidic set-up and governing equations. We
consider a Newtonian liquid with kinematic viscosity n and
density r flowing through a straight channel with a rectangular
cross-section with width 2w and height 2h as shown in Fig. 1.
The flow is periodic along the flow direction (x-axis), and the
length of the periodic unit cell is L. The fluid flow is pressure-
driven and governed by the incompressible Navier–Stokes
equations. The y- and z-axes are denoted as lateral directions.

We consider two spherical, neutrally buoyant particles with
radius a. The suspended particles are modelled as deformable
capsules comprising a thin hyperelastic membrane and interior
liquid with the same properties as the suspending liquid. We
employ the Skalak model for the capsule membranes:23

ws ¼
ks
12
ðI21 þ 2I1 � 2I2Þ þ

ka
12
I22 (1)

where ws is the areal energy density, I1 and I2 are the in-plane
strain invariants,24 and ks and ka are the elastic shear and area
dilation moduli. We include a membrane bending energy

wb ¼
kb
2

H �Hð0Þ
� �2

(2)

where H and H(0) are the trace of the surface curvature tensor
and the spontaneous curvature, respectively, and kb is the
bending modulus.

Both particles are initialised on the mid-plane of the longest
cross-sectional axis (y = const) as shown in Fig. 1a, while the
initial x- and z-coordinates are varied. Particles initially located
on the mid-plane will remain on this plane while moving along
the x-axis and migrating along the z-axis.25 We have not observed
particles leaving the mid-plane in any of our simulations. We

Fig. 1 Schematic of particle pairs in a straight, rectangular duct with height 2h and width 2w. The periodic unit cell length is L. The flow is along the x-axis
(blue arrow). Particles are initially located on the mid-plane with y = const (indicated by grey plane). (b) Particles are shown in a staggered arrangement
where particles are located on different sides of the channel. (c) Particles are shown in a linear arrangement where particles are located on the same side
of the channel.
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consider two particle arrangements in this work. In the stag-
gered arrangement, the particles are placed on opposite sides of
the channel (Fig. 1b). In the linear arrangement, the particles are
placed on the same side of the channel (Fig. 1c). In both cases,
We distinguish between the initially leading (farther down-
stream) and lagging (farther upstream) particles, according to
their initial positions along the flow axis (x-axis).

We apply periodic boundary conditions in the axial direction
and the no-slip boundary condition at the channel wall and the
surfaces of the particles. Our model is particle-type agnostic,
and the intention is to develop an understanding of the effect of
deformability.

2.1.2 Characteristic scales and dimensionless groups. The
channel Reynolds number is defined as

Re ¼ Umaxw

n
(3)

where Umax is the maximum fluid velocity in the undisturbed
flow (flow without particles).

The Laplace number is used to characterise the softness of
the particle and is defined as the ratio between the typical
elastic shear forces in the capsule membrane and the intrinsic
fluid force:

La ¼ ksa
rn2

: (4)

As the Laplace number is a combination of material proper-
ties only, it is suitable to isolate the contribution of particle
softness in inertial flows.26

Other dimensionless groups are the channel aspect ratio
w/h, particle confinement w = a/h, the reduced dilation modulus
~ka ¼ ka=ks, and the reduced bending modulus ~kb ¼ kb

�
ksa2
� �

.
We use particle radius a, or channel half-height h to

non-dimensionalise distances and positions. Time is non-
dimensionalised by the advection time of the particle:

tad ¼
a

Umax
: (5)

In this study we keep the following dimensionless groups
constant: the channel Reynolds number (Re = 10), channel
aspect ratio (w/h= 2), and particle confinement (w = 0.4).

2.2 Numerical model

The numerical model consists of a partitioned fluid-structure
interaction solver in which the lattice Boltzmann (LB) method
is used for the fluid flow, the finite element (FE) method for the
capsule dynamics, and the immersed boundary (IB) method
for the fluid–structure interaction. This IB–LB–FE solver has
previously been employed in the study of the dynamics of
deformable red blood cells and capsules.27,28 Here, we provide
essential properties of the model, while comprehensive details
are available elsewhere.24

For the LB method, we use the D3Q19 lattice29 and the BGK
collision operator30 with relaxation time t. The kinematic

viscosity of the liquid and the relaxation time satisfy

n ¼ c2s t� Dt
2

� �
(6)

where cs is the lattice speed of sound and Dt is the time step.
For the D3Q19 lattice, cs

2 = Dx2/(3Dt2) holds where Dx is the lattice
resolution. The flow is driven by a constant body force in the x-
direction following the forcing method of Guo et al.31 This form of
the LB method is widely used in the field of fluid dynamics,
including in previous inertial microfluidics studies.26,32

