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The introduction of neutrally wetting colloidal particles into coarsening binary fluids is known to arrest
the dynamics of the phase separation, as the colloids tend to be captured by the growing interfaces to
reduce the free energy of the system. This phenomenon has often been studied in systems with
symmetric fluid viscosities. In this study, we investigate the behavior of colloidal particles introduced into
asymmetric binary fluids with a viscosity contrast. Our results show that due to the broken symmetry the
colloidal particles more easily escape from the interface towards the more viscous fluid, which reduces
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the lifetime of the jammed phase. Moreover, the presence of colloidal particles near the interfaces
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1 Introduction

Manipulation of non-equilibrium processes is a convenient tool
for designing the self-assembly of novel meso-structured
materials. Directing the assembly protocol provides con-
trolled access to metastable configurations that often exhibit
more robust mechanical properties than their equilibrium
counterparts. A classical example of this process is spinodal
decomposition of a binary mixture, where two immiscible
fluids, initially homogeneously mixed, start phase separating
and forming domains with a variety of topological features. The
morphologies of the domains and their time evolution depend
on the proportion of the two fluids and their physicochemical
properties. Symmetric binary mixtures (composed of liquids
with the same properties) have been extensively studied. If the
two fluids are present in a similar amount, the system develops
interpenetrating domains that coarsen in time following a
universal dynamic scaling law.* If one of the two liquids is a
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promotes the formation of micro-droplets with typical sizes comparable to the colloids.

majority phase, then droplets of the minority phase form,
which subsequently grow and coalesce.® The addition of col-
loids with similar affinities for the two liquid phases strongly
affects the demixing dynamics, and the stability of the observed
structures. Previous studies have established a kinetic pathway
to a bicontinuous interfacially jammed emulsion gel (Bijel)
composed of two interpenetrating bicontinuous fluid domains
frozen by a densely jammed monolayer of colloidal particles at
the fluid-fluid interface.® Bijels are soft-solid materials’ with
highly tunable mechanical properties such as elasticity.
Asymmetric binary mixtures composed of two components
with different physical properties (closer to real-world situa-
tions) have been much less explored. Experiments with particle-
stabilized asymmetric binary mixtures® suggest that the viscos-
ity contrast, in combination with the properties and amount of
the colloidal particles, can be a good control parameter govern-
ing the complex assembly process that leads to the asymmetric
formation of droplets of one fluid within the other. In this
paper, we perform lattice Boltzmann simulations to computa-
tionally investigate the formation of bijels and droplets in
particle-stabilized binary fluids with a viscosity contrast. We
first compare the separation process of a colloid-free binary
mixture with asymmetric viscosities and establish how the
asymmetry in the fluid viscosity affects the coarsening route
and the dynamic scaling law with effective viscosity as a
parameter. Later we analyze how the introduction of colloidal
particles with various packing fractions slows the dynamics of
the separation process. At constant effective viscosity and
colloidal packing fraction, we explore the effect of neutrally-
wetting colloids on the structure and stability of the fluid

This journal is © The Royal Society of Chemistry 2024
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domains, and how such particles can be used to manipulate
and control the formation of arrested morphologies.

2 Methods
2.1 The model

Our system consists of colloidal particles of radius a dispersed in
a binary fluid mixture undergoing spinodal decomposition. We
use a lattice-Boltzmann approach to model a suspension of
colloidal particles® and to describe the fluid hydrodynamics that
recovers the Navier-Stokes equations.’® The phase separation
process is captured solving the Cahn-Hilliard equation''?
through a phase-field variable, ¢, representing the composition
field of the binary fluid. The coupling between the composition
field, and the hydrodynamic stress has been introduced
elsewhere.”> We confine our study to fluids with equal density
0, but with a viscosity contrast A = ny/nL, where g (high) and #;,
(low) are the viscosities of the two components. Within the
Lattice-Boltzmann approach, different viscosities are introduced
as different relaxation times for each fluid component.

The phase diagram of the binary mixture is controlled by the
Landau free energy, F{¢] = Ap*/2 + B*/4 + k(V $)*/2, where ¢ is
the local order parameter defined across the system. The
parameters A and B control the stability of the mixture; the
specific choice B= —A4 > 0 leads to demixing with equally stable
states ¢ = +¢*. The fluid-fluid interfacial tension is given by ¢ =
(—8x/9)*%, and the interface thickness by ¢ = (2x/B)"%. We
choose a deep quench in which the fluid-fluid interface is
sharp on the scale of the colloidal particle, ¢ < a.

