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Recent advances in sensor arrays aided by
machine learning for pathogen identification

Xin Wang, Ting Yang * and Jian-Hua Wang

The development of rapid and accurate pathogen detection methods is of paramount importance for

slowing the evolution of antibiotic resistance in bacteria. However, the high similarity between different

pathogens, especially between antibiotic-sensitive and antibiotic-resistant strains of the same species,

presents great challenges for the precise discrimination of pathogens. In recent years, chemical nose

strategies, i.e. sensor arrays, have achieved certain success in pathogen discrimination. Currently, chemical

nose strategies for identifying pathogens are mainly designed from two perspectives: the disparity in

extrinsic properties (biomolecules, charge, and hydrophobicity of the bacterial surface) and intrinsic

properties (processes and products mediated by bacterial enzymes) among different pathogens. Biosensing

probes capable of responding to these properties are introduced for pathogen detection. The output

signals are then processed and analyzed by machine learning algorithms to visualize the multidimensional

detection results and achieve pathogen discrimination. This paper introduces the latest developments in

sensor arrays for pathogen identification based on the extrinsic and intrinsic nature of bacteria, highlights

the recognition mechanism of probes for bacteria, and outlines the current challenges and prospects of

sensor arrays for pathogen discrimination.

1. Introduction

Pathogens, which can be transported through air, water, and
food, are intimately linked to daily life and pose significant
threats to human health.1,2 Antibiotics inhibit bacteria
growth or kill bacteria through various mechanisms such as

inhibiting bacterial cell wall synthesis, disrupting protein
synthesis, etc. While antibiotics have saved countless lives,
their overuse and misuse have led to a rise in antimicrobial
resistance.3–5 Therefore, the differentiation and identification
of pathogens, especially antibiotic-resistant strains, are
crucial for the selection of appropriate antibiotics for the
treatment of bacterial infections and slowing down the
evolution of antimicrobial resistance. Conventional methods,
including bacterial culture, microscopic observation, and
gene sequencing techniques, are accurate but time-
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consuming, which may delay the optimal time for treatment,
lead to deterioration of the disease, and endanger patients'
lives.6–9 Therefore, the development of rapid and accurate
bacterial identification and differentiation methods is of
great importance in clinical diagnosis. Emerging bacterial
detection techniques, such as polymerase chain reaction
(PCR),10 surface-enhanced Raman scattering (SERS),11 and
mass spectrometry (MS),12,13 although faster than bacterial
culture, require expensive and sophisticated instruments and
specialized technicians, making them difficult to implement
widely.7,14 Therefore, a variety of simple and convenient
biosensors for detecting bacteria have been developed based
on ligand–receptor-specific recognition. These methods
exhibit high specificity, as each probe can only detect a
particular bacterial strain, but they are limited in detecting
unknown bacterial samples in real-life situations such as
food samples and clinical samples.

To address these issues, chemical nose strategies designed
based on simulated animal olfaction have been widely
proposed.15 The chemical nose strategy, also known as the
sensor array approach, usually adopts multiple recognition
probes capable of recognizing targets, and sensitively
recognizing the subtle differences among them.15–17 These
differences are then converted into optical or electrical
signals through the probes, processed with statistical
methods, and then aided by appropriate machine learning
algorithms to realize the classification of different targets
(Scheme 1).18,19 To be brief, array-based biosensors can
spontaneously identify multiple targets, with differences in
their physical and chemical properties that can be recognized
by the sensor array.

Based on the discrimination principles, the sensor arrays
are mainly divided into two types (Scheme 2).16,19 (1)
Pathogen discrimination through differences in the surface

properties. The bacterial surface contains a variety of
biomolecules, including functional groups, proteins,
polysaccharides, etc., which can be recognized by probes for
identifying bacteria; additionally, these biomolecules co-
determine the bacterial surface charge and hydrophobicity.
With probes binding to bacteria through electrostatic and
hydrophobic interactions, the disparity in the surface charge
and hydrophobicity of pathogens can be detected and
pathogen discrimination can be achieved. (2) Pathogen
discrimination through differences in the intrinsic
characteristics of bacteria. The intrinsic characteristics
mainly refer to the biochemical processes mediated by
enzymes produced by bacteria. As bacteria possess various
enzyme systems, their biochemical processes are diverse.
Various metabolites are produced by bacterial metabolism,
primarily including H+, volatile organic compounds, and
non-volatile organic compounds; bacteria incorporate
exogenous D-amino acids (D-AAs) into their peptidoglycan
through the mediation of transpeptidases to label the
peptidoglycan; bacteria reduce metal ions into nanoparticles
with various shapes, sizes, and crystalline structures through
some reductases. Based on these differences among bacteria,
each bacterium possesses a unique fingerprint response
spectrum. To discriminate bacteria more quickly and
accurately, appropriate algorithms are selected to preprocess
and analyze the signal output by the sensors. In this review,
recent developments of sensor arrays for bacterial recognition

Scheme 1 Schematic illustrating the workflow of sensor arrays
for differentiating bacteria. Scheme 1 was created with https://
BioRender.com.

Scheme 2 Schematic overview of the recognition mechanism of
sensor arrays for bacteria identification, constructed based on the
intrinsic and extrinsic properties of bacteria. Note: VOCs: volatile
organic compounds. N-VOCs: non-volatile organic compounds. D-AA-
X: D-amino acid-tags. Van: vancomycin. AMPs: antimicrobial peptides.
AIE: aggregation-induced emission luminogens. VIE: vibration-induced
emission luminogens. Scheme 2 was created with https://BioRender.
com.
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and differentiation are discussed in terms of the intrinsic
and extrinsic properties of bacteria. The working principles,
analysis performance, advantages, and disadvantages of the
reported chemical nose strategies for pathogen identification
in recent years are compared and discussed. Finally, the
challenges and perspectives for array-based biosensors in
bacterial identification are summarized.

2. Identification mediated by bacterial
surface properties

Bacteria are generally categorized into Gram-positive and
Gram-negative based on the differences in their cell walls.
The surface of Gram-positive bacteria is mainly composed of
peptidoglycan (which accounts for 50% to 80% of the total
dry weight) and teichoic-acid, and Gram-negative bacterial
cell walls mainly consist of lipopolysaccharide,
peptidoglycan, phospholipid, and lipoprotein. These
composites are mainly responsible for the overall surface
charge of bacteria.20–22 Due to the genomic difference, the
composition of the surface varies among different genera/
species/strains, resulting in differences in the overall surface
charge or hydrophobicity. For the same strains, culture
environments such as evolutionary pressures also lead to
differences in surface compositions.22–24

For sensor arrays based on the difference in bacterial
surface properties to achieve bacteria identification, they can
be roughly divided into two categories: those based on the
overall difference in bacterial surface charge or
hydrophobicity through noncovalent recognition between
bacteria and probes, and those employing probes that
specifically recognize a certain type of composite on the
bacteria surface.

2.1. Noncovalent recognition – electrostatic and hydrophobic
interaction

The principle to distinguish bacteria via the disparity of the
surface charge and hydrophobicity is that, either the
difference in bacterial gene or culture environment would
lead to the compositional difference in the bacteria surface,
and thereby affect the overall surface charge and
hydrophobicity of a certain type of bacterium at a specular
situation.25–28 By sensing the differences in bacterial surface
potential and hydrophobicity with a series of probes, rapid
distinguishment of bacteria can be achieved. These proposed
approaches do not require complex instrumentation or
specialized technicians, and the detection coverage is broad.
In this section, we will discuss sensor arrays constructed by
using various sensing materials (nanomaterials, small
molecules, and conjugated polymers) that are capable of
identifying bacteria through electrostatic and hydrophobic
interactions.