Each capsule is represented by a surface mesh with Nf

flat triangular faces (or elements) defined by three nodes
(or vertices) each. At a given time step, the capsule mesh is
generally deformed. The hyperelastic forces acting on each
vertex are calculated as a function of the mesh deformation
state through an explicit scheme. The shear and area dilation
forces result from the deformation gradient tensor of each face,
while the bending forces are related to the angles between
normal vectors of pairs of neighbouring faces.27

We employ an IB method with a 3-point stencil.33 The forces
obtained from the FE scheme are spread from the Lagrangian
mesh to the Eulerian lattice where they act on the surrounding
fluid nodes through the LB algorithm. The updated fluid
velocity is then interpolated at the location of each mesh node.
The positions of the mesh nodes are updated using the
forward-Euler method, assuming a massless membrane which
is appropriate for neutrally buoyant capsules. This treatment
recovers the no-slip boundary condition at the surface of the
capsules and the momentum exchange between the liquid and
the capsule membrane.

The no-slip boundary condition at the resting and moving
walls for channel and shear flow, respectively, is realised by
the standard half-way bounce-back condition.34 The flow is
periodic along the x-axis. The channel length L is chosen
sufficiently long to avoid the interaction of capsules with their
periodic images. In all simulations, the hydrodynamic forces
are sufficient to prevent contact between capsules such that
capsules do not come closer than about 2Dx and a repulsion
force between capsules is not required. Likewise, capsules
always keep a large distance from the confining walls due to
hydrodynamic lift, and an additional capsule-wall repulsion
force is not needed.

2.3 Characterisation of particle deformation

Soft particles are deformed by the surrounding flow field which
is determined by both the background flow and the flow
distortions caused by other nearby particles. We use the Taylor
deformation index, D, to characterise the deformation state:

D ¼ ra � rc

ra þ rc
(7)

where ra and rc are the maximum and minimum semi-axes of
the ellipsoid with the same tensor of inertia as the deformed
particle.35 Note that the particle itself does not have an ellip-
soidal shape. In this study, we investigate soft particles that are
spherical in their undeformed state, corresponding to D = 0.
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2.4 Trajectory types

We provide a brief overview of the trajectory types observed in our
previous study. Six different types of trajectories have been
identified in homogeneous pairs of soft particles: Capture, Scatter,
Swap & Capture, Swap & Scatter, Pass & Capture and Pass &
Scatter. A full description of each trajectory type can be found in
Owen and Krüger.20 These trajectories can be categorised based
on two characteristics. The first characteristic is whether the
particles are captured (bound together hydrodynamically) or
scattered. This characteristic is important since a stable pair
cannot form unless the particles are captured. Note that not all
captured particles form a stable pair since some pairs have
oscillating or fluctuating distances within certain bounds.
The second characteristic is whether a close particle–particle
interaction occurs (either one particle passing the other or the
exchange of lateral positions as one particle pushes the other—S-
wapping). This characteristic is important since a particle–particle
interaction can perturb the system, moving particles away from
their equilibrium positions. In suspensions with more particles,
perturbations caused by additional particles could cascade and
cause further interactions with other particles.

3 Results and discussion

We analyse the interaction of a pair of particles with different
softness, characterised by the Laplace number. Particle
interactions can end in scattering (Section 3.1) or capturing
(Section 3.2). The transition between both regimes is more
closely investigated in Section 3.3. Note that all pair formation
occurs within a channel length of 1 cm which is well within the
operating length of real-world inertial microfluidic devices
(approx. 2–3 cm), under the assumption a given particle has a
diameter of 10 mm.

3.1 Pair scatter

We begin our study by investigating the behaviour of two
particles with different softness, La = 10 and La = 100. Both
particles are initially located at their respective lateral equili-
brium positions (also denoted as single-particle equilibrium
positions), zLa=10

eq /h = 0 and zLa=100
eq /h E 0.3. Single-particle

equilibrium positions were obtained through separate simula-
tions involving a single particle in the same geometry and
under the same conditions as in Table 1 (data not shown).
Note that, since one particle is at the centreline in this
particular case, there is no distinction between the linear and
staggered arrangements. The initial axial inter-particle spacing
is dx0 = 10a and sufficiently large so that particles do not
interact initially.19,20 These initial conditions are representative
of likely scenarios within a dilute suspension where particles
are rarely close to each other and have had time to equilibrate
before approaching each other. We arrange the particles in
both possible orders: Leading Soft, where the leading particle is
softer, and Leading Stiff, where the leading particle is stiffer.

