

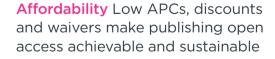
RSC Advances

At the heart of open access for the global chemistry community

Editor-in-chief

Russell J Cox Leibniz Universität Hannover, Germany

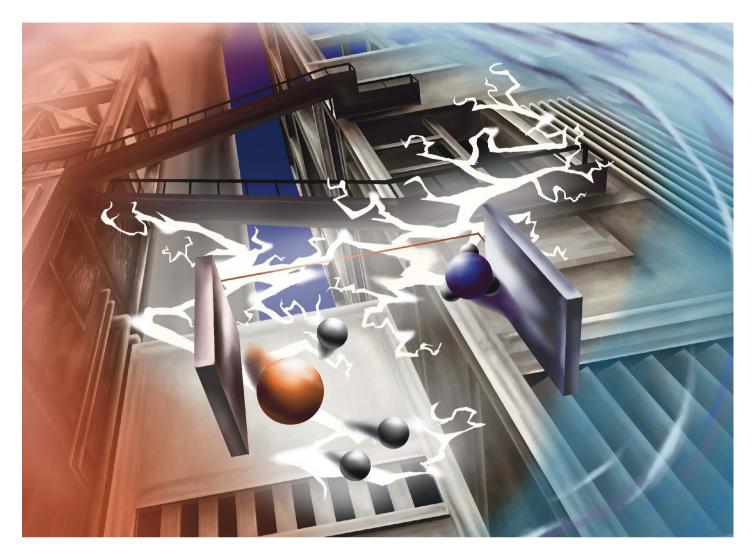
We stand for:



Breadth We publish work in all areas of chemistry and reach a global readership

Quality Research to advance the chemical sciences undergoes rigorous peer review for a trusted, society-run journal

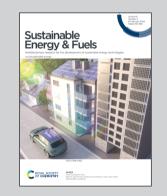
ŞĘĘ



Community Led by active researchers, we publish quality work from scientists at every career stage, and all countries

Submit your work now rsc.li/rsc-advances

Registered charity number: 207890


Showcasing research from Professor Yamada's laboratory, Department of Chemistry, University of Tokyo, Japan.

An aqueous vanadium complex for the superior electrolyte of a thermo-electrochemical cell

A thermocell using a vanadium aqua complex. Protoncoupled electron transfer (PCET) reaction causes high solvation entropy of proton during redox reaction that results in a high Seebeck coefficient of -3.2 mV K⁻¹ in water and -3.2mV K⁻¹ in a mixed solvent. The vanadium aqua TEC exhibits superior ZT values compared to [Fe(CN)₆]^{3-/4-} due to higher ionic conductivity. This research suggests vanadium aqua complex as a promising alternative for TECs with significant potential for practical applications.

Image reproduced by permission of Mizuha Ujita.

As featured in:

See Teppei Yamada *et al., Sustainable Energy Fuels,* 2024, **8**, 684.

rsc.li/sustainable-energy

Registered charity number: 207890