2.1.1. Noncovalent recognition of bacteria by
nanomaterials. Nanomaterials, which encompass a range of
materials including precious metal nanomaterials, rare earth

nanomaterials, and carbon-based nanomaterials, among
others, due to their small size, facile surface modification,
and low biotoxicity, have been widely employed in various
fields such as biosensing in recent years.29–32

Gold nanomaterials exhibit low biological toxicity, large
surface area, ease of functionalization, and tunable optical
property. These advantages facilitate fruitful applications of
gold nanomaterials for bacteria detection and identification.
For instance, a novel three-dimensional optical sensing array
based on gold nanoparticle/gold nanocluster (AuNP/AuNC)
composites was developed by our group to discriminate various
Gram-negative bacteria (Fig. 1A).33 The nanocomposites consist
of cetyltrimethylammonium bromide-coated gold nanoparticles
(CTAB-AuNPs, positively charged) and vancomycin templated
gold nanoclusters (Van-AuNCs, negatively charged). CTAB
imparts positive charges and hydrophobicity to AuNPs. Bacteria
with negative charges compete with Van-AuNPs to bind with
CTAB-AuNPs, leading to the dissociation of the nanocomposite,
and resulting in changes in three types of optical signals. With
the assistance of linear discriminant analysis (LDA), the sensor
array can selectively identify 10 strains of Gram-negative
bacteria (including 3 antibiotic-resistant strains), and is able to
analyze bacterial samples with low concentration (OD600 =
0.015).

Furthermore, Xianyu's group developed plasmonic
nanosensors to determine the antibiotic-sensitive and
antibiotic-resistant phenotypes among ESKAPE pathogens
based on peptide-functionalized AuNPs (P-AuNPs) differing
in surface plasmon resonance (SPR) wavelength, diameter,
hydrophobicity, and surface charge (Fig. 1B).34 The six types
of P-AuNPs interact with ESKAPE through hydrophobic and
electrostatic interactions, which, with different binding
forces, result in the attachment of different amounts of
P-AuNPs on the bacterial surface. The SPR spectra of the
P-AuNPs display a blue shift after incubating with bacteria,
resulting in distinct SPR fingerprint profiles among different
bacteria. Processing SPR spectra with machine learning
algorithms can differentiate antibiotic-sensitive and resistant
phenotypes of ESKAPE pathogens within 20 min, with an
overall accuracy of 89.74%.

Lanthanide nanoparticles possess excellent photostability,
tunable multicolor emission, weak autofluorescence
background, and strong resistance to photobleaching, greatly
improving the sensitivity and reliability of detection.36

Wang et al. reported a multi-emission sensor array based
on lanthanide encoding, where lanthanide nanoparticles
with different surface charges and hydrophobicity were
prepared as recognition probes to identify biofilms
(Fig. 1C).35 Three lanthanide nanoparticles, which emit
red, yellow, and green fluorescence, respectively, are
bound to the biofilm through hydrophobic and
electrostatic interactions. Different biofilms differ in
physicochemical properties, leading to variable binding
abilities to lanthanide nanoparticles and generating
characteristic luminescence signal patterns. Then, when
the random forest algorithm was used to train the output
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signals, biofilm identification could be achieved within a
few minutes, with an accuracy exceeding 80%.

2.1.2. Noncovalent recognition of bacteria by small
luminescent molecules. Aggregation-induced emission
luminogens (AIEgens) and vibration-induced emission
luminogens (VIEgens) have been widely applied in recent
years due to their promising and unique advantages. AIEgens
exhibit significantly enhanced fluorescence in aggregated
states, endowing them with advantages of weak background
fluorescence and high signal to noise ratio. Chen et al.
constructed a sensor array based on fluorescence properties
(F-array), which uses a series of tetraphenylethylene derivative
AIE probes for bacterial discrimination (Fig. 2A).37 The F-
array, built from five AIE probes with distinct electrostatic
properties, can identify eight bacteria with different surface
potentials. Cross-validation demonstrated a high predictive
accuracy of 93.75%.

Tang's group proposed a competitive binding strategy
based on AIEgen/graphene oxide (GO) complexes for the
identification of different microbial lysates (Fig. 2B).38 The
sensor array consists of one negatively charged, five positively
charged, and one neutral AIEgen combined with GO. The
aggregation induced emission properties of the AIEgens
together with the fluorescence quenching properties of GO
reduced background fluorescence, thereby greatly enhancing
the sensitivity of the sensor.

Another promising luminescent probe, VIEgens, was first
reported by Tian and co-workers in 2015, who discovered this
interesting phenomenon while studying the dynamic
luminescence properties of dihydrodibenzo[a,c]phenazine
derivatives.40,41 VIEgens emit blue fluorescence in the

“saddle”-shaped conformation and emit red fluorescence in
the planar conformation. Their conformation is sensitive to
the surrounding microenvironment, making VIEgens
promising probes for biosensing. Hu et al. proposed a sensor
array constructed from eight VIE probes for phenotypic
identification of methicillin-resistant Staphylococcus aureus
(MRSA) (Fig. 2C).39 Around the VIEgen core, these probes
carry two quaternary ammonium salts across different
substitution sites. The substituents determine the structure
of VIEgens, leading to differences in interactions with
negatively charged bacterial cell walls, which in turn
determine the molecular conformation of the VIEgens. When
VIEgens interact with bacteria, they change into a “saddle”
conformation with an enhanced blue fluorescence. After the
blue-to-red fluorescence intensity ratio of VIEgens generated
by different bacteria was processed by the principal
component analysis (PCA) algorithm, this sensor array was
able to identify six phenotypes of Staphylococcus aureus, with
analysis results that were consistent with those obtained
from polymerase chain reaction analysis.

2.1.3. Noncovalent recognition of bacteria by conjugated
polymers. Conjugated polymers with tunable structures that
endow them with specific chemical modifications (such as
fluorescent modification) can be used as sensing elements
for sensor construction, facilitating their extensive
application in biosensing.42,43

Wang et al. developed a single-component multichannel
array based on composites of graphene oxide (GO) and
polyethyleneimine derivatives (PEI, Fig. 3A).23 These PEI
derivatives altered the surface physicochemical properties of
GO, including charge, polarity, and hydrophobicity, resulting

Fig. 1 Bacterial recognition through noncovalent interactions between bacteria and nanoparticles. A) A 3D sensing array constructed by using
AuNP/AuNC nanocomposites for discriminating Gram-negative bacteria. Reproduced with permission.33 Copyright 2019, Royal Society of
Chemistry. B) Identification of antibiotic resistance in ESKAPE pathogens by plasmonic nanosensors through electrostatic and hydrophobic
interactions. Reproduced with permission.34 Copyright 2023, American Chemical Society. C) Identification of bacterial biofilm based on lanthanide
nanoparticles. Reproduced with permission.35 Copyright 2022, American Chemical Society.
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in diverse binding strengths with bacteria. Through
electrostatic and hydrophobic interactions with bacteria, the
sensor array successfully identified 10 types of strains within
minutes. Moreover, the sensor array could effectively
recognize bacteria in complex biological samples (such as
urine) (OD600 = 0.25), achieving an accuracy of 94%.

Roy et al. have developed a sensor array capable of
differentiating antibiotic-resistant bacteria and grouping
bacteria with the same resistance phenotype, based on three
cationic benzyl-functionalized polymers and three different
fluorescent transducers to build four ratio channels (Fig. 3B).44

By interacting with bacteria through electrostatic interactions,
the sensor array sensitively recognized subtle differences on
the bacterial surface induced by antibiotics within 30 min,
generating unique responses and providing useful information
for bacteria resistance.