The time evolution of the lateral position and axial inter-
particle spacing are shown in Fig. 2(a) and (b) for both the

Leading Soft (grey) and Leading Stiff (blue) configurations,
respectively. In neither configuration a stable pair forms.

In the Leading Soft case, the leading particle moves away
from the lagging particle and no interaction occurs. This
observation is expected since the leading particle is located at
the centre of the channel whereas the lagging particle is off-
centre. As a result, the leading particle has a larger axial velocity
and moves away.

Contrarily, in the Leading Stiff case, the lagging particle,
being on the channel centreline, is faster than and catches up
with the leading particle, which is off-centre. Upon reaching the
leading particle, the lagging particle is able to push the leading
particle farther from the channel centre and pass it. The
initially lagging particle is now leading and moves away from
the initially leading particle, without a pair forming.

Homogeneous pairs (i.e., two particles with the same La)
under the same initial conditions as the heterogeneous pairs
presented in Fig. 2 do not form a stable pair. Instead, since
both particles have nearly the same lateral equilibrium posi-
tion, they move with the same speed and roughly maintain
their initial axial distance.20

3.2 Pair capture

In order to investigate the sensitivity of the pair behaviour to
the softness of the lagging particle, we perform a sweep of the
softness of the lagging particle in the range Lalag = [10,100]. The
softness of the leading particle remains unchanged at Lalead =
100. The initial lateral positions of both particles correspond to
their respective single-particle equilibrium positions which are
shown in Fig. 3(a). For cases where Lalag is large enough for the
lagging particle to be off-centre initially, we consider both
linear and staggered pairs, i.e., zlag,lin

0 = zeq and zlag,stag
0 = �zeq.

We begin with a characterisation of the spatial particle configu-
ration and particle deformation while in a stable pair, before
discussing the transient behaviour during pair formation.

Spatial particle configuration in stable pairs. We find that
the trajectories of pairs transition from a scatter to a capture
type as the softness of the lagging particle decreases. The
transition happens for Lalag E 25, as will be discussed in more
detail later. In all observed cases, the initial arrangement of the
pair is maintained if a stable pair forms. Fig. 3 shows the lateral
equilibrium position of the lagging particle and the axial inter-

Table 1 Parameters used in this study. See Fig. 1 for an illustration of the
set-up. The channel Reynolds number is varied by the body force and
therefore Umax via eqn (3), and the Laplace number is controlled by the
shear elasticity via eqn (4). The liquid density is set to 1 in simulation units

Parameter Value

Re 10
n (1/6)Dx2/Dt
~ka 2
~kb 0.00287
a 16Dx
2h 80Dx
2w 160Dx
L 560Dx
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particle spacing in the pair for all stable pairs identified. A
small difference in lateral equilibrium position of less than 2%
exists between the leading and lagging particle in all pairs (data
not shown). The difference is larger in linear pairs than in
staggered pairs. We also observe that the difference decreases
for both linear and staggered pairs when Lalag increases toward
Lalead = 100.

As Lalag increases, the lateral equilibrium position of the
lagging particle moves farther away from the channel centre
(Fig. 3(a)). This trend is observed for both the linear and
staggered arrangements. However, in all simulated heterogeneous
pairs, staggered pairs converge to lateral equilibrium positions
closer to the channel centre than equivalent linear pairs.

The equilibrium inter-particle spacing is more significantly
affected by the pair arrangement than the lateral equilibrium
position (Fig. 3(b)). The equilibrium spacing is smaller in the
staggered arrangement than in the linear arrangement, con-
firming findings reported by Kahkeshani et al.36 We also
observe that the equilibrium spacing in both arrangements

increases with Lalag. In the staggered arrangement, this increase is
nearly linear with a small variation of E0.5a across the investigated
range of softness, while in the linear arrangement the variation is
non-linear and much larger (E3.0a). This difference in behaviour is
particularly significant in the limiting case of a homogeneous pair,
Lalag = Lalead: In the linear arrangement, no pair forms and the
relative axial speed is very slow (o0.01a per 1000tad, data not
shown). Conversely, a captured pair forms for particles in the
staggered arrangement when La = 100 for both particles.

Particle deformation in stable pairs. The deformation of
both particles is affected by the type of pair arrangement.
Fig. 4(a) shows the Taylor deformation, D, in equilibrium for
both particles for the same cases as in Fig. 3. The Taylor
deformation for a single particle in equilibrium is included
for comparison. We make several observations about the par-
ticle deformation in a stable pair:
� The lagging particle is more deformed when it is softer.
� For the same value of La, the lagging particle is more

deformed when in a pair than as a single particle.

