Open Access Article. Published on 31 July 2024. Downloaded on 11/15/2025 4:12:52 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

[{ec

Sensors & Diagnhostics

CRITICAL REVIEW

{ '.) Check for updates ‘

Cite this: Sens. Diagn., 2024, 3, 1406

Received 2nd May 2024,
Accepted 24th July 2024

DOI: 10.1039/d4sd00140k

rsc.li/sensors

“Research Center for Translational Medicine, Medical Innovation Center and State
Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical
Engineering & Nano Science, Tongji University School of Medicine, Shanghai,
200120, China. E-mail: leizhao@tongji.edu.cn

b Catalan Institute of Nanoscience and Nanotechnology (ICN2), BIST, and CSIC,
Edifici ICN2, Campus UAB, Bellaterra, 08193, Barcelona, Spain.

E-mail: andrew.piper@icn2.cat, giulio.rosati@icn2.cat, arben.merkoci@icn2.cat

¢ Department of Chemical Engineering, School of Engineering, Campus UAB,

Bellaterra, 08193, Barcelona, Spain

 Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluis

Companys, 23, 08010, Barcelona, Spain

Lei Zhao

7 ROYAL SOCIETY
PN OF CHEMISTRY

View Article Online
View Journal | View Issue

Direct writing of graphene electrodes for point-
of-care electrochemical sensing applications

Lei Zhao, @ *2b< Andrew Piper,*® Giulio Rosati ©*° and Arben Merkoci @ *°°

Electrochemical sensors are increasingly garnering attention as valuable tools for point-of-care (POC)
testing due to their low costs, high sensitivities, and ease of miniaturization. Graphene-based materials,
renowned for their tunable electrical conductivity, high specific surface areas, versatile functionality, and
biocompatibility; are highly suited for the fabrication of electrochemical sensors with heightened
sensitivities. Non-contact, maskless, direct writing methods allow the rapid, large-scale production of
graphene electrodes with high design flexibility. Researchers globally are advancing graphene electrode
production, aiming for smaller, faster, and more efficient sensors. This review provides a comprehensive
overview of recent advances on the direct writing of graphene electrodes for electrochemical sensing
applications. It covers the basics of direct writing techniques, the advancements in graphene ink/precursor
preparation, structural design, and device integration, with a focus on POC platforms.

1 Introduction

The escalating significance of healthcare, food safety control,
and environmental preservation underscores the pressing

need for precise disease diagnostics and accurate
contaminant detection. Established methodologies such as
chromatography, = mass  spectrometry,  spectroscopy,
polymerase chain reaction, and enzyme-linked

immunosorbent assays have conventionally addressed these
exigencies."™ Nevertheless, their protracted procedures and
intricate protocols necessitate specialized personnel and
sophisticated equipment, thereby presenting substantial
challenges, particularly in resource-limited settings.
Electrochemical sensors have emerged as a compelling

Dr. Lei Zhao obtained his Dr. Andrew Piper has an

Master's degrees in Chemistry
from Southwest University in
China and doctor's degree in
Biotechnology from UAB in
Spain. His research is focused on
low-cost fabrication of graphene
and other nanomaterial-based
electrochemical biosensors using
direct writing techniques for
practical applications. Currently
he is a postdoctoral researcher at
Tongji University focusing on the
development of bioelectronics.

1406 | Sens. Diagn., 2024, 3,1406-1427

undergraduate taught masters in

Medicinal and Biological
Chemistry  and  PhD in
nanoelectrode biosensors from

the University of Edinburgh. He
has since held post-doctoral
research ~ positions at  the
University of Oxford, KTH Royal
N institute  of technology, the
Karolinska Institute and now the
Catalan institute of nanoscience
and nanotechnology (ICN2). His
research is focused on the
development of point-of-care diagnostics.