The system is described by a lattice, composed of fluid and
solid nodes, to describe the liquid mixture and suspended
colloids. The lattice-Boltzmann and the Cahn-Hilliard equations
are solved on the liquid nodes. Solid nodes are identified from the
positions of the geometric centers of the colloidal particles. The
surface of the colloid is determined by boundary links, which
connect a solid node with a fluid one. The fluid nodes connected
to a solid are referred to as surface nodes. The coupling between
the fluid dynamics and the motion of the colloidal particles is
provided by the bounce-back on links method.”*™"*

Fluid particles moving along a boundary link are reflected by
the colloidal surface. As a result of the collision, momentum is
locally exchanged between the fluid and the colloidal particles.
The total hydrodynamic force on each colloid is computed by
taking the sum over all boundary links defining the particle and
used to compute the colloidal center of mass velocity in a self-
consistent approach. At each time step, the position of the
colloid is updated following an Euler forward step considering
the old and updated velocities.

2.2 Simulation details

We fix the bulk free energy parameters to B = —4 = 0.002, and
k = 1.4 x 1072 resulting in equilibrium liquid phases at ¢* =
+1, interfacial thickness ¢ = 1.14, and fluid-fluid surface
tension ¢ = 1.58 x 10>, Colloids are neutrally wetting, and
are introduced at a packing fraction @ = 4Nn(a/L)*/3, where
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Fig. 1 Snapshots of the interface separating the two fluids with the
coloring indicating the component of the fluid at each side of the interface.
The fluid with low viscosity . = 0.0068 is shown in red and the fluid with
high viscosity ny = 0.103, with 4 = nu/n. = 15 is shown in blue. (a) and (b)
Are captured at time 8 x 10% and have colloidal packing fractions @ = 0,
and @ = 0.02, respectively. Systems (c) and (d) are captured at time 2 x 10°,
and have colloidal packing fractions @ = 0, and @ = 0.02, respectively.

N is the total number of colloids of radius a = 4.3 in
lattice units.

We perform lattice Boltzmann simulations'® using Ludwig
on a cubic lattice of L = 256 sites with periodic boundary
conditions. All simulations start from an initial homogeneous
fluid with zero meaning uniform fluctuations up to £10% of the
equilibrium value, ¢*. Colloids are initially positioned randomly
avoiding overlaps. Examples of the simulations with and without
colloidal particles, and their visualization, are shown in Fig. 1. The
liquid-liquid interface is obtained as the surface where ¢ = 0, as
interpolated from the nearby lattice nodes where ¢ changes sign.
The interfacial region corresponds to the volume of the system
where |¢| < 1/2. In Fig. 1, we visualize the liquid-liquid interface
through two surfaces of constant values of the order parameter
¢ = —0.1 (red), and ¢ = 0.1 (blue). Colloidal particles are
represented as green spheres. At short times, the snapshots in
Fig. 1(a) and (b) show that the system is coarsening and colloidal
particles are slowly captured by the interface of the growing
domains. Even at a low packing fraction of colloidal particles
(@ = 0.02) we observe a large difference in the behavior at longer
times: from the snapshots in Fig. 1(c) and (d) it is apparent that
the colloidal particles adsorbed at the interface slow down the
coarsening process. Additionally, some colloids that escape the
interface can be found covering droplets in the bulk of the large
domains.

10,17

2.3 Measuring the domain size

In the study of the kinetics of phase separation, it is important
to consistently identify characteristic domain sizes. Since the
systems we study typically exhibit a small number of domains
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of different shapes and sizes, the standard methods relying on
Fourier transforms,'®'® and the geometry of interfaces**® do not
resolve the characteristic length scales with sufficient precision.
Here, we apply the so-called chord length method.**">* We draw
straight lines across the system, and define the segments
belonging to the same fluid component (¢ > 0 or ¢ < 0).
Analyzing the statistics P(¢) of the segment lengths / enables us
to extract the typical length-scales present in the system. In a
separating system with many growing domains, the typical
domain size is well captured by the mean (¢) = [[¢P(¢)]d¢. The
domain size evolution follows three major stages: (i) order
parameter diffusion and initiation of domains, T < Ty, (ii)
viscous domain growth regime, and (iii) saturation regime, T >
Tsar, featuring macroscopic phase separation controlled by the
finite system size. The initial waiting time Tj,; depends on the
initial conditions and in order to study the universal properties
of the domain growth dynamics, we choose a sufficiently large
time to avoid the regime (i). Empirically (/(Tinir)) = 8 proves to be
a robust choice.