Gut microbiota is closely associated with the development
of diseases. Tomita et al. developed a sensor array capable of
identifying gut microbiota (Fig. 3C). This sensor array was
composed of twelve polyethylene glycol-block-poly-L-lysine
(PEG-b-PLL) derivatives bearing AIE fluorophores.45 These
probes bind through various interactions with the bacterial
surface, generating distinctive fluorescent fingerprint

responses. By further processing the generated fluorescent
responses with machine learning algorithms, this array
sensor could categorize gut bacteria into strains, species, and
phylums and distinguish the gut microbiota of obese and
healthy individuals by detecting artificially simulated fecal
samples.

In order to improve the sensitivity of bacterial
recognition, Han's group developed a dual-channel
fluorescence “turn-on” sensor array consisting of six
electrostatic complexes formed by six negatively charged
poly(para-aryleneethynylene) polymers (PPE) and six
positively charged AIE fluorophores (Fig. 3D).46 AIE
quenches the fluorescence of PPE upon complexing with
PPE, whereas bacteria could compete with PPE for
binding with AIE and recover the fluorescence of PPE.
Meanwhile, as AIE fluorophores aggregated on the
bacterial surface, their emission also enhanced. This
unique dual “turn-on” response, based on a six-element
sensor array, assisted by various machine learning
algorithms, enabled the identification of 20 bacteria at
low concentrations (OD600 = 0.001), achieving 96.7%
accuracy in distinguishing urinary tract infection patients
from healthy individuals.

Fig. 2 Bacterial recognition through noncovalent interaction between bacteria and small luminescent molecules. A) Fluorescent array based on
AIEgens for bacterial identification. Reproduced with permission.37 Copyright 2014, Wiley-VCH. B) Identification microbial lysate through
competitive interactions by AIEgens and GO.38 Copyright 2018, American Chemical Society. C) Ratiometric sensor array for phenotype
identification of methicillin-resistant Staphylococcus aureus based on VIEgens. Reproduced with permission.39 Copyright 2022, American Chemical
Society.
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2.1.4. Noncovalent recognition of bacteria by antimicrobial
peptides. Antimicrobial peptides (AMPs) are short peptides
consisting of 10–50 amino acid residues and are part of the
biological immune system.47,48 Their natural cationic charge
and hydrophobicity make them interact easily with negatively-
charged bacteria. AMPs may also target specific biomolecules
on the surface of bacteria, leading to antimicrobial
activity.49–52 In 2017, Han et al. created a four-unit sensor
array based on four electrostatic complexes formed by four
positively charged AMPs and negatively charged
para-phenyleneethynylene (PPE).53 Both excited-state energy

transfer and charge transfer occur in the AMP/PPE complex,
leading to fluorescence quenching of PPE. When bacteria
were added, AMPs bind to the bacterial cell wall and permeate
into the cell, resulting in PPE release and fluorescence
recovery. The recognition efficiency of the AMP/PPE array was
validated by detecting 14 bacteria (including 6 types of Gram-
negative bacteria and 8 types of Gram-positive bacteria) with
low-concentration (OD600 = 0.01), and the successful
identification of bacteria in urine was also achieved.

Similarly, Zhang's group recognized and identified
bacteria based on the differences in recognition and

Fig. 3 Bacterial recognition through noncovalent interaction between bacteria and polymers. A) One-component multichannel sensor array for
rapid identification of bacteria based on polymers.23 Copyright 2022, American Chemical Society. B) A polymer-based sensor for differentiating the
resistant phenotypes of antibiotic-resistant bacteria. Reproduced with permission.44 Copyright 2022, American Chemical Society. C) Fluorescent
polymer-based chemical-nose systems for recognizing gut microbiota. Reproduced with permission.45 Copyright 2022, Royal Society of
Chemistry. D) A dual fluorescence turn-on sensor array formed by polymer and AIEgens for recognizing bacteria. Reproduced with permission.46

Copyright 2024, Wiley-VCH.
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disintegration by four short antimicrobial peptides (SAMPs)
against different bacterial strains.54 Processing of the
collected unique fluorescence spectra of bacteria by LDA
enabled the identification and differentiation of six types of
bacteria within 30 min, with a classification accuracy of
100%.

2.2. Specific recognition – recognize biomarkers on bacterial
surfaces

Bacterial surfaces contain a variety of biomarkers, such as
carbohydrates, proteins, short peptides, etc. These
biomarkers can serve as target molecules interacting
specifically with recognition probes that are functionalized
with receptor proteins, carbohydrates, or antibiotics,
providing insights for the development of bacterial detection
approaches. In this section, we summarize and discuss the
identification approaches for bacteria based on various
biomarker recognition mechanisms.

2.2.1. Recognition of the cis-diol group on bacterial
surfaces. Boronic acid derivatives are widely used for the
detection and differentiation of bacteria based on their
covalent and reversible binding with cis-diols in
carbohydrates or glycoproteins on bacterial surfaces.55–57

Under alkaline conditions, the tetragonal boronic acid anion
(sp3) can react with cis-diol to form five or six-membered
cyclic esters, while under acidic conditions, boronic acid in a
trigonal configuration (sp2) limits its binding with cis-diol,
resulting in the decomposition of the complex.56,58,59 As the
content or boronic acid-binding ability of cis-diol on the
bacteria surface varies among different bacteria, by
transferring these differences into response differences of
boronic acid-based probes, bacteria discrimination can be
achieved.

Yan et al. proposed a colorimetric sensor array based on
Wulff-type 4-mercaptophenylboronic acid (MPBA)-

mercaptoethylamine (MA) co-functionalized AgNPs (MPBA-
MA@AgNPs) for bacterial detection and identification
(Fig. 4A).60 Wulff-type boronic acid is a unique adjacent
amine boronic acid that can form cyclic ester bonds with
cis-diol through intramolecular B–N bonds, allowing
boronic acid and cis-diol to form cyclic esters under neutral
conditions. Under neutral and alkaline conditions, MPBA
binds to cis-diol on the bacterial surface, leading to the
dispersion of AgNPs. Due to the presence of different
carbohydrates on the bacterial surface, MPBA exhibits
different affinities for the cis-diol in different
carbohydrates, resulting in the color change of AgNPs.
Under acidic conditions, the B–N bond breaks, and the
positively charged MA binds to the negatively charged
bacteria via electrostatic interactions, causing AgNPs to
aggregate on the bacterial surface, and the color of AgNPs
varies due to differences in bacterial surface potentials.
Therefore, the MPBA-MA@AgNPs show variable binding
ability to bacteria at different pH buffer solutions, and
generate distinct color responses. By using LDA for data
processing, 17 strains were successfully differentiated. This
colorimetric method, based on specific affinity and
electrostatic interactions, holds promise for the
identification of bacteria in clinical urine and serum
specimens; however, the color changes of various bacteria
in this method are slight, which suggests that relying on
colorimetry alone to differentiate bacteria is not reliable.
Additionally, our group proposed a sensor array fabricated
by using boronic acid modified g-C3N4 (BA-g-CN)
nanosheets.61 Under acidic conditions, the positively
charged BA-g-CN nanosheets interact with the negatively
charged bacteria through electrostatic interaction. Under
neutral or alkaline conditions, BA-g-CN nanosheets bond to
the bacteria by forming covalent bonds through boronic
acid and carbohydrates on the bacterial cell wall. These
interactions lead to bacterial sedimentation and

Fig. 4 Bacterial recognition through the interaction between boronic acid and the cis-diol group. A) A colorimetric sensor array based on Wulff-
type boronate functionalized AgNPs for bacterial identification. Reproduced with permission.60 Copyright 2019, American Chemical Society. B) A
dual-mode sensor array based on colorimetric and photothermal detection for bacterial identification. Reproduced with permission.62 Copyright
2023, American Chemical Society.