Andrew Piper

© 2024 The Author(s). Published by the Royal Society of Chemistry


http://crossmark.crossref.org/dialog/?doi=10.1039/d4sd00140k&domain=pdf&date_stamp=2024-09-11
http://orcid.org/0000-0003-0291-2655
http://orcid.org/0000-0002-0227-4561
http://orcid.org/0000-0003-2486-8085
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sd00140k
https://pubs.rsc.org/en/journals/journal/SD
https://pubs.rsc.org/en/journals/journal/SD?issueid=SD003009

Open Access Article. Published on 31 July 2024. Downloaded on 11/15/2025 4:12:52 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Sensors & Diagnostics

alternative owing to their cost-effectiveness, high sensitivity/
selectivity, facile and  user-friendly
operation.””” They facilitate the transformation of physical,
biological, and chemical information into easily measurable
electrical signals, which can be recorded using simple,
portable setups. Consequently, electrochemical platforms
hold great promise for revolutionizing point-of-care (POC)
devices. In order to be considered true POC diagnostic
devices, they should comply with the WHO's REASSURED
criteria, which states that tests should have real time
connectivity, be environmentally friendly, affordable,
sensitive, specific, user-friendly, rapid, equipment free and
deliverable.®

Graphene derivatives are excellent candidates for electrode
fabrication in electrochemical sensing applications, owing to
their remarkable attributes such as high surface area, tunable
conductivity, and good biocompatibility.”'" Graphene is
ideally a single carbon atom-thick sheet consisting of a
hexagonal network with no defect sites."> It shows
remarkable conductivity (200000 cm®> V' s7') with a
theoretical specific surface area as high as 2630 cm” g™*. Low-
defect graphene is expensive to produce and tends to
aggregate in most solvents, due to n-n stacking and van der
Waals interactions, making it difficult to process."® Graphene
oxide (GO) retains the high surface area and flexibility of
graphene, while the hydrophilic oxygen-containing groups
(hydroxyl, carbonyl, carboxyl and epoxy groups) make it
soluble and easy to functionalize in aqueous solutions.’* The
functional groups change the carbon atoms from sp” to sp®,
which disrupts the graphene lattice, making GO thermally
insulating and electrically resistive. The poor conductivity
leads to an unfavorable electrochemical interface for sensing.
To solve this problem, the oxygen-containing groups can be
partially removed, resulting in reduced graphene oxide (rGO)
with improved conductivity and fewer defect sites.'
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Despite recent advances in graphene production, the
fabrication of graphene electrodes remains slow and costly.
Photolithography patterns graphene with high precision/
resolution,’® but is limited by the need for expensive
equipment and clean room facilities. Screen printing,"”
gravure printing,"® and contact-transfer printing’® are
promising alternatives, but require pre-patterned templates,
which does not allow the rapid and facile iteration of
electrode designs as well as being wasteful and expensive.

Recently, direct writing methods, also known as “digital
writing” or “digital printing”, have been the subject of
much research in the field of graphene electrode
production.”®®*  Direct writing encompasses a set of
maskless techniques for material patterning based on
computer-aided digital designs; they show great potential
for the simple, rapid, and scalable patterning of electrodes
with high design flexibility.”>** Various direct writing
systems have been employed to fabricate graphene
electrodes, including direct ink writing,>*>® 3D printing,”
and direct laser writing.”> These techniques
customization of graphene electrode design, morphology,
chemical composition, and conductivity. As such they can
be used to make electrodes smaller, faster, and improve
the sensing performance of the resulting electrodes. In this
review, we present a comprehensive overview of the recent
literature related to graphene electrode fabrication via
direct writing, specifically focusing on designs and methods
that have been used for electrochemical sensing. The review
covers the fundamentals of direct writing techniques,
advancements in graphene-based inks/precursors, electrode
designs/structures, and their electrochemical sensing
applications. The combination of different direct writing
methods, low-cost tools, and integrated sensing platforms
for smart sensing applications are also discussed. Notably,
emphasis is placed on the creation of POC platforms.
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Table 1 Notable graphene inks from the literature
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Printing
Ink Filler Solvent technique Ref.
Gr/PANI — Water/ethanol JpP 31
MosS,/Gr EC Cyclohexanone/terpineol, NMP, or IPA JP 32
Gr EC Ethylene glycol mixes with ethanol, DMF or  IJP 33
NMP
Gr Pyrene sulfonic acid sodium Water P 34
GO — Water IJjp 35
Gr/Ag nanoparticle EC Terpineol/cyclohexanone JpP 36
Gr Ag@Au — Water IJjp 37
PANI/Gr SDBS Water IJP 38
Gr — NMP IJpP 39
Gr — Ethanol Jp 40
Gr — IPA/PVA IJP 41
GO Sodium dodecyl sulfate EG/water JP 42
GO Water/ethanol/EG P 43
GO/TizC, Nafion Water JP 44
Gr, Gr/AgNPs, Gr/PEDOT: PSS — IPA/EG IJjp 45
Gr/polyurethane composite hydrogel — Organic solvent mixture EXP 46
Gr/CNT Ethyl cellulose Ethanol/terpineol EXP 47
GO — Water EXP 48
GO/PANI/PEDOT:PSS, rGO/PEDOT: PSS~ — Water EXP 49
Gr Poly(ionic liquid) Water EXP 50
Gr/PDMS — — EXP 51
GNPs/MWCNT/polyethylene oxide — Water EXP 52
(PANT/GO) gel — N-methyl-2-pyrrolidinone/water EXP 53
Gr nanoplatelets/PVB — Ethanol EXP 54
GO mix with polymers, ceramics, or — Water EXP 55
steel
rGO/Pluronic F127 — Water EXP 56
GO/MWCNTs/Nafion — Water EXP 57
Chitosan/ /rGO — Water EXP 58
Fe,03/Gr/Ag PVDF Nmp EXP 59
Lignin/GO — Water EXP 60
GO Branched Water EXP 61
copolymer/glucono-é-lactone