Fig. 2 Time evolution of the (a) lateral positions of the leading and lagging particles and (b) axial inter-particle spacing for the Leading Soft (grey) and
Leading Stiff (blue) configurations for a pair with La = 10 and 100. Particles are initially placed at their respective lateral single-particle equilibrium
positions, and the initial axial inter-particle spacing is 10a. Note that, since the softer particle is initially at the centreline, there is no distinction between
the linear and the staggered arrangements. Visualisations of particle configurations in (c) the Leading Soft and (d) the Leading Stiff configurations in the
centre-of-mass frame. Particles are coloured with respect to their initial positions: the leading particle is red, and the lagging particle is blue. Particles at
earlier times are paler, and particles at later times are more saturated.
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� Despite having a fixed Laplace number (Lalead = 100), the
leading particle features a deformation with a weak depen-
dence on the softness of the lagging particle; the leading
particle is less deformed when the lagging particle is softer.
� Both particles are more deformed when in a linear pair

than when in a staggered pair.
While these observations suggest a link between particle

deformation and equilibrium behaviour, it is not clear if
the change in particle deformation is caused by the particle
softness directly or by the shift in the lateral equilibrium
position shown in Fig. 3(a), i.e., a particle located farther away
from the channel centre is expected to be more deformed
due to the curvature of the velocity profile and the higher
viscous stresses.

To disentangle the effects of lateral position and particle
softness on the resulting deformation within a stable pair, we
first focus on the leading particle with Lalead = 100. We start by
establishing a reference curve Dref(z) for the Taylor deformation
of a single particle with La = 100. To this end, we perform two
separate single-particle simulations with different initial posi-
tions along the z-axis, one located close to the channel centre
and one close to the channel wall. In both simulations, the
particle migrates to the same lateral equilibrium position. We
assume that the deformation time scale is much shorter than
the migration time scale and that the particle deformation is in
equilibrium at each point of the trajectory. Thus, the curve
in the inset in Fig. 4(b) provides the desired reference Dref(z)
at La = 100. The main panel of Fig. 4(b) shows the zoomed-in
region of interest of Dref(z) (also indicated by the black box
in the inset).

In Fig. 4(b), we compare the actual equilibrium deformation
D of the leading particle in each of the stable pairs with the
reference curve Dref(z). The main observation is that the actual
deformation of the leading particle in a linear pair (blue) closely
matches Dref(z) for the same lateral position z, thus indicating
that the lateral position is the main determinant of the particle
deformation. However, the leading particle in a staggered pair
(orange) is slightly but consistently less deformed than Dref(z)
predicts. We can conclude that the deformation of the leading
particle is largely predicted by the deformation of a single
particle with the same value of La at the same position while
the type of pair configuration plays only a minor role. It is
beyond the scope of this work to establish how, in a stable pair,
the softness of the lagging particle affects the lateral equili-
brium position of the leading particle.

Transient behaviour. Fig. 5(a) shows the time evolution of
the Taylor deformation D and the lateral particle position z of
the leading particle in both the linear and the staggered
arrangements for Lalead = 100 and Lalag = 30. Since the leading
particle is initialised without deformation (D = 0) at zeq/h E 0.3,
there is a short time (nearly vertical curve segment) during
which the particle adjusts to the local shear stress, reaching a
deformation value of D E 0.032, in both the linear and the
staggered arrangements.

The subsequent behaviour is different for both arrange-
ments. In the linear pair (blue line), the deformation of the
leading particle closely traces the Dref(z) curve (green line)
while it oscillates and eventually converges to its equilibrium
value (blue circle) close to the reference curve. In contrast, the
deformation of the leading particle in the staggered pair
(orange line) shows a more pronounced departure from the
reference curve with a deviation between D and Dref(z) of up to
25%. In equilibrium, the leading particle in the staggered
arrangement is slightly closer to the channel centre and the
deformation D is less than the reference value at the same
lateral position (orange circle). In both cases, the leading
particle focuses closer to the channel centre than a single
particle for the same value of La (green circle). We hypothesise
that the deformation of the leading particle in the staggered
arrangement is more strongly affected by the presence of the

Fig. 3 (a) Visualisation of pair capture for a staggered pair with Lalead =
100 and Lalag = 40. Equilibrium behaviour of stable particle pairs with
Lalead = 100 and varying Lalag A [30,100]. No pairs form for smaller Lalag. (b)
Absolute lateral equilibrium position (|zeq/h|) of the lagging particle in a
linear pair (blue), in a staggered pair (orange), and a single particle for
comparison (green). (c) Axial equilibrium inter-particle spacing (dxeq/a) in
staggered (orange) and linear (blue) pairs.
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lagging particle since the inter-particle spacing is smaller than
in the linear arrangement.