Sensors & DiagnosticsCritical review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
Se

pt
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 7

/2
2/

20
25

 1
2:

54
:5

7 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sd00229f


Sens. Diagn., 2024, 3, 1590–1612 | 1597© 2024 The Author(s). Published by the Royal Society of Chemistry

fluorescence reduction in the supernatant. By using acidic,
neutral, and alkaline conditions as three different sensing
channels, the identification of nine strains can be achieved.
This sensing strategy focuses on distinguishing Gram-
negative bacteria, particularly four strains of Escherichia coli,
ensuring timely and targeted treatment of Gram-negative
bacteria. Recently, Wang et al. constructed a dual-mode
bacterial sensor array based on colorimetric and
photothermal detection.62 This sensor uses boronic acid-
functionalized Au–Fe3O4 nanoparticles (BA-GMNPs) as
probes, which not only exhibited localized surface plasmon
resonance properties but also demonstrated
superparamagnetism. BA-GMNPs formed B–N bonds with
cis-diol on the bacterial surface, dispersing on the bacterial
surface and weakening the aggregation of BA-GMNPs
induced by NaCl. The content of cis-diol on the surface of
different bacteria varied, resulting in different quantities of
BA-GMNPs bound to bacteria and different amounts of BA-
GMNPs aggregated in the supernatant. After magnetic
separation, the RGB values and UV-vis spectra of the
aggregated BA-GMNPs in the supernatant were measured;
the precipitate was irradiated with an 808 nm laser, and
temperature changes were monitored using a thermal
imager. With the assistance of LDA, six bacteria were
successfully distinguished, and even bacteria in real
samples, such as milk, were successfully identified, with a
recognition accuracy of 93.3%.

2.2.2. Recognition of lectins on bacterial surfaces. Lectins
are a type of protein on the bacterial surface that bind
specifically to carbohydrates (monosaccharides and

oligosaccharides), playing a crucial role in adhesion during
the initial stage of bacterial infection.63–65 For instance,
FimH, a protein at the end of the fimbria of Escherichia coli,
can specifically bind to mannose.66,67 Otten et al. investigated
five bacteria, including E. coli K12, E. coli Top 10, M. marinum,
P. putida, and M. smegmatis, demonstrating a platform for
profiling bacteria based on the relative binding affinity of
bacteria to nine polysaccharide surfaces (Fig. 5A).68 Unique
barcodes for each bacterium were created based on their
relative binding affinities, resulting in five independent
clusters after analysis by LDA. Zhang's group proposed a
bacterial detection and identification strategy constructed
from Cu:CdS quantum dots modified with glucose,
stachyose, and raffinose (Fig. 5B).69 The carbohydrate
binding strength between glycosylated quantum dots and
the bacterial cell wall determines the amount of quantum
dots bound to the bacteria, and the carbohydrate varies in
the bacterial cell wall, generating a unique fluorescent
fingerprint response, allowing six types of bacteria to be
identified within 30 min.

2.2.3. Recognition of D-ala-D-ala on bacterial surfaces.
Vancomycin inhibits bacterial cell wall synthesis by binding
to D-alanyl-D-alanine (D-Ala-D-Ala) at the terminus of
peptidoglycan, exerting bactericidal effects.70,71 The cell wall
of Gram-positive bacteria is mainly composed of
peptidoglycan, while Gram-negative bacteria have an
additional outer membrane composed of lipopolysaccharides
outside of peptidoglycan.72 The dense lipopolysaccharide
layer in Gram-negative bacterial cell walls prevents molecules
larger than 500 kDa from passing through, making

Fig. 5 Bacterial recognition through the interaction between lectins and glycan. A) Discrimination of bacteria by ratiometric analysis of their
carbohydrate binding profile. Reproduced with permission.68 Copyright 2016, Royal Society of Chemistry. B) A sensor array consisting of
multivalent glycosylated Cu:CdS quantum dots for rapid bacterial discrimination. Reproduced with permission.69 Copyright 2017, Elsevier.
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vancomycin specific to Gram-positive bacteria.72–74 Zhang's
group constructed a fluorescent sensor array for
differentiating various bacteria using carbon dots
functionalized with vancomycin (Van), polymyxin (PM), and
boronic acid, respectively (BA, Fig. 6A).75 Van specifically
recognizes D-Ala-D-Ala on the Gram-positive bacterial
surface, PM recognizes phospholipid on the Gram-negative
bacteria, and BA forms B–N bonds with the cis-diol on the
bacterial surface. Probes modified with Van, PM, and BA
can bind to all bacteria with different affinities, and
fingerprints specific to each bacterium were obtained from
the fluorescent responses of the three probes. The obtained
fluorescent responses were further analyzed by LDA,
achieving the differentiation of six types of bacteria with an
accuracy of 91.6%. Recently, Yang et al. proposed a
colorimetric sensor array for bacterial differentiation based
on vancomycin, D-alanine (D-Ala), boronic acid, and
cetyltrimethylammonium bromide (CTAB) ligand-
functionalized Fe single-atom nanozymes (SANs, Fig. 6B).76

In their design, vancomycin is used for the recognition of
Gram-positive bacteria; D-Ala is incorporated into

peptidoglycan mediated by enzymes to discriminate bacteria
from fungi; boronic acid provides information regarding
the cis-diols on the surface of microorganisms; and the
positively charged CTAB binds to microorganisms by
electrostatic interaction. With the combination of non-
covalent interactions, specific molecular recognition, and
enzyme-mediated metabolism, this sensing method could
complete detection within 1 h with an accuracy of up to
97% for identifying more than 10 types of microorganisms
in clinical samples with the assistance of the support vector
machine (SVM) algorithm.

2.2.4. Recognition of the receptor of protein on bacterial
surfaces. Some bacteria-unique components can serve as
recognition targets.77 As their level varies among different
types of bacteria, by constructing a series of probes that
separately respond to these recognition targets, sensor arrays
can be fabricated for bacteria identification. For example, Ji
et al. proposed a fluorescent sensor array constructed with
gold nanoclusters (AuNCs) modified with human serum
proteins (HSA), lactoferrin (Lf), lysozyme (Lys), and
vancomycin (Fig. 7A).78 The peptide motifs on human serum

Fig. 6 Bacterial recognition through the interaction between vancomycin and D-ala-D-ala. A) Identification of bacteria by a fluorescent sensor
array based on boronic acid, vancomycin, and polymyxin functionalized carbon dots. Reproduced with permission.75 Copyright 2019, Elsevier. B) A
colorimetric sensor array for rapid diagnosis of urinary tract infection by a multi-recognition mechanism, which includes the recognition between
vancomycin and D-ala-D-ala. Reproduced with permission.76 Copyright 2024, American Chemical Society.
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proteins (HSA) can interact with bacterial cell walls;78,79

lactoferrin (Lf) can recognize lactoferrin receptors expressed
by bacteria;80,81 peptidoglycans of bacterial cell walls are a
natural substrate for lysozyme (Lys);79,82 vancomycin (Van)
can bind with the D-ala-D-ala moiety through hydrogen-
bonding. By taking advantage of these recognition pairs, six
types of bacteria, including kanamycin-resistant E. coli and
methicillin-resistant Staphylococcus aureus, were readily
differentiated.78