GO Hydroxypropyl methylcellulose Water EXP 62
Gr Nitrocellulose/ethylene glycol Glycerol/ethyl lactate EXP 63
MOF/CNT/GO — Water EXP 64
GO/ZnV,0s@Co03V,04, GO/C03V,05, GO/ — Water EXP 65
VN
Gr PLG DCM/EGBE/DBP EXP 66
Gr/PDMS — — EXP 67
Gr EC Terpineol/cyclohexanone EHDP 68,

69

AJP 70

GO — Water EHDP 71
rGO — NMF EHDP 72
Gr BSA Water EHDP 73,

74
PEDOT:PSS/Gr/SWCNTs Polyethylene oxide Water EHDP 75
Gr Perylene Dichloromethane EHDP 76
MXene/rGO PVDF DMF/acetone EHDP 77
Gr Nitrocellulose Dibutyl phthalate/ethyl lactate AJP 78-80
Electrochemically exfoliated graphene — Water AJP 81
Gr Graphene quantum dot Terpineol/cyclohexanone AJP 82
Gr EC Ethanol/ethyl lactate AJP 83
rGO/CNT/PEDOT:PSS — DMSO/water/methanol AJP 84
Gr 1-Pyrenesulfonic acid sodium salt ~ Water AJP 85
Gr/Ag NPs EC Ethanol/terpineol/water AJP 86

Abbreviations: AJP, aerosol jet printing; EHDP, electrohydrodynamic printing; EXP, extrusion printing; Gr, graphene; PANI, polyaniline; PEDOT:
PSS, poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate); MWCNT, multi-walled carbon nano-tube; PDMS, polydimethylsiloxane; EC, ethyl
cellulose; SDBS, sodium dodecyl benzene sulfonate; PVDF, polyvinylidene difluoride; NMP, N-methylpyrrolidone; EG, ethylene glycol; PVP,
polyvinyl pyrrolidone; SDS, sodium dodecyl sulfate.
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2 Direct writing of graphene

2.1 Direct ink writing

Direct ink writing techniques allow the direct, controlled,
maskless and contactless deposition of materials onto rigid,
flexible, and even deformable substrates.*>***® They do not
require complicated and expensive exposure and etching
processes, and have the advantage of working with a wide
range of materials. They are easy-to-use, cheap, and produce
less material waste than other printing techniques. Common
examples of this technique include inkjet printing, aerosol
jet printing, electrohydrodynamic printing, and extrusion
printing. They have been used to prepare graphene micro/
nano-structures for different applications. Moreover, the
morphology and properties of these structures can be
meticulously adjusted through modifications in ink
composition and printing parameters.

2.1.1 Graphene inks. Printed electronic sensors can make
POC devices more accessible. The core technology at the
heart of printed electronics is the conductive
Conventionally, metallic nanoparticle/metal precursor inks
are mainly being used,”® however, newer inks have been
developed containing carbon, two-dimensional materials,
and polymers.*® Among these, graphene-based inks stand out
due to their remarkable electrical conductivity,
biocompatibility, and scalability in manufacturing. The
progress of graphene ink formulations has been particularly
notable in direct writing techniques. A list of graphene inks
and their compositions is reported in Table 1.