Fig. 5(b) shows the transient behaviour of the lagging
particle in the same pair as in Fig. 5(a). Here, the green curve

is the reference Dref(z) for a particle with La = 30. The initial
position of the lagging particle equals the lateral equilibrium
position of a single particle with the same value of La, zeq/h E
0.15. As in the case of the leading particle, the lagging particle

Fig. 4 (a) Taylor deformation, D, of particles at their lateral equilibrium positions within a stable pair with Lalead = 100 and varying Lalag A [30,100].
Leading (dashed line) and lagging (solid line) particles in the linear (blue) and staggered (orange) arrangements are compared with a single particle (green).
Note that data is plotted against Lalag while Lalead = 100 is fixed. (b) Taylor deformation of the leading particle (Lalead = 100) for each simulated value of
Lalag plotted against its lateral equilibrium position zeq. Both linear (blue) and staggered (orange) arrangements are shown. The green line in the main
panel and in the inset shows the reference curve Dref(z) obtained from the transient simulation of a single particle with La = 100 which migrates to its
lateral equilibrium position.

Fig. 5 Transient Taylor deformation, D, versus lateral position z for a pair with Lalead = 100 and Lalag = 30 in both the linear (blue) and staggered
arrangement (orange). (a) Behaviour of the leading particle (Lalead = 100) and (b) behaviour of the lagging particle (Lalag = 30). The reference curve Dref(z)
for a single particle with (a) La = 100 and (b) La = 30 is shown as green line. The main panels show the regions of interest while the insets show the whole
reference curves. The leading particle is initialised with D = 0 at z/h E 0.3 and the lagging particle with D = 0 at |z/h| E 0.15, corresponding to the
respective single-particle equilibrium positions.
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initially adjusts to the local shear stress before oscillating and
converging to its equilibrium configuration. It can be seen that
the lagging particle in the linear pair (blue line) closely follows the
reference curve, just as the leading particle does. The lagging
particle in the staggered arrangement (orange line) shows an even
stronger deviation from the reference curve (up to 50%) than the
leading particle. We conclude that both particles in a forming pair
affect each other more strongly in the staggered than in the linear
arrangement, probably due to a closer spatial proximity.

3.3 Transition between scatter and capture

The transition between pair scatter and capture can be understood
in terms of both particle softness and initial particle position.

Role of particle softness. We first investigate the transition
between pair scatter and capture upon changing Lalag. The
Laplace number of the leading particle is kept at Lalead = 100,
and particles are initialised at their respective La-dependent
single-particle lateral equilibrium position with an axial dis-
tance of dx0 = 10a. The trajectories of selected pairs in the linear
and staggered arrangement are shown in Fig. 6. Fig. 6(a) depicts

the trajectories of the lagging particle in both the linear and
staggered arrangement, and Fig. 6(b) and (c) show the trajec-
tories of the leading particle in the linear and the staggered
arrangement, respectively. It can be seen that, for both the linear
and staggered arrangement, the trajectory type (see Section 2.4
for classification) transitions from Pass and Scatter to a Capture
trajectory as Lalag increases. Note that, as explained in Section
3.2, the case Lalag = Lalead = 100 in the linear arrangement does
not form a stable pair and is not shown.

All scatter trajectories (grey) lead to the staggered arrangement,
irrespective of the initial arrangement, i.e., two particles in the
Pass and Scatter mode that are initially on the same side of the
channel end up on opposite sides. We do not observe any Pass
and Scatter events resulting in a linear arrangement. In a denser
suspension of particles where multiple encounters between the
same two particles might occur, the preference for staggered
arrangements might favour the emergence of staggered (rather
than linear) trains, a hypothesis that could be tested in the future.

The trajectories of particles that form a captured pair show
damped oscillations, both axially and laterally, until a stable

Fig. 6 Trajectories of (a) the lagging and (b) and (c) the leading particle for La = 100 and various values of Lalag. Grey curves denote scatter events, blue
curves the formation of a linear pair, and orange curves the formation of a staggered pair. Dashed lines indicate the curves at the critical Laplace number
Lacr for which a pair just forms. The final equilibrium positions of the particles in a stable pair are indicated by circles. Lines are annotated with the Laplace
number of the lagging particle in (a). Particles are initialised at their respective La-dependent single-particle lateral equilibrium positions with an axial
distance of dx0 = 10a. For better visibility of the trajectories of the leading particle, the (b) linear and (c) staggered arrangements are shown in separate
panels. The vertical black dotted lines indicate the axial position of the leading particle in (a) and the lagging particle in (b) and (c).
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equilibrium configuration is reached. These spiral trajectories have
been reported in previous studies of particle pairs.20,37,38 We
observe that, as Lalag increases, the oscillation amplitude decreases.
This decrease coincides with the increasing equilibrium spacing
dxeq visible in Fig. 3(b) and in Fig. 6(a and b). Presumably, the
oscillations are less pronounced for larger dxeq since particles
interact less strongly when they are farther away from each other.