3 Results

Before studying droplet formation with different fluid visco-
sities, it is informative to determine an effective viscosity of the
system and identify a characteristic temporal scale of the
coarsening process. Combining the three relevant physical
quantities in a symmetric binary fluid: viscosity, surface ten-
sion, and density, the scaling of the characteristic length and
time scales can be deducted. As shown in ref. 4, the universal
scaling is characterized by L, = #*/(pc), and Ty = 1°/(pc®). In
asymmetric fluid mixtures, there is no a priori knowledge of
whether there exists a universal scaling with a single pair of
characteristic time and length scales, and if yes, how the
different viscosities are combined to construct T, and L,. One
would expect that the relevant effective viscosity would depend
on the details of the model, i.e., on how the viscosity of each
component depends on the binary fluid order parameter ¢. In
1:1 incompressible binary mixtures where viscosity contrast is
introduced by a linear composition model 5(¢) = (¢ + 1)/2n, +
(1 — ¢)/2ny, Henry and Tegze>* compared three simple forms of
effective viscosity: the arithmetic mean, nl = (e + nu)/2, the

geometric mean nﬁ%@ = /MMa, and the harmonic mean 1/&) =
(1/n1, + 1/1u)/2, the latter also known as Onuki’s formula.>® They
found that ng%% is the best among the three candidates in
collapsing the growth rate onto a single curve d//d¢ for a certain
range of effective viscosity values (in a large viscosity regime).
An alternative to the linear model of fluid viscosity has recently
been presented by Gidituri et al.>® where an Arrhenius model
n(p) = pam e, (1=9)2 g explored with a lattice Boltzmann
environment. We follow Ledesma et al?>’ and perform the
lattice Boltzmann scheme using viscosity that changes quickly
at the interface: n(¢) = nul(—¢) + n.0(¢), where 0(¢) is the
Heaviside step function. This choice is convenient since it
prevents the appearance of interfaces with viscosities different
from the bulk domains.
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Fig. 2 Dynamic scaling of the typical domain size, at & = 0, using the
arithmetic (a), geometric (b), and harmonic (c) mean for the effective
viscosity. The dashed line corresponds to the universal scaling law, /Ly =
0.063t/T,, for a symmetric mixture.* The viscosity values are displayed in
the upper part of Table 1. The values of Ly and To are computed separately
in each panel, using the corresponding effective viscosity. The symbols are
colored by the viscosity contrast, 4 = nu/n.

We examine if the coarsening process in our asymmetric
model follows a universal scaling law, which would enable us to
determine the effective viscosity of the mixture. We follow the
temporal evolution of the size of the fluid domains for a phase
separating mixture starting from a homogeneous state. In Fig. 2
we show the growth of the domain length, //L, with the scaled
time ¢/T,. We compute Lo = fee’/(00), and T = neg’/(007) Lo using
the three simple forms of effective viscosity introduced above.
We compare the growth process to the linear universal scaling
law, /Ly ~ t/T,, as observed in symmetric binary mixtures.* In
our simulations we fix the surface tension, and vary #y and #;,
between 0.006 and 1.5, using the parameters listed in Table 1.
The chosen range of parameter values allows us to cover five
decades in dimensionless domain sizes compatible with the
linear growth regime for symmetric mixtures (/L, < 100).