The choice of solvent plays an important role in creating
stable and well-performing graphene dispersions, targeting
the characteristics of each printing/writing method. A solvent
is required that readily disperses the graphenic material, that
does not damage the substrate or cause issues downstream.>’
A number of solvents or solvent mixtures have been used for
graphene ink preparation, such as N-methyl-2-pyrrolidone, N,
N-dimethylformamide and dimethyl sulfoxide, terpineol,
ethanol, isopropanol, ethylene glycol, glycerol, ethylene
acetate and deionized water.*®” "% Additives are frequently
used to adjust the viscosity and surface tension of the inks,
or to stabilize graphene flakes via n-m stacking, van der
Waals  forces, hydrogen bonding or electrostatic
interactions.’*!

Pure graphene-based inks suffer from poor conductivity
mainly due to the deposition of disconnected flakes and
making difficult the creation of a relatively direct percolation
path, which limits their applicability.”> Composites of
graphene and metallic nanoparticles® or conductive
polymers® is often used to address this. The integration of
such additives not only hinders aggregation, improving the
stability of the ink, but also increases the conductivity of the
printed devices.

As an electrode material, graphene is known for its good
electrochemical, biological, and thermal stability, making it
ideal as a material choice for POC diagnostic device
development. However, the stability and selectivity of any

ink.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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biosensor towards the analyte largely depends on the
bioreceptor (enzyme/antibody/aptamer/molecular imprinted
polymer)*”%® making a summary of these performance
factors from the literature superfluous to the scope of this
review.

2.1.2 Inkjet printing. Inkjet printing (IJP) is a well-
established standard in the field of printed and flexible
electronics. Ink droplets are ejected from nozzles by the
mechanical force generated by a transducer (Fig. 1a).>*°" The
transducer can either be a piezoelectric crystal, which
undergoes a physical deformation when an electrical signal is
applied, or an electrical heater that generates air micro-
bubbles rapidly vaporizing the ink in close proximity of the
resistor. To achieve a stable printing process (free from
satellite drops and nozzle clogging), the rheological
properties of the inks must be tuned to obtain a Laplace
number (Z) between 1 and 10.°° Typically, graphene flakes
with average sizes <0.02 times the nozzle diameter, are
dispersed in low viscosity (4-30 cP) solutions, to formulate
inks with surface tensions between 20-50 mN m ~.°7 It is
important to note that while these parameters are
recommended, practical printing often relies on a trial-and-
error approach to identify the best combination of printers,
inks, and substrates.’®® With Z ~ 19, uniform features still
can be printed on SiO,, glass and paper without satellite
drops or nozzle blocking, yielding a high electrical
conductivity of 3.91 x 10* S m™" after annealing at 300 °C for
1 h (Fig. 1a).>*

2.1.3 Aerosol jet printing. During aerosol jet printing
(AJP), an ink is atomized into micrometer-sized aerosol
droplets through pneumatic or ultrasonic methods; droplets
are then transported into a deposition nozzle and directed
onto a substrate using a sheath gas (Fig. 1b).'°> AJP
demonstrates the capability to print inks with viscosities
from 1 to 1000 cp, at resolutions down to a few micrometers,
on both planar and non-planar surfaces.””'®® To obtain
consistent outcomes, relatively high volume of ink is required
and various parameters such as atomizer power, atomizer/
sheath gas flow rates, substrate temperature, and printing
speed must be optimized.”®*%*

AJP can produce sophisticated 3D structures due to its
compatibility with highly viscous inks. For example, a water-
based graphene ink was used to construct graphene pillars at
different angles with respect to the substrate without using
supporting fillers (Fig. 1b)."®° By setting the plate
temperature to 120 ©°C, the graphene microstructures
obtained were conductive immediately after printing.