The transition between trajectory types occurs between
Lalag = 20 and Lalag = 30 for both arrangements. We define a
critical Laplace number of the lagging particle, Lacr, where the
transition from scatter to capture occurs. We find that Lacr E
27 in the linear and Lacr E 23 in the staggered arrangement.
The difference between both critical Laplace numbers corre-
sponds to E15% variation in softness, well within the natural
variation in cell properties.39 So far it is unclear whether the
transition from scatter to capture is caused by the particle softness
directly or by the softness-dependent initial particle position.

Role of initial particle positions. The transition point
between scatter and capture types coincides with the largest
gradient in lateral equilibrium position as shown in Fig. 3.
Therefore, the trajectory type might depend on the initial
lateral position, irrespective of particle softness. To test this
hypothesis, we perform two additional simulations in the
Leading Stiff configuration. In both simulations, the leading
particle remains at Lalead = 100, while the lagging particle has
either Lalag = 20 or 30. Note that the critical Laplace number for
both the linear and staggered configuration lies between these
two values. We swap the initial positions of the lagging particle
in both simulations such that zLa=20

0 = zLa=30
eq and zLa=30

0 = zLa=20
eq .

In Fig. 7 we compare these additional trajectories to those
obtained when the lagging particle is initially located at its own
lateral equilibrium position. We can see that Lalag = 20 now
leads to a capture trajectory and Lalag = 30 to a scatter trajectory.

These results show that the likelihood of a pair forming
from particles of different softness also depends on the spatial
configurations of the particles at the time of their encounter.
In a dilute suspension, particle interactions are rare and it can
be assumed that particles have time to equilibrate. If a scatter
event happens, particles are likely to migrate back to their
equilibrium positions before another particle interaction
occurs. However, in a denser suspension, particle interactions
occur more often and, therefore, after a scatter event occurs,
particles are less likely to have migrated back to their equili-
brium positions before interacting with another particle. As a
result, the range of spatial configurations at the time of particle
interactions is larger in a dense suspension. In our previous
work, we have shown that the formation of homogeneous soft
particle pairs strongly depends on the spatial configuration
during the encounter.20 We have also shown that, in the case of
heterogeneously sized particles that would not form pairs
under equilibrium conditions on approach, stability bands
exist where a lagging particle in an off-equilibrium position
may form a pair with a leading particle that is in equilibrium.19

Thus, we hypothesise that particle softness plays are larger role
in pair formation in dilute suspensions while spatial configu-
ration and softness both contribute in denser suspensions.

Disentangling the roles of softness and initial positions. To
disentangle the effects of initial position and particle softness,
we investigate the transient particle deformation for all cases
from Fig. 7. Fig. 8 shows the resulting deformation parameter D
versus instantaneous axial inter-particle spacing dx and lateral
particle position z. We compare the deformation of each
particle to the reference deformation Dref(z) of an identical
single particle (dotted lines). We make several observations:
� For the linear arrangement, if a pair forms, both particles

closely trace the deformation characteristics Dref(z) of a single
particle with the same value of La, independently of the initial
position of the lagging particle.
� For the staggered arrangement, if a pair forms, both

particles tend to be less deformed than Dref(z) predicts, until
both particles form a stable pair, independently of the initial
position of the lagging particle.

Fig. 7 Effect of initial position on pair formation. The leading particle has
Lalead = 100 (not shown), and the lagging particle has either Lalag =
20 (red) or 30 (cyan) in the linear (z0 4 0) and staggered arrangement
(z0 o 0). The initial position of the lagging particle is either according to
(a) its single-particle equilibrium position or (b) swapped such that
zLa=20

0 = zLa=30
eq and zLa=30

0 = zLa=20
eq .
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� For all cases where a pair does not form, the deformation
of the particles becomes significantly larger than Dref(z) at some
point in time.

We conclude that the actual deformation of the particles
plays an important role in the pair formation process, in
particle during scatter events.