We observe that the universal scaling characterizing sym-
metric mixtures® is roughly recovered in all three cases. How-
ever, there are visible deviations from it. The curve obtained
with the arithmetic mean hardly deviates from linear behavior
in the entire range. It slightly overestimates the domain sizes
for viscosity values below 1y ;, < 0.1 and underestimates them

Table 1 Values for the viscosities simulated in Fig. 2 (upper part), and Fig.
3and 4 (lower part). As an illustration, the viscous length Lg, and time Tg are
shown using ng as the effective viscosity

Nu nL A rl(e?)f Ly To

1.5 0.1 15 0.8 400 2 x 10°
1.0 0.1 10 0.55 189 65000
0.1 0.01 10 0.055 1.89 65

0.1 0.0066 15 0.053 1.778 59

1.03 0.0688 15

1 0.1 10

0.917 0.183 5 0.55 189 65 000
0.733 0.367 2

0.55 0.55 1

This journal is © The Royal Society of Chemistry 2024
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for ny,, > 0.1. The geometric mean, ngg&, in contrast, is a good
match for large viscosities, but exhibits non-linear growth
behavior and underestimates the domain growth rate for low
viscosities. The harmonic mean seems to be the worse of the
three. Comparing our observations to those of ref. 24 reveals
some qualitatively similar trends, however, their evaluation was
done at much larger viscosities and with a different model from
ours, so quantitative comparison is not productive. We con-
clude that, even though the dynamic scaling results are not
completely conclusive in identifying the optimal form of the
effective viscosity, the scaling with the arithmetic average is
reasonably close to the universal curve. We thus choose the
arithmetic average as an approximation for the effective visc-
osity of the system. In the following, Lo, Ty and #¢ will refer to
the quantities derived using #2 as the effective viscosity.

To explore the effect of colloidal particles on the separation
process, we compare the growth of the domain size, [(¢), with
different colloidal packing fractions, @, and different viscosity
contrasts, 4. To ensure that phase separation kinetics is domi-
nated by viscosity, the characteristic length L, must be larger
than the typical domain size, and the characteristic time, T,
must be large to keep the typical velocity V, = Ly/T, small
enough. Accordingly, we set #e¢ = 0.55 with Ly = 190, and T, =
65000, Vo, = 2.9 x 10>,

Colloidal particles significantly slow down the kinetics of
phase separation, as is obvious from the inset in Fig. 3(a),
which depicts the dynamics of the domain size, (¢)/L,, for a
fixed 4 = 10 and varying colloidal packing fraction .

The results in Fig. 3(a) for ¢ = 0.2 and varying A reveal three
kinetic regimes in system evolution: (i) domain formation and
linear growth, ¢/T) < 5, (ii) slow-down regime, 5 < t/T) < 30,
and (iii) domain growth arrest for /T, X 30. The viscosity
contrast has a strong effect on the arrested regime. For 1 = 1
(purple symbols), the complete arrest of domain growth leads
to a gel-like bicontinuous phase, called bijel.® This regime has
not been reported before. We managed to identify it since we
have covered timescales that are an order of magnitude larger
than in the previously reported studies.®?® As 1 > 1 the stability
of the bijels is reduced, and a slow kinetic growth is observed in
this third regime. The inset of Fig. 3(a) also shows that
increasing @ in asymmetric mixtures does not affect the
kinetics of phase separation but decreases the domain size at
which the crossover to the arrested regime takes place.

A detailed analysis of the chord length probability distribu-
tion, P(¢), for @ = 0.2 and 1 = 1 (Fig. 3(b)), and = 10 (Fig. 3(c) and
its inset), reveals the formation of small domains with sizes
below ¢/ = 10. The temporal evolution of the chord length
distributions is qualitatively different in the two cases. In a
symmetric binary fluid the number of small domains stabilizes
at long times (data not shown). The apparent domain size
reduction is due to the droplet formation that alters the average
domain size in two ways: by adding smaller domains in the
distribution as seen by an increase in P(/) at low values, and by
splitting the larger domains in multiple segments as seen by
introducing a shoulder in the distribution, and by reducing the
long segments exponential decay length. In an asymmetric

This journal is © The Royal Society of Chemistry 2024
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Fig. 3 (a) Domain size /Lo at packing fraction @ = 0.2 for different

viscosity contrasts 4 at fixed nerr = 0.55. The inset shows the effect of
varying the colloidal packing fraction @ at constant viscosity contrast A =
10. (b) and (c) Chord length probability density at ® = 0.2, 2 = 1, and 10,
respectively. Shades of red and blue indicate different measurement times
t/To = 20 for light, and t/To = 60 for dark tones. Blue (red) colors indicate
the results for the high (low) viscosity fluid. The inset in (c) shows the
probability density for the unscaled chord length /.

mixture, although we observe more droplets in that case, the
fluid domains continue growing as shown by both the increase
of the decay length of the exponential tail and the displacement
of the peak of the P(/) to larger ¢ values. Systems at large
packing fractions form the bijel structure but the viscosity
contrast accelerates the slow relaxation process towards the
complete phase separation.