2.1.4 Electrohydrodynamic printing. In
electrohydrodynamic printing (EHDP), an electric field is
applied between the nozzle and the substrate to deposit
continuous lines (or droplets) onto the substrate, forming
2D/3D  structures (Fig. 1c).>* EHDP exhibits excellent
compatibility with a variety of materials, accommodating a
wide range of ink viscosities from 0.1 to 10000 cp, realizing
the large-scale, high-resolution (down to nanometer)
fabrication of electronics'®>'°® . For example, graphene drops

Sens. Diagn., 2024, 3,1406-1427 | 1409
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Graphene/MWCNT

Fig. 1 Direct ink writing of graphene. From left to right: (a) inkjet printed graphene drops to show the drop size and uniformity, inkjet printed
graphene lines on different substrates, and two printed graphene lines on paper separated by a gap of ~20 um. Reproduced from ref. 34 with
permission from Elsevier, copyright 2019. (b) Aerosol jet printed graphene vertical and tilted micropillars. Reproduced from ref. 100 with
permission from John Wiley and Sons, copyright 2023. (c) Electrohydrodynamic printed graphene traces with high accuracy and uniformity.
Reproduced from ref. 69 with permission from IOP Publishing Ltd, copyright 2020. (d) Graphene-based 3D structures constructed by extrusion
printing. Reproduced from ref. 101 with permission from American Chemical Society, copyright 2018.

and lines were printed, obtaining features with standard
deviations down to 1.9 um (Fig. 1c).® The strong electric field
generates droplets far smaller than the nozzle diameter,
avoiding nozzle clogging. Despite all these advantages, only a
few works have been found that demonstrate graphene
electrode production by EHDP, potentially due to the
complexity of the technique.”>””'%”

2.1.5 Extrusion printing. In extrusion printing (EXP), a
pneumatic gas pump or a motor-driven screw pushes
viscoelastic inks through a fine nozzle; instead of individual
droplets, the ink emerges as a continuous flow that can be
layered to construct complex 3D structures (Fig. 1d)."°® The
wide range of ink viscosities, spanning from 0.5 to 1000 000
cp, compatible with EXP means that it has been used to
print: liquids, colloidal suspensions, hydrogels, and
composites.' Printing parameters that must be tuned to the
rheological properties of the ink include: the pressure
applied, nozzle size, and printing speed.'**'"!

Using EXP, highly viscoelastic graphene inks have been
used to produce self-supporting 3D graphene-based

1410 | Sens. Diagn., 2024, 3,1406-1427

architectures, with high specific surface areas, good electrical
conductivity, and excellent electrochemical properties.'**'"?
Novel printable graphene inks can be made by tuning the
graphene preparation,’® condensation,"** ion linking""* and
polymer stabilization.®® For example, negatively charged 0D,
1D and 2D materials were integrated into GO gels, yielding
uniform graphene-based inks, in which aggregation was
prevented by robust electrostatic repulsion between the GO
and the other composite materials.'” Complex architectures
fashioned from these mixed-dimensional materials were
printed on various substrates (Fig. 1d). Graphene aerogel
electrodes were also printed by this method and exhibited
excellent electrochemical performance owing to their efficient
ion- and electron-transport.

Overall, the quality of the printed patterns is influenced
by the rheological properties of the inks, surface properties
of the substrates and sintering methods. These factors
dramatically influence the properties of the printed devices,
including their resolution, conductivity, adhesion, and
structural integrity. Graphene printed from low-viscosity inks

© 2024 The Author(s). Published by the Royal Society of Chemistry
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has lower contact resistances’®and a strong affinity to the
substrate after sintering.”>'" This is highly favorable for low-
cost, flexible, thin film-based electrochemical devices.
However, the low graphene content within the ink, typically
0.002-1 wt%, requires extensive layer printing.*> Additives
such as ethyl cellulose and surfactants are helpful, but their
subsequent removal through an annealing process is
required (usually at temperatures >300 °C);*” which limits
the choice of substrates to heat-resistant materials. Complex
3D structures have been printed with highly viscous-elastic
graphene inks and applied in energy devices and strain
sensors,>” 113116 However, their applications as
electrochemical sensors are rarely reported, potentially due to
the hydrophobicity and structural fragility of the 3D porous
graphene matrix.’® As well as 0D, 1D and 2D printing, EXP
can also be used to 3D print devices.

2.2 3D printing

3D printing is a group of computer-controlled techniques for
creating three-dimensional objects by depositing material

Grid
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layer by layer along the Z-axis.>*”>®''” Common techniques
include fused deposition modelling (FDM), stereolithography
(SLA), and powder bed fusion (PBF).