The composition and activity of the gut microbiota are
crucial for health management and disease treatment. Liu
et al. developed a rapid sensor array for distinguishing gut
bacteria (Fig. 7B).83 Gold nanoclusters (AuNCs) were modified
with Van, bacitracin, and lysozyme as signal-reporting probes
that specifically identified D-ala-D-ala moieties, pyrophosphate
groups, and peptidoglycans, respectively. Ti3C2 transition-
metal carbides (MXenes) were used as fluorescence
quenchers. When three recognition probes were mixed with
Ti3C2 MXenes, they were tightly bound through hydrogen
bonding, leading to energy transfer and quenching the
fluorescence of AuNCs. Both bacteria and three functionalized
AuNCs could bind with Ti3C2 MXenes but the binding
strengths vary. After adding bacteria to Ti3C2 MXenes-AuNCs
composites, they either restore the fluorescence of AuNCs by
competing with AuNCs for binding with Ti3C2 MXenes or lead
to further fluorescence quenching. Due to the association
between gut bacteria and colorectal disease, this strategy
coupled with pattern recognition algorithms accurately
differentiated colorectal cancer patients from healthy

individuals within 30 min, providing a robust and simple
platform for the clinical diagnosis of colorectal cancer.

3. Identification mediated by bacterial
intrinsic properties

Bacterial metabolism includes catabolism and anabolism,
which are the most fundamental processes in bacterial life
activity. Enzymatic catalysis is required for bacterial
metabolic processes, with different bacteria possessing
distinct enzyme systems, leading to diverse metabolic
behaviors among different bacteria.84–88

3.1. Bacteria identification by metabolites

Variations exist among bacteria in the enzymes involved in
the decomposition of nutrients such as sugars and proteins,
resulting in diverse decomposition capabilities, pathways,
and products. Methods for the identification of bacteria have
been widely proposed based on metabolites among different
bacteria.87,88 In this section, we will discuss the sensor arrays
constructed based on the recognition of various metabolites
of bacteria.

3.1.1. Detection of H+ generated by bacteria metabolic
processes. Bacteria have the ability to break down
polysaccharides into monosaccharides, which are then
converted into pyruvic acid. The latter can be further broken
down into carbon dioxide and hydrogen if the bacteria

Fig. 7 Bacterial recognition through the interaction between proteins and specific receptors on bacterial surfaces. A) Protein-AuNC-based
fluorescence sensor array for discrimination of bacteria. Reproduced with permission.78 Copyright 2018, Wiley-VCH. B) Multichannel sensor array
based on muti-functionalized AuNCs for gut microbiota detection. Reproduced with permission.83 Copyright 2023, American Chemical Society.
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contain pyruvate decarboxylase, resulting in different sugar
decomposition products among bacteria.84,87

Liu's group developed a colorimetric sensor array for
microbial discrimination and antimicrobial susceptibility
testing, using three pH indicators, including methyl red
(MER), bromothymol blue (BTB), and bromocresol green
(BCG), as H+-sensing probes (Fig. 8A).89 The bacterial
metabolism of glucose generates acids, including acetates,
lactates, and other acidic byproducts, causing changes in the
acidity of the bacterial culture microenvironment. Due to
variations in the ability of different bacteria to metabolize
glucose, the acids produced by different bacteria also vary in
terms of both types and concentrations, resulting in
significant differences in the color change of the three pH
indicators. Combined with the LDA algorithm, this sensor
array facilitated the identification of 11 types of bacteria.

3.1.2. Detection of volatile organic compounds generated
by bacteria metabolic processes. In addition to acids,

bacterial metabolism also generates various volatile organic
compounds (VOCs), primarily including carboxylic acids,
alcohols, aldehydes, esters, hydrocarbons, and organic sulfur
derivatives.91–93 Some bacteria may produce the same VOCs
but at various concentrations. For instance, the concentration
of formaldehyde and acetaldehyde produced by Gram-
negative bacteria is generally higher than that by Gram-
positive bacteria. Additionally, some VOCs could only be
produced during specific metabolic pathways.94–96 The rapid
differentiation of bacteria can therefore be achieved by
detecting bacteria-produced VOCs, as demonstrated by some
studies. Xu et al. qualitatively analyzed VOCs released by
bacteria that are associated with ventilator-associated
pneumonia (VAP) by proton transfer reaction-mass
spectrometry (PTR-MS).97 Principal component analysis (PCA)
and analysis of similarities (ANOSIM) were employed to
analyze the VOCs of bacteria collected at different time
points. After 3 hours of in vitro cultivation, significant

Fig. 8 Bacterial recognition through metabolites produced by bacterial metabolism. A) The glucose-metabolism-triggered colorimetric sensor
array based on MER, BTB, and BCG for differentiation and antibiotic susceptibility testing of bacteria. Reproduced with permission.89 Copyright
2023, Elsevier. B) Agar gel-based colorimetric sensor array for identification of bacteria in household refrigerators. Reproduced with permission.90

Copyright 2023, Royal Society of Chemistry. MER: methyl red. BTB: bromothymol blue. BCG: bromocresol green.
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differences in VOCs among different bacteria were observed.
Six types of common bacteria associated with VAP were
effectively distinguished, offering potential assistance to
physicians in promptly formulating treatment plans. Mass
spectrometers have many benefits in detecting VOCs, but
they are sophisticated and expensive. For rapid bacterial
detection in daily life, economically portable bacterial
identification strategies are necessary. Chen's group
developed a colorimetric sensor array based on a multilayer
neural network (CSA-NN) for identifying common pathogenic
bacteria in household refrigerators. The colorimetric sensor
array consists of 16 dye-containing agar gel spots, exhibiting
good resistance to moisture and frost (Fig. 8B).90 The dye-
containing agar gel array generated colorimetric responses
through reactions with VOCs produced by bacteria. After

training with CSA-NN, this sensor array successfully
differentiated Escherichia coli, Staphylococcus aureus,
Salmonella, and Listeria monocytogenes in refrigerated
environments. It also accurately identified Staphylococcus
aureus and Listeria monocytogenes on eggshells with an
accuracy of 83%.

Real-time monitoring and identification of bacteria are
highly elusive goals in the field of bacterial detection. Shaulof
et al. introduced a capacitive artificial nose for the VOC-
identification-based bacteria discrimination method using
interdigitated electrodes (IDEs) modified with carbon dots (C-
dots) exhibiting different polarities (C-dot-IDE).98 VOCs
metabolized by bacteria induce rapid changes in the
capacitance of the C-dot-IDE, which is intimately related to the
polarity of gas molecules. With the application of machine

Fig. 9 Bacterial recognition through nonvolatile compounds produced by bacterial metabolism. A) Gold nanoparticle chemiresistor capable of
identifying bacteria based on metabolites released by bacteria. Reproduced with permission.100 Copyright 2015, Elsevier. B) A fluorescent
nanosensor based on SWCNTs for clinically essential bacteria discrimination. Reproduced with permission.101 Copyright 2020, Nature. SWCNTs:
single-walled carbon nanotubes.
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learning algorithms, the C-dot-IDE gas sensor exhibits excellent
recognition performance, enabling continuous monitoring of
bacteria proliferation and differentiation.