To visualize the structuring of the fluid, and colloidal
particles, we present cuts of the system at constant z = z,, values
(see Fig. 4) at different stages of the evolution, ¢/T, = 20, 60. The
fluid regions in the figure are colored as follows: if the lattice
element is a part of a macroscopic percolating domain, it is
colored in pale red (for n, component) or pale blue (ny);
similarly, the smaller domains are colored in dark red (i)
and dark blue (7y). A colloidal particle is visualized if its center
lies within one radius from the selected plane (|z; — zo| < a).
The apparent radius of the displayed colloidal particle is given
by r; = (@* — (z; — 20)?)"?, the colloids are shaded in grey
according to the module of their instantaneous velocity |V;|/V,.
The instantaneous velocity of the colloids trapped at the inter-
face is a convenient probe for the temporal evolution of the
corresponding domains. At packing fraction ¢ = 0.2 (Fig. 4(b)
and (d)), the instantaneous velocity of the particles trapped at
the interface is quite different between the symmetric (1 = 1)

Soft Matter, 2024, 20, 5564-5571 | 5567
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Fig. 4 Two dimensional cuts of the system at constant z, for negs = 0.55 at t/To = 20 or = 60 as indicated by the labels. The macroscopic, and percolating
clusters are identified by light red, and light blue colors, for the low and high viscosity fluids, respectively. The droplets are highlighted with saturated red
and blue patches. Colloidal particles whose centers of mass r. = (X, Ve, Zo) lie within one radius from the plane of view, (|z. — z,| < a), are visualized by
circles with apparent radius proportional to their distance to the plane, and shaded in grey-scale according their speed.In(a) A=1, ®=0.1,in(b) A =1, & =

0.2,in(c)A=10,¢ =01, andin(d) 2 =10, ¢ = 0.2.

and asymmetric (4 = 10) mixtures, which indicates different
domain dynamics: in asymmetric mixtures the colloids are
advected two- to three-times faster than in the symmetric mixtures.

To gain further insight, we have analyzed the fluid and
colloidal velocities both in the bulk (lattice nodes with |¢| >
0.5), and at the interface (|¢| < 0.5). Colloids are classified as
interfacial if at least one of their surface nodes lies in the
interfacial region. In Fig. 5 we plot the time evolution of the
velocities of fluid phases and colloids - first in the bulk regions
(a) and (b), and separately in the interfacial region (c) and (d).
The bulk fluid velocities, Fig. 5(a) and (b), show a non-
monotonous behaviour revealing three kinetic regimes in sys-
tem evolution, which correlate with the observations in
Fig. 3(a). In the domain growth regime, /T < 10, the fluid
and colloidal velocities quickly decrease from their initial
values, both in symmetric and asymmetric mixtures (see also
the inset of Fig. 5(a)). For symmetric mixtures, the slow-down
regime is characterized by a plateau with essentially constant
values of fluid velocities, followed by an increase that eventually
converges to a second plateau at large times. The transition
between the second and third regimes is associated with a
structural rearrangement of the interfacial colloids, which is
reflected in the non-monotonous behaviour of the interfacial
fluid velocity (a peak at t/T, ~ 25 in Fig. 5(d)). In asymmetric
mixtures, the bulk fluid velocities behave qualitatively differ-
ently: they are larger in the high viscosity phase, and the
plateau values are less clearly expressed than in the symmetric
case. In order to understand this behaviour better, we com-
puted the number of colloids that reside in the high viscosity

5568 | Soft Matter, 2024, 20, 5564-5571

fluid, Ny, in the low viscosity fluid, Ny, and in the interface
region, N;. Clearly, N = Ny + Ny, + Ny, and the corresponding
colloidal fractions are {; = Ni/N, k € {L,H,I}. In Fig. 6(a), we show
their time evolution for symmetric (dashed lines) and asym-
metric mixtures (solid lines). We observe that in symmetric
mixtures in the entire simulation time the colloids predomi-
nantly reside at the interface. In the second and third kinetic
regime, the colloids are symmetrically expelled into the bulk at a
small rate, which is consistent with a gel-like behaviour of the
bijels.® In contrast, in asymmetric mixtures the colloids are
expelled from the interface at a higher rate, and preferentially
into the high viscosity bulk phase. This can be attributed to the
asymmetric position of the colloids at the fluid interface, which
is shown in Fig. 6(b), where we plot the average distance of the
centers of the colloids from the fluid—fluid interface.