FDM can be adapted to 3D print graphene-based
electronics. Graphene-doped organic filaments are thermally
melted, extruded through a nozzle, and deposited layer by
layer on the support, obtaining free standing frameworks
after solidification by cooling (Fig. 2a)."*® It has the advantage
of being low cost, easy to use, and fast; drawbacks include low
resolution, potential nozzle clogging, and electrical anisotropy
of the final devices. Acrylonitrile butadiene styrene
copolymers (ABS) and polylactic acid (PLA) are commonly
utilized filaments for graphene electrode production.'****°
For example, a PLA-based composite with a high content of
oriented colloidal graphite and graphene (15-25 vol%) was
used to print complex electrodes (Fig. 2a)."*" The structural
anisotropy was tuned by changing the printing direction,
showing conductivity as high as 22 S m™. Mechanical,
chemical, electrochemical, or thermal treatments are
generally necessary to expose and activate the graphene
encapsulated within the polymer matrix,"?****

Grid Gyrovd
Mesh opening < 0.5 mm

Different

openings architectures

GO/Acrylic resin

Layer-by-layer printing

Fig. 2 3D printing of graphene. (a) Different architectures by fused deposition modelling. The printing direction affects graphene's properties.
Reproduced from ref. 121 under creative commons CC-BY license. (b) Graphene cell printed by stereolithography. Reproduced from ref. 125 with
permission from Wiley-VCH GmbH, copyright 2023. (c) Sophisticated graphene devices printed with a modified powder bed fusion method.

Reproduced from ref. 126 under creative commons CC-BY license.
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SLA employs radiation (often UV light lasers) to selectively
solidify liquid polymers, achieving fast 3D printing with high
spatial resolution (10-150 pm), high throughput, and smooth
surfaces (Fig. 2b)."*” Patterning of graphene structures has
been demonstrated by UV polymerization of monolayer GO
blended acrylic resin (Fig. 2b).">® Thermal treatment at 300
°C allows for the in situ thermal reduction of GO to rGO,
while the resin remained unchanged, resulting in
conductivities of up to 0.012 S m™'. Concentrated carbon-
based materials tend to absorb and scatter light, which
hinders the photopolymerization process, making it difficult
to obtain graphene electrodes with high electrical
conductivity by SLA.'*829

Graphene can be 3D printed by a modified FDM method.
(Fig. 3e)."*® The strategy is based on selective laser sintering,
in which CO, laser irradiates polyimide powder-bed, realizing
both particle-sintering and graphene-converting processes
layer-by-layer by adjusting the laser power and layer
thickness. This unique strategy could assemble various types
of graphene architectures including identical-section,
variable-section, and graphene/PI hybrid structures, forming
bulk 3D graphene with freeform structures without
introducing extra binders, templates, and catalysts. Direct
conversion of liquid organic precursor into versatile 3D
graphene could be done with a similar process."*

2.3 Direct laser writing

Direct laser writing (DLW) is an easy, efficient, low-cost, eco-
friendly and maskless method to simultaneously produce

e 5P
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and pattern porous graphene electrodes without any catalysts
or harmful solvents.®”**° In the DLW process, a laser is
used to irradiate the samples, inducing photochemical and/
or photothermal reactions, resulting in laser induced
graphene (LIG). LIGs are highly porous 3D networks with
large active surface areas, good chemical/thermal stability,
and fast electron transfer rates, making them ideal electrode
materials for electrical/electrochemical sensing. Intensive
studies have been conducted with different laser sources
(ultraviolet-visible, infrared, and ultra-short pulse lasers) and
precursors; as a result, it is now possible to tune the LIG
morphology and composition, and thereby their physical,
chemical and electrical properties.**”*3%

Polyimide has quickly become the most popular precursor
for the production of LIG since it was first reported by Lin
et al. in 2014.*""° While it is debatable whether or not this
is truly graphene, it possesses many of the properties of
layered, highly crystalline graphene. This method allows
different patterns to be obtained with porous structures
abundant in five- and seven-membered rings, as opposed to
the conventional hexagonal lattice of graphene (Fig. 3a). LIG
can be wused to prepare graphene with a variety of
sophisticated structures by changing the laser parameters,
these structures could be designed such that their resistances
changed upon structure deformation (Fig. 3b)"** GO is
another commonly used precursor to produce LIG with a low
laser power."*® Low cost, high performance, porous graphene

was obtained with a LightScribe DVD writer (788 nm, 5 mW);
which was capable of reducing and patterning GO with a 20
pm resolution.