3.1.3. Detection of nonvolatile compounds generated by
bacteria metabolic processes. The detection of VOCs is prone
to be affected by humidity and most of them require sample
collection. On the contrary, direct detection of nonvolatile
compounds in solutions does not need careful humidity control
and complex sample collection techniques. In recent years,
some sensor arrays based on detecting nonvolatile metabolites
produced by bacterial metabolism have been developed.99 For
example, Webster et al. constructed an AuNP chemiresistor that
monitored changes in the resistance of AuNPs in the liquid
culture medium (Fig. 9A).100 In this way, 4 types of bacteria,
including Escherichia coli, Bacillus subtilis, Staphylococcus
epidermidis, and Pseudomonas aeruginosa were successfully
differentiated based on their metabolic fingerprints.

Nonvolatile metabolites are diverse among bacteria. For
instance, endotoxin is a lipopolysaccharide released upon the
lysis of Gram-negative bacteria, which is a unique metabolite
of Gram-negative bacteria. Siderophores are a class of low
molecular weight compounds synthesized by microorganisms

under conditions of low iron concentration. They exhibit a
specific high affinity for Fe3+ and are a common pathway for
bacteria to acquire iron from the environment. Nißler et al.
developed a set of near-infrared fluorescent nanosensors for
remote identification of clinical bacteria (Fig. 9B).101 Nine
sensing units, consisting of functionalized single-walled
carbon nanotubes (SWCNTs) specific for lipopolysaccharide,
siderophores, deoxyribonucleases, and proteases, along with
four generic low-selective SWCNTs and one stable near-
infrared fluorescent reference, were integrated into a
biocompatible hydrogel. This system successfully
differentiated 6 common bacteria in the clinic aided by PCA.
Multiplexing was achieved by spectral encoding (900 nm,
1000 nm, 1250 nm), which was capable of differentiating
Pseudomonas aeruginosa and Staphylococcus aureus. The near-
infrared fluorescence also endowed this approach with the
ability of tissue penetration (>5 mm).

3.2. Identification of bacteria by metabolic labeling

Metabolic labeling is an effective method to study the
metabolic processes of living systems, allowing efficient and

Fig. 10 Bacterial recognition through metabolic labeling. A) The RGB-emitting probes for the detection of bacteria by labeling peptidoglycan.
Reproduced with permission.106 Copyright 2020, Royal Society of Chemistry. B) A fluorescent sensor array for identifying bacteria based on
metabolic labeling at various acidities and times. Reproduced with permission.107 Copyright 2022, Elsevier. C) Metabolism-triggered colorimetric
sensor array constructed from three types of D-AA functionalized AuNPs for bacterial identification. Reproduced with permission.108 Copyright
2022, American Chemical Society. D) Identification of antibiotic-resistant bacteria based on metabolic labeling and click reaction. Reproduced with
permission.109 Copyright 2023, American Chemical Society.
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non-destructive incorporation of functionalized metabolites
into target biomolecules through biosynthetic
mechanisms.102,103 Peptidoglycan, which is widely present in
bacterial cell walls, is a multilayered network structure
composed of glycans and short peptides. Functionalized
monosaccharides and amino acids can be incorporated into
peptidoglycan by metabolic labeling.104,105 A sensing strategy
combining metabolic labeling with fluorophores was
proposed by Hong et al., with bacteria metabolizing three
different fluorescent metabolic derivatives to identify
different bacterial species or microbiota types (Fig. 10A).106

Due to disparities in metabolism ability, unique colorimetric
fingerprints for different bacterial species and microbiota
after metabolic labeling were obtained. By utilizing a portable
spectrometer combined with a smartphone for direct reading
of fluorescent RGB values, discrimination of different
bacterial species and microbiota types was achieved.

D-AAs are persistent almost exclusively in bacterial cell walls,
endowing them with unique advantages in bacteria labeling.
Unnatural D-AAs can be incorporated into bacterial cell walls by
swapping amino acids at the 5th or 4th position of the penta-
peptide, mediated by D,D-transpeptidase or L,D-transpeptidase,
respectively. Recently, our group proposed a chemical nose
approach based on metabolic labeling and click reactions
(Fig. 10B).107 Bacteria first metabolized clickable handle tagged
D-AAs at two acidities (pH = 5 and 7) for 20 min and 60 min,
respectively, followed by clicking with up-conversion
nanoparticles (UCNPs), generating four-dimensional signal
outputs. Multidimensional fluorescent response analysis by
machine learning successfully classified eight types of bacteria
in the training set on strain, genus, and Gram phenotype. The
differences in signal response under four incubation
conditions reflected variations in the quantity and activity of
enzymes involved in metabolic labeling, endowing this strategy
with good anti-interference capabilities. This approach can
accurately classify unknown samples from the validation set
into clusters independent of the training set and can accurately
identify their Gram properties.

Culture-based bacterial detection and antibiotic susceptibility
testing (AST) are the gold standard methods for bacterial
detection, but they are time-consuming. In such cases, clinicians
often resort to broad-spectrum antibiotics for treatment at an
early stage, which worsens the issue of antimicrobial resistance.
Therefore, the development of accurate and rapid methods for
bacterial differentiation and AST is urgently needed. Liu's group
constructed a colorimetric sensor array for bacterial
identification using D-ala, D-2,3-diaminopropionic acid, and
D-glutamate-functionalized gold nanoparticles (AuNPs) as probes
(Fig. 10C).108 Bacteria were competitively metabolized with
exogenous D-AAs on the surface of AuNPs through the mediation
of D,D-transpeptidase, causing the AuNPs to become unstable
and aggregate. AuNPs exhibit distinct aggregation phenomena
due to the different metabolic capabilities of bacteria towards
various D-AAs. By analyzing the unique responses by LDA, eight
bacterial species, including an antibiotic-resistant strain, were
successfully differentiated. Furthermore, by monitoring the

bacterial metabolic activity of D-AAs under different antibiotic
treatments, a colorimetric-based rapid AST method was
developed, and the whole procedure was completed in 24 h,
promoting the clinical practicability of this approach.

For applying array sensor approaches in the clinic, it
should be sensitive enough to detect low-concentration
bacteria in real clinical samples. Our group constructed a
sensor array based on metabolic labeling and the “antibiotic
responsive spectrum” for distinguishing antibiotic-sensitive
and resistant strains at bacteria concentrations as low as 105

CFU mL−1 (Fig. 10D).109 This strategy incorporates D-ala with
azido groups into bacterial cell walls through bacterial
metabolism, followed by clicking with dibenzocyclooctyne-
functionalized UCNPs (DBCO-UCNPs). By proceeding with
metabolic labeling in the presence of six antibiotics, an
“antibiotic responsive spectrum” was obtained as a result of
a unique fluorescent fingerprint corresponding to a certain
type of bacterium. By combining with various machine
learning algorithms, eight bacterial strains were effectively
clustered based on species, Gram phenotype, and antibiotic
resistance. This metabolic labeling strategy exhibits excellent
anti-interference capabilities, accurately identifying bacteria
(concentration: 105 CFU mL−1) in artificial urinary tract
infection samples and determining their resistance.

3.3. Identification of bacteria by biosynthesis

Bacteria, as efficient biofactories, can utilize various enzymes,
proteins, peptides, and electron transfer pathways in vivo to
regulate inorganic ions and reduce them into inorganic
nanoparticles of different shapes and sizes. Up till now,
researchers have employed bacteria to synthesize over 100
types of inorganic nanoparticles.110,111 Enzymes are the
primary biomolecules responsible for the reduction of
inorganic ions. Different microorganisms produce various
reductases, including nitrate and nitrite reductases,
nicotinamide adenine dinucleotide phosphate-dependent
reductases, and sulfate (SO4

2−) and sulfite (SO3
2−) reductases,

which co-regulate microbial biosynthesis.112–115 Xianyu's
group constructed a novel sensor array based on differences
in the properties of microbially biosynthesized AuNPs, such
as particle size, surface plasmon resonance (SPR) spectra,
and surface potential (Fig. 11).116 By employing PCA, LDA,
and random forest (RF) algorithms to explore the
relationships between features of microbial-synthesized
AuNPs and microbial types, classification models were
established. Microorganisms were classified at the levels of
kingdom, order, genus, and species. This microbial
discrimination result was in accordance with the results
obtained by traditional classification approaches.