Fig. 8 Transient Taylor deformation D versus instantaneous axial inter-particle distance dx (left column) and lateral particle position z (right column). The
simulations are identical to those in Fig. 6. The leading particle (dashed line) has Lalead = 100 in all cases. The lagging particle (solid line) has either Lalag =
20 (red) or 30 (cyan). The grey lines show the trajectories of the particles initialised in their single particle equilibrium positions, while the coloured lines
show the behaviour when initialised at their off-equilibrium positions. The black dotted lines show the reference curves Dref(z) obtained from the
transient simulation of a single particle with La = 20, 30 and 100 (labelled).
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To demonstrate the role of deformation in pair formation
further, we compare the actual deformation with the expected
deformation for a given lateral position using the single-
particle reference curves Dref(z) for the leading and lagging
particles during their interaction. Fig. 9 shows the transient
Taylor deformation of the leading and lagging particles
with respect to axial inter-particle spacing for Lalead= 100 and
Lalag= 20. The actual transient Taylor deformation profiles
are identical to those included in Fig. 8(a) and (c). Initial linear
and staggered arrangements are considered along with the
lagging particle being initialised at its lateral equilibrium
position and off-equilibrium. Reference curves Dref(z) for the
leading and lagging particles are shown in dotted lines.
The grey-shaded area shows the region where the axial centre-
to-centre distance between both particles is less than the
undeformed particle diameter, thus indicating the region
where particle silhouettes partially overlap when observed
along the z-axis.

We first consider the situations where no stable pair forms
in Fig. 9(a) and (b). From Fig. 8, we have established that, when
a stable pair does not form, the deformation of the particles

becomes larger than predicted by the reference curve Dref(z).
Here, we observe that, once |dx| o 2a, the deformation of both
particles is larger than predicted by the reference curve. How-
ever, as long as |dx| 4 2a, the actual deformation profile closely
follows that of the reference curve. Once the lagging particle
overtakes the leading particle and begins to move away, the
actual deformation returns to following the reference curve.
From the available data, we cannot conclude whether the
scatter events happen because particles are strongly deformed
or particles deform more strongly because they overtake each
other and need to negotiate the available space.

Finally, we consider the situations where stable pairs form,
with initial linear and staggered arrangements in Fig. 9(c) and
(d), respectively. In the staggered case, we observe that the
actual deformation profile follows the reference curve closely,
however, some deviations occur during the damped oscillation.
This deviation can be attributed to the small axial distance
(dx o 2a) between the particles during the oscillation. In the
linear arrangement, the axial distance between stable pairs is
around double that of a staggered pair.36 As a consequence, the
axial distance between the particles does not reach below 2a

Fig. 9 Transient Taylor deformation D versus instantaneous axial inter-particle distance dx for leading (dashed) and lagging (solid) particles compared to
the expected deformation using the reference curves Dref(z) (dotted) obtained from the transient simulation of a single particle. The reference curves for
the leading and lagging particles are La = 100 and La = 20 respectively. The grey area indicates the inter-particle distance where the particles overlap in
their undeformed state.
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and the actual deformation closely matches the reference curve
for the entire trajectory.

3.4 Implications for reduced-order models

Our results show that, unless particles are very close (dx o 2a),
their deformation is essentially determined by that of isolated
particles with the same properties at the same location. If a pair
forms in a linear arrangement, particles in our investigated
range do not reach distances smaller than 2a, while pairs in a
staggered arrangement only briefly reach distances smaller
than 2a during damped oscillation, before reaching an axial
equilibrium distance larger than 2a. Although the trajectories
of particles can be strongly affected by the presence of other
particles over wider distances, the actual particle deformation
only deviates from the reference curve derived from the beha-
viour of a single particle when particles are very close. Our
findings, thus, open up the opportunity to develop reduced-
order models for particle behaviour in pairs and trains, largely
based on the behaviour of a single particle.

Asmolov40 developed a model for the inertial lift force on a
rigid, spherical particle:

FL = fLrU2a4/H2 (8)

where fL is the lift coefficient depending on Reynolds number and
the lateral position of the particle. However, the lift coefficient
also depends on the particle shape which varies in the case of a
deformable particle. Our finding that the particle deformation
during pair formation largely follows the behaviour of a single
particle could be exploited to modify reduced-order models, such
as eqn (8), to include the effect of transient particle shape on
inertial lift even in situations where particles are not isolated.