141 Spatially shaped femtosecond lasers (SSFL)

Flexible and wearable
electronic circuit on leaf

High precisio:
GO suspension Laser pen laser ‘III'
— Ethanol
-> ->

b

V-
,

GO + Au NPs"

GO + Au3+

Fig. 3 Laser induced graphene (LIG). (a) LIG from polyimide, showing porous structures with typical Raman signals of graphene. Reproduced from
ref. 131 under creative commons CC-BY license. (b) Morphology variation led by different laser parameters. Reproduced from ref. 132 with
permission from, American Chemical Society, copyright 2023. (c) High density, high resolution LIG/MnO, patterns fabricated on an industrial scale.
Reproduced from ref. 133 under creative commons CC-BY license. (d) Flexible, wearable electronics made from plants. Reproduced from ref. 134
with permission from Wiley-VCH Verlag GmbH & co. KGaA, Weinheim, copyright 2019. (e) Highly vertically ordered pillar array of graphene
framework constructed with a two-step lasering process. Reproduced from ref. 135 with permission from Royal Society of Chemistry, copyright
2018. (f) Selective transfer of laser reduced graphene composite by a press transfer process. Reproduced from ref. 136 under creative commons

CC-BY license.
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can produce graphene electrodes from GO on an industrial
scale. In SSFL, the shape of the laser beam is modulated to
allow it to pattern the graphene surface, this allows the laser
to rapidly stamp the surface in a manner compatible with
large scale fabrication. Using SSFL, over 30000 graphene
devices with dimensions as Small as 10 pm, separated by 500
nm could be produced in 10 minutes (Fig. 3c)."** Renewable
materials have proven to be great precursors to produce
LIG."*>'*  Cellulose, hemicellulose, and lignin can be
converted into graphene like materials using a UV
femtosecond laser in ambient air; this greatly improves the
sustainability of electronics manufacturing, and has been
shown capable of producing electrical connections, flexible
temperature sensors and supercapacitors (Fig. 3d)."* A
versatile method has also been developed to produce LIG
from cross-linked polystyrene, epoxy resins, and cellulose."**
A first laser irradiation step converts the substrates into
amorphous carbon, and a second laser step transforms the
amorphous carbon into graphene. The resulting LIG
displayed a low sheet resistance of around 5 Q sq ' and was
used to create supercapacitors on the surface of a coconut.
The method shows that any precursor that can be converted
into amorphous carbon can be transformed into graphene.

Although DLW is a 2D patterning process, there have been
attempts to use it for 3D device fabrication.'2®*3%%5 For
example, a highly vertically ordered pillar array of graphene
framework was produced from GO. GO hydrogel was
transformed into rGO framework by laser irradiation, and
then shaped into desired structures with macroporous
networks using a highly precise laser (Fig. 3e)."*

Typically, LIG remains on the surface where it was
generated. However, the successful transfer of LIG onto
various substrates has recently been achieved by mechanical
pressing,'*® elastomer embedding,"*”'*® and hydrogel*’/
adhesive tape'*’/solvent'" assisted transfer. Stamp transfer
methods have been proposed to transfer laser reduced
graphene electrodes on a wide variety of substrates including
PET, paper, nitrocellulose, glass, fabric, or silicon.’*>™** In
this process, rGO formed by the laser reduction of GO is
selectively transferred to other substrates with a mechanical
press (Fig. 3f)."*°

2.4 Low-cost direct writers

The accessibility of affordable direct writing tools holds
immense significance, as it empowers the creation of
personalized sensing devices within laboratories with limited
resources and even by non-professionals at home. Consumer-
grade inkjet printers show distinct advantages over their
high-end research-grade counterparts in terms of
affordability, accessibility, printing speed, and the number of
available ink channels.*®'>>'*® For instance, AgNP and
PEDOT: PSS inks were deposited on poly(ethylene
terephthalate) substrate with a printer cost of only 60 $."*
One can find commercial desktop 3D printers or laser
engravers on the market for less than 100 $ easily.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Furthermore, several teams have created -cost-effective
extrusion printers (under 300 $) using open-source software
and commercial materials.**%*°