4. Statistical analysis and machine
learning

Machine learning algorithms can rank the significance of
input variables, identify trends in the data, and classify the
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data, enhancing its visualization and readability.117 Since
chemical nose strategies are typically constructed using
multiple sensor units, resulting in large volumes of high-
dimensional data with poor readability, combining machine
learning with sensor arrays can extract more valuable
information.118,119 In this section, we categorize the machine
learning algorithms used for statistical analysis into two
types: clustering methods and classification methods.

4.1. Clustering methods

Clustering algorithms, including HCA, PCA, and t-distributed
stochastic neighbor embedding clustering (t-SNE), are
unsupervised algorithms capable of clustering data. In high-
dimensional space, HCA typically uses Ward's minimum
variance as the clustering criterion and Euclidean distance as
the distance metric to cluster data.120,121 The HCA
dendrogram intuitively expresses the similarity between
samples and can effectively convey relationships between
similar species. However, since the HCA dendrogram has
only one quantitative axis (distance) and the orientation of
the dendrogram does not affect data clustering, it may have
misinterpretation issues due to changes in the relative
position of the linkage axes.

PCA is a commonly used dimensionality reduction
algorithm in sensor arrays.76 It transforms linear
combinations of the initial variables into a set of orthogonal
combinations, projecting data from sensor arrays into 2D or
3D space to represent the feature relationships of data.120–122

PCA projects the original data onto a new coordinate system,
where the first coordinate axis (the first component) is

determined by finding the maximum variance of the dataset
along this vector. Subsequent components are orthogonal to
previous ones and follow the principle of maximum variance.
The score plots after dimensional reduction by PCA are more
visualizable than the original data. However, biological data
tends to be nonlinear, and PCA, being a linear
dimensionality reduction method, fails to capture these
nonlinear relationships, potentially leading to information
loss. t-SNE, a nonlinear dimension reduction algorithm, is
more suitable for analyzing high-dimensional biological
information.123 t-SNE creates a probability distribution for
each data point by calculating Euclidean distances between
data points, with closer points representing higher similarity.
It then creates a similarity matrix based on data similarities
and can preserve both local and global structures of the data,
which is beneficial for discovering more relationships within
biological information. All the above algorithms are
unsupervised and cannot predict unknown samples. When
new data is added to the dataset, the entire clustering must
be recalculated.76

4.2. Classification methods

The classification method, which usually belongs to
supervised algorithms, enables the prediction of unknown
samples. In sensor arrays for microbial identification, the
classification method utilizes a dataset labeled with
microbial species as the training set. It discovers the
relationship between microbial species and corresponding
data through the training set and establishes a mathematical
model.15,76 By inputting the data of unknown samples into

Fig. 11 Bacterial recognition through biosynthetic nanoparticles from bacteria. Reproduced with permission.116 Copyright 2022, Wiley-VCH.
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the trained mathematical model, an accurate classification of
unknown samples can be obtained. Common classification
algorithms in sensor arrays include LDA, support vector
machines (SVM), and convolutional neural networks (CNNs).

In recent years, LDA has been widely applied in sensor
arrays. It performs orthogonal transformations on the
potentially linear dependence original variables to nonlinear
dependence variables, similar to the PCA algorithm. Unlike
PCA, LDA is a supervised algorithm that can predict
unknown samples by establishing a mathematical model.124

It follows the classification principle of minimizing intraclass
variance and maximizing interclass variance, meaning that it
aims to make projections of data with the same label as close
as possible while keeping projections of data with different
labels as far apart as possible, in an attempt to find the
dimension with the best separation. The LDA score plot can
intuitively evaluate the effectiveness of classification and
discrimination. However, LDA is not suitable for
classification with high-dimensional data but few classes.
SVM is an optimization-based algorithm aimed at finding the
optimal hyperplane for classifying data. When dealing with
linearly separable models, SVM achieves optimal
classification by maximizing the margin between classes. For
linearly inseparable models, it maps data to a high-
dimensional space to achieve linear separation.125,126 SVM
performs exceptionally well with data of high-dimensional
and small sample populations; however, as sample
populations increase, its processing efficiency decreases. The
evolution of deep learning algorithms is promoted by the
rapid development of hardware and software technology of
computers. CNN is a type of supervised deep learning
algorithm that extracts features from data through
convolution and pooling, mapping the input data into a
high-dimensional space, and then performing classification
or regression of the features through dense layers.127 CNNs
are characterized by strong feature extraction capability and
high robustness, and they have been widely used in the field
of biosensing.

5. Outlook and perspectives

Machine learning-assisted sensor arrays are an effective
strategy for identifying bacteria, enabling rapid qualitative
analysis of various bacteria, which plays an important role in
detecting bacteria and inhibiting their spread in real life. We
compared the reported sensor arrays in terms of recognition
principle, types of interactions between bacteria and the
sensor, probe materials, types of pathogens that can be
identified, channel numbers employed, reaction time,
minimum bacteria concentrations that can be detected (not
the limit of detection), and signal readout of the sensor
arrays, with details listed in Table 1.

Array-based sensing strategies have achieved certain
success in bacterial discrimination, but these methods are
still in their infancy and need to be further improved to
meet the requirements of practical applications. The sample

matrices in real bacterial-containing samples are complex,
unknown, and with low concentrations of bacteria. However,
current sensing strategies are mostly based on known
bacterial strains cultivated in the laboratory, which may fail
in practical applications due to the following limitations.
First of all, as the surface charge and hydrophobicity vary
among bacteria due to environmental changes, noncovalent
interactions are easily affected by environmental
disturbances, leading to low interference tolerance; the
expression of proteins, sugars, and other biomolecules on
the bacterial surface may differ as bacteria growth
environments vary. Therefore, it is difficult to detect complex
real samples solely by recognizing the external properties of
bacteria. The sensor arrays based on the detection of the
products of bacterial enzymatic catalysis processes typically
require sample pretreatment to minimize interference from
the sample matrices. Therefore, it is necessary to develop
strategies for detecting bacteria based on multi-recognition.
Secondly, sensor arrays are constructed based on a library of
laboratory strains and can only identify bacteria within the
library, which may pose limitations in detecting unknown
bacteria in real samples. Therefore, it is necessary to develop
a sensing strategy to detect a large number of clinical
samples to construct a training set based on actual samples,
making it possible to apply it to clinical samples. On the
other hand, it is necessary to develop sensor arrays that are
capable of clustering bacteria by genus, species, Gram
properties, and antibiotic sensitivity, enabling rapid pre-
classification of bacteria outside the database for targeted
detection in the next step. Thirdly, currently developed
sensor arrays are greatly influenced by bacteria
concentration and struggle to achieve fingerprint
recognition. For sensors that differentiate bacteria
populations in samples, signal intensity is also related to
bacterial concentration. Therefore, appropriate preprocessing
of the signal to eliminate interference from concentration is
necessary. Additionally, bacterial heterogeneity, especially
the heterogeneity of antibiotic-resistant bacteria caused
during antibiotic treatment, is a key focus for future
monitoring. Fourthly, current data analysis of chemical nose
strategies for bacterial identification primarily relies on
linear dimensionality reduction methods, such as PCA,
which struggle to capture the complex structure of high-
dimensional data. However, in deep learning, CNN can
better process data distribution in high-dimensional spaces
through nonlinear dimensionality reduction. Therefore, it is
essential to continuously optimize mathematical
classification models and develop more robust machine
learning algorithms to achieve more reliable identification
results.