4 Conclusions

The formation of pairs of particles or cells of different types in
microfluidic channels can be desired (for example, for the
generation of compound particles) or detrimental (for example,
for the separation of different particle species). Particle pairs can
be classified into staggered pairs (particles located on opposite
sides of the channel) and linear pairs (particles located on the
same side of the channel). It has been reported that linear
particle pairs do not form over a wide range of parameters when
both particles have the same properties. However, in reality, cells
are generally heterogeneous. Earlier work has shown that a slight
heterogeneity in size can lead to the formation of linear pairs. It
is still unclear what role the heterogeneity of particle softness
plays in the formation of pairs.

We use an in-house lattice-Boltzmann–immersed-boundary–
finite-element solver to simulate a pair of particles with differ-
ent softness flowing through a pressure-driven straight channel
with a rectangular cross-section. Particle softness is charac-
terised by the Laplace number, La, where the rigid limit
corresponds to La - N. Both linear and staggered arrange-
ments are considered. We distinguish cases where the leading
particle is softer (Leading Soft) and where the leading particle is

stiffer (Leading Stiff). Apart from the outcome of particle
interactions, either scattering (no pair forming) or capturing
(pair forming), we investigate the transient lateral positions,
axial inter-particle spacing, and particle deformation. In order
to compare particle behaviour to that of a single particle in
isolation, we introduce reference curves consisting of the
deformation profile of a single particle as it migrates across
the channel cross-section.

We find that softness heterogeneity significantly affects the
pair dynamics. Particles generally do not form a pair when the
leading particle is softer since the softer particle tends to
equilibrate closer to the channel centre where it moves faster
and, thus, away from the lagging particle. When the leading
particle is more rigid, the outcome of the interaction depends
on the softness of the lagging particle: if the lagging particle is
sufficiently soft, it catches up with the leading particle and
overtakes it, without a pair forming. When the softness of the
lagging particle is reduced beyond a critical Laplace number, it
still catches up with the leading particle but is able to form a
stable pair. For any pair that forms, both particles have nearly
identical lateral equilibrium positions, even if their softness is
significantly different. Interestingly, the softness of the lagging
particle can alter the lateral equilibrium position of the leading
particle. Also, we find that the softness of the lagging particle
strongly affects the equilibrium axial inter-particle spacing in
the linear arrangement, while the distance in the staggered
arrangement is nearly independent of the softness of the
lagging particle.

We find that, for the same value of La, the lagging particle is
more deformed when in a pair than as a single particle. Despite
having a fixed Laplace number in our study (Lalead = 100), the
leading particle is less deformed when the lagging particle is
softer. It is also observed that both particles are more deformed
when in a linear pair than when in a staggered pair. The
primary mechanism for the change in particle deformation in
a pair compared to an isolated particle is caused by the shift of
the lateral equilibrium position to a region with different shear
stress. In particular for staggered pairs, the presence of the
other particle has an additional non-trivial effect on the defor-
mation of the other particle.

The outcome of the particle interaction depends on both
particle softness and initial particle positions. We demonstrate
that, when pairs do not form, particles tend to deform more
than when they are in isolation. We find that particles ending up
in linear pairs closely match the deformation behaviour of a
single particle at a given lateral position during pair formation.
For staggered pairs, however, the single-particle curves do not
predict the particle deformation well since particles approach
each other more closely during the formation of a staggered pair.

We consider particles with different softness but with the same
confinement (0.4). We expect that pair formation will be enhanced
with increased confinement, and future work could test this
hypothesis. Future work should also consider particles with
different confinement and softness to disentangle these effects.

Our work has important implications for the understanding
of collective particle dynamics in inertial microfluidics and the
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design of microfluidic devices for particle manipulation. For
example, our finding that particle deformation follows the
behaviour of a single particle at the same location if the other
particle is at least one diameter away brings us closer to the
development of reduced-order models. Improved reduced-
order models are crucial for the accurate simulation of inertial
microfluidics in less computationally demanding simulations
where particles are not fully resolved.
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28 T. Krüger, D. Holmes and P. V. Coveney, Biomicrofluidics,

2014, 8, 0–15.
29 Y. H. Qian, D. D’Humières and P. Lallemand, Europhys.

Lett., 1992, 17, 479.
30 P. L. Bhatnagar, E. P. Gross and M. Krook, Phys. Rev., 1954,

94, 511–525.
31 Z. Guo, C. Zheng and B. Shi, Phys. Rev. E: Stat. Phys.,

Plasmas, Fluids, Relat. Interdiscip. Top., 2002, 65, 6.
32 B. Owen, K. Kechagidis, S. R. Bazaz, R. Enjalbert, E. Essmann,

C. Mallorie, F. Mirghaderi, C. Schaaf, K. Thota, R. Vernekar,
Q. Zhou, M. E. Warkiani, H. Stark and T. Krüger, Adv. Phys.: X,
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