We calculate the dimensionless distance J; of a colloid i
from the liquid interface by first identifying those surface
nodes (fluid nodes in contact with the colloid i) that lie within
the interfacial region. This set of nodes, denoted as {q; 1}, can be
thought of as representing an extended object in three dimen-
sions. We use the singular value decomposition technique® to
determine the principle axes of this kind of object and identify the
axis that describes the normal to the interface, N. By convention,
the normal is pointing into the low viscosity phase. Once we know
the direction of the normal to the interface at the position of the
colloid X;, we can calculate the distance J; = (Ni-(q,-yl — X)))/a.
According to our convention, the positive values of J; imply
colloids residing predominantly in the high viscous phase.
Fig. 6(b) shows that in the asymmetric mixtures the interfacial

This journal is © The Royal Society of Chemistry 2024
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Fig. 5 Averaged velocities of both fluid phases and of colloids for ne =
0.55 and @ = 0.2. Red: low viscosity fluid, blue: high viscosity fluid, purple:
colloids residing in low viscosity fluid, cyan: colloids residing in high
viscosity fluid, orange: colloids trapped in the interfacial region. (a) and
(b) Bulk fluid and colloids in the bulk fluid phases; (c) and (d) fluids in the
interfacial region and interfacial colloids. The left column (a) and (c) is for
asymmetric mixtures with viscosity contrast 4 = 10, and the right column
(b) and (d) for symmetric mixtures (1 = 1). The inset in (a) shows the initial
stages of the phase separation process. The dashed green line is the
average velocity of the colloids, which at this early stage cannot be
separated into bulk and interfacial types.

colloids, before they are expelled into the bulk, are positioned
asymmetrically towards the high viscous phase.

The distribution of the distances ¢; shown in Fig. 6(c) and
illustrated in the snapshots in Fig. 6(d) shows that for A = 1, the
colloidal distribution around the interface is symmetric and
broadens with time. This broadening is associated with the
increased tension following the structural rearrangement in the
third kinetic regime.*°

In contrast, for 4 = 10, the distribution is shifted towards the
positive values of . The basic mechanism behind this displace-
ment is the viscous lift force: since the fluid velocities of both
phases at the interface are similar (Fig. 5(c)), and the viscosity
contrast is 10, we expect a non-vanishing viscous drag force
directed towards the high viscosity phase. We note that this
explanation is based on a simple planar configuration with a
simple flow pattern. Therefore, it can provide a qualitative
rather than quantitative description of the mechanism for the
onset of asymmetric interfacial stresses and the resulting
asymmetric positioning of the colloids at the interface.

The asymmetric positioning, in turn, lowers the barrier for
colloidal expulsion into the high viscosity bulk phase. The
expulsion of a particle creates a locally enhanced fluid flow,
which explains why in Fig. 5(a) and (c) the blue curves lie above
the red ones. Therefore, at 1 = 10, we do not observe a complete

This journal is © The Royal Society of Chemistry 2024
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Fig. 6 Temporal evolution of the spatial distribution of the colloids with
the overall volume fraction @ = 0.2, at ne¢ = 0.55. (a) Fraction of colloids in
the high viscosity ({1, blue curves), and in the low viscosity ({, red curves)
bulk phase. The fraction of colloids trapped in the interfacial region, {,, is
shown in orange. The solid lines are for asymmetric mixtures with 4 = 10,
and the dashed lines for symmetric mixtures with 4 = 1. (b) Time evolution
of the averaged distance of the colloidal center of mass from the fluid
interface, (9). Positive values of (d) imply that the colloids are predomi-
nantly immersed in the high viscosity phase. The solid line is for symmetric
mixtures (4 = 10), and the dashed line for 4 = 1. (c) The distribution of the
values of ¢ for symmetric (black) and asymmetric (green) mixtures. The
solid lines correspond to distributions averaged over a time window 10 <
t/To < 20 (second kinetic regime), and the dashed lines for t/To > 40 (third
kinetic regime). (d) 2D cuts of a small section of the system at constant z.
The interfacial colloids are represented by circles whose size is scaled by
the z coordinate, and coloured according to their distance from the
interface ¢;; for 4 = 1 (left plot) and 4 = 10 (right plot).