In summary, to enable the clinical translation of
chemical nose strategies, sensor arrays capable of
discriminating bacteria at the single bacterium level are
helpful to avoid the concentration-dependence issue of the
current sensor arrays. Secondly, sufficient strains isolated
from clinical samples should be incorporated into the

Sensors & Diagnostics Critical review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
Se

pt
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 7

/2
2/

20
25

 1
2:

54
:5

7 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sd00229f


1606 | Sens. Diagn., 2024, 3, 1590–1612 © 2024 The Author(s). Published by the Royal Society of Chemistry

Table 1 Summary of sensor arrays aided by machine learning for bacteria identification

Recognition mechanism
or substance

Type of
identification Probes

Types of pathogens
identified

Number
of
channels

Reaction
time

Bacteria
concentration Signal readout Ref.

Electrostatic and
hydrophobic interactions

Noncovalent
interaction

AuNP/AuNCs 10 (3
antibiotic-resistant
strains)

3 10 min OD600 = 0.015 Fluorescence,
UV-vis
absorption
and
light-scattering

33

Electrostatic and
hydrophobic interactions

Noncovalent
interaction

AuNPs 12 (6
antibiotic-resistant
strains)

6 20 min Surface
plasmon
resonance
spectra

34

Electrostatic and
hydrophobic interactions

Noncovalent
interaction

Lanthanide
NPs

5 3 A few
minutes

Fluorescence 35

Electrostatic interaction Noncovalent
interaction

AIEgens 8 (2
antibiotic-resistant
strains)

5 30 min OD600 = 0.002 Fluorescence 37

Electrostatic interaction Noncovalent
interaction

AIEgen/GO 6 7 2 h OD600 = 1 Fluorescence 38

Electrostatic interaction Noncovalent
interaction

VIEgens 10 (2
antibiotic-resistant
strains)

8 60 min 104 CFU
mL−1

Fluorescence 39

Electrostatic and
hydrophobic interactions

Noncovalent
interaction

Conjugated
polymers and
GO

10 3 Within
minutes

OD600 = 0.25 Fluorescence 23

Electrostatic interaction Noncovalent
interaction

Conjugated
polymers and
fluorescent
transducers

4 4 30 min OD600 = 0.25 Fluorescence 44

Electrostatic,
hydrophobic, π–π, and
hydrogen bonding
interactions

Noncovalent
interaction

Conjugated
polymers

16 12 × 4 <30 min OD600 = 0.04 Fluorescence 45

Electrostatic interaction Noncovalent
interaction

Conjugated
polymers and
AIE

20 6 30 s OD600 = 0.001 Fluorescence 46

Electrostatic and
hydrophobic interactions
(according to reference)

Noncovalent
interaction

AMPs and
conjugated
polymers

14 4 30 min OD600 = 0.01 Fluorescence 53

AMPs – lipid and
membrane (according to
reference)

Specific
recognition

Short
antimicrobial
peptides

6 4 30 min 1 × 108 CFU
mL−1

Fluorescence 54

Mercaptophenylboronic
acid–cis-diol interactions
and electrostatic
interactions

Covalent and
noncovalent
interactions

AgNPs 17 8 15 min OD600 = 0.05 UV-vis
absorption

60

BA–cis-diol interactions Covalent
interaction

Au–Fe3O4 6 5 20 min OD600 = 0.1 UV-vis
absorption
and
temperature

62

Glycan–lectin interactions Specific
recognition

Well plate 9 5 1.5 h OD600 = 1 Fluorescence 68

Glycan–lectin interactions Specific
recognition

Cu:CdS
quantum dots

3 6 30 min OD600 = 0.3 Fluorescence 69

Van–D-ala-D-ala,
polymyxin–phospholipid
and BA–cis-diol
interactions

Covalent
interaction and
specific
recognition

Carbon dots 6 3 60 min OD600 = 1 Fluorescence 75

Van–D-ala-D-ala,
BA–cis-diol and
electrostatic interaction,
and metabolic labeling

Covalent and
noncovalent
interactions

Fe single-atom
nanozymes

10 4 30 min 104 CFU
mL−1

UV-vis
absorption

76

HSA–cell walls,
Lf–lactoferrin receptors,
Lys–peptidoglycans, and
Van–D-ala- D-ala
interactions

Specific
recognition

AuNCs 6 (2
antibiotic-resistant
strains)

4 60 min OD600 = 1 Fluorescence 78
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training set to increase the accuracy of the responses to real
clinical samples. Finally, machine learning algorithms
suitable for biological samples should be selected and
optimized for eliminating signal fluctuations caused by
possible interferences and discovering more correlations
among strains, thus assisting in the qualitative analysis of
bacteria outside the training set. In addition to these three
aspects, to achieve the widespread application of chemical
nose strategies, efforts should also focus on simplifying the
preprocessing procedures and constructing portable, precise,
and low-noise instrumentation.
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Table 1 (continued)

Recognition mechanism
or substance

Type of
identification Probes

Types of pathogens
identified

Number
of
channels

Reaction
time

Bacteria
concentration Signal readout Ref.

Van–D-ala-D-ala,
bacitracin–pyrophosphate
groups, and Lys –
peptidoglycans

Covalent
interaction and
specific
recognition

AuNCs and
Ti3C2 MXenes

5 3 30 min OD600 = 0.2 Fluorescence 83

Metabolites (H+) Chemical
reaction

Acid–base
indicators

11 (2
antibiotic-resistant
strains)

3 6 h 107 CFU
mL−1

UV–vis
absorption

89

Metabolites (VOCs) Chemical
reaction

— 6 12 3 h OD600 = 1 PTR-MS and
FGC-PTR-MS

97

Metabolites (VOCs) Chemical
reaction

Dye-containing
agar gel

4 16 × 3 12 h 103 CFU
mL−1

— 90

Metabolites (VOCs) Chemical
reaction

C-Dot-IDE 4 3 1.3 s,
continuous
monitoring

OD600 = 0.5 Capacitance 98

LPS-binding peptide –
LPS, hemin [Fe3+]–
siderophores, etc.

Specific and
nonspecific
recognitions

SWCNTs 6 9 Incubation
after 1 h,
acquired in
30 s
intervals

— Fluorescence 101

Metabolic labeling Covalent
interaction

Small
molecules

3 3 12 h OD600 = 0.4 Fluorescence 106

Metabolic labeling and
click reaction

Covalent
interaction

UCNPs 8 (2
antibiotic-resistant
strains)

4 100 min 106 CFU
mL−1

Fluorescence 107

Metabolic labeling and
hydrophobic interactions

Covalent
interaction
(metabolism)
and
noncovalent
interaction
(AuNPs
aggregation)

AuNPs 8 (2
antibiotic-resistant
strains)

3 6 h OD600 = 0.1 UV-vis
absorption

108

Metabolic labeling and
click reaction

Covalent
interaction

UCNPs 8 (3
antibiotic-resistant
strains)

7 3 h 105 CFU
mL−1

Fluorescence 109

Biosynthesis AuNPs 17 (1
antibiotic-resistant
strains)

3 12 h OD600 = 0.5 UV–vis
absorption,
zeta potential,
and particle
size

116

Note: Ref. represents reference.
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