arrest of the domain coarsening, which indicates that the
viscosity contrast destabilises the bijels.:

During the expulsion from the interface into the bulk, it is
likely that the colloids drag the surrounding fluid with them,
which can result in the formation of droplets of one fluid phase
in the bulk of the other one. Our observations of such droplets
are shown in the snapshots in Fig. 4, and in the movies in the
online ESI.{ The observed droplets are typically stabilized by
the colloidal particles. Fig. 7 shows the statistics of the
observed micro-droplets measured in the simulations within
the second and third kinetic regimes. In the symmetric fluid
the amount of red and blue droplets is statistically equivalent,
while for asymmetric mixtures where most free colloids are in

+ Unlike the fluid velocities, the average colloidal velocities in the bulk, (|V|),
decrease monotonically and are the same for symmetric and asymmetric binary
mixtures. Due to the parameters chosen in our work, the typical domain size in
the stabilization phase is only about four colloidal diameters, thus the colloids
cannot be considered as passive local probes of the fluid velocity field and their
average speed will generally be lower than that of the bulk fluid.
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Fig. 7 The average observed droplet volume (vg4) and number (Ng) at
ners = 0.55 and at two times: t/To = 20 (lighter shades), and t/To = 60 (darker
shades). In shades of red (blue) the results for low (high) viscosity components
of the fluid are presented. (a) Volume per droplet (v4) as a function of colloidal
packing fraction @ at a constant 4 = 10; (b) volume per droplet as a function of
the viscosity contrast / at constant @ = 0.2; (c) number of droplets at constant
4 =10, (d) number of droplets at constant @ = 0.2.

the high-viscosity phase, the droplets of the low viscosity fluid
dominate. To identify the droplets, we performed the cluster
analysis: two neighboring lattice nodes belong to the same fluid
domain if they share the same fluid component (same sign of
¢). The analysis reveals two macroscopic (percolating) domains
with approximately half the lattice nodes each and on top of the
macro-domains, there is a dispersion of microscopic domains
with volumes ranging from tens to hundreds of lattice nodes.
The quantitative analysis reveals that, in Fig. 7(a) and (b), the
average volume per droplet lies around (v4) = 50 + 10 lattice
cells, approximately a quarter of a single colloidal particle.
Moreover, the number of formed droplets increases both with
the packing fraction of colloidal particles and with simulation
time. Whenever there is a viscosity contrast, 4 # 1, the number
of observed droplets presents a strong asymmetry with more
droplets in the low viscosity fluid forming within the high-
viscosity fluid domain. We speculate that the larger number of
small droplets observed in the symmetric mixtures is asso-
ciated to the larger free energy barrier for the colloidal escape,
which in turn creates a larger distortion of the fluid interface,
and as a consequence a larger number of emerging small
droplets.

4 Summary

We have shown that viscosity asymmetry plays a crucial role in
the survival of long-lived bijels. The asymmetry in the fluid
viscosities breaks the symmetry in colloidal positions at the

5570 | Soft Matter, 2024, 20, 5564-5571
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fluid interface and facilitates the colloidal escape process by
which bijels relax into an equilibrium structure. The escape
mechanism accumulates colloids in the high viscosity fluid
even in the absence of thermal fluctuations. While the time-
scales associated with the domain coarsening arrest are con-
trolled by the viscosity contrast, we observed that in the
presence of colloids, the pathways leading to a coarsening
process towards a bijel or complete phase separation remain
unchanged. Finally, the accumulation and expulsion of colloi-
dal particles from the interface creates complex fluid motion
and favours the formation of small droplets with a character-
istic size almost independent of the control parameters, i.e., the
packing fraction and the viscosity contrast.
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