2.5 Additional smart strategies

2.5.1 Multi-material deposition. The ability to print
multiple materials simultaneously allows for the fabrication
of more complex structures. One noteworthy example of this
is the work published by Zeng et al, in which a
combinatorial aerosol jet printing approach was used to
create patterns with compositional gradients with a
microscale spatial resolution (Fig. 4a)."*® Two inks were
atomized into aerosols containing microscale droplets. The
combined ink streams were then mixed within a single
nozzle and deposited onto the substrate using a sheath gas.
This method facilitated in situ mixing ratio adjustments,
leading to combinatorial doping, functional grading, and
chemical reactions within versatile material libraries,
including 0D, 1D, and 2D nanomaterials, and even seemingly
incompatible materials like MXene and Sb,Te;. In another
work, mono/co-axial microfibers were created using an
extrusion printing process with GO and Ti;C,T, dispersions
with mono/coaxial needles (Fig. 4b)."*°

2.5.2 Fully written devices. Nowadays, there is a growing
need for portable, wearable, miniaturized sensing devices.
This requires the incorporation of various functional
components, including electrodes, electrical circuits,
electrochemical cells, microfluidics, and data processors/
transmitters.'®*'®* Direct writing methods are inherently
suited for this purpose owing to the digital, maskless nature
of fabrication with high design freedom. For example, a fully
3D printed portable analytical setup was described
comprising a batch injection analysis cell and an
electrochemical platform with eight sensing electrodes
(Fig. 4c)."®" The device can be printed within 3.4 h using a
multi-material printer equipped with insulating and
conductive filaments at a cost of ca. ~1.2 $ per unit. Direct
laser writing exhibits notable advantages in the
manufacturing process of multilayered, integrated devices.
Utilizing a laser engraver, various components such as LIG
electrode arrays, microfluidic channels, and adhesive layers
can be precisely patterned. This approach yields to cost-
effective, disposable, and wearable epidermal patches
capable of simultaneous sampling and signal
monitoring (Fig. 4d).’®> The combination of different direct
writing techniques can overcome their constraints, structures
with higher resolution and special functions. For example,
3D needle-like electrodes and planar connections were
printed by AJP and IJP techniques, displaying excellent
performance for recording extracellular electrophysiological
signals from living cells."®®

sweat

2.6 Comparison with other patterning methods

While printing has many advantages as a method of ink
deposition and patterning, there are alternative methods;
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Fig. 4 (a) Simultaneous multi-material printing at various dimensions by AJP. Reproduced from ref. 148 under creative commons CC-BY license.
(b) rGO/ TizC,T, (TC) monaxial and coaxial fibers produced by EXP. Reproduced from ref. 160 with permission from American Chemical Society,
copyright 2023. (c) A fully 3D printed electrochemical cell with 8 integrated electrodes. Reproduced from ref. 161 with permission from Springer
Nature, copyright 2022. (d) A laser engraved wearable electrochemical sensor for simultaneous determination of various signals. Reproduced from

ref. 162 with permission from Springer Nature, copyright 2019.

these include screen printing and photolithography. Screen
printing typically has similar or lower resolution (um)'®® to
direct writing methods, requires pre-fabricated masks that
are expensive and time consuming to iterate, also a lot of the
ink is wasted when printing by this method, making the cost
per device typically higher than those produced by direct
writing. Photolithography can also be used to pattern
electronic devices, however this requires a large upfront
capital investment in the equipment and facilities."
Photolithography is not inherently iterative, requiring

1414 | Sens. Diagn., 2024, 3,1406-1427

complex optimization to produce working devices, however
once the device fabrication has been optimized, it is
inherently scalable and the costs of mass-produced devices
can be low. Of all these techniques photolithography has the
highest resolution/ precision, achieving low nm in three
dimensions (depending on many factors)."®” Direct writing
methods are advantageous over both of these alternatives
since they are versatile, iterative and can produce small or
large batches of devices at a low cost with minimal material
waste. The drawbacks of direct written include the low

© 2024 The Author(s). Published by the Royal Society of Chemistry
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resolution, the reproducibility of fabricated devices, and the
typical need to include ligands and stabilizers in the inks
that need to be removed after fabrication.

3 Electrochemical sensing
applications of direct-written
graphene electrodes

Electrochemical sensors enable the real-time analysis of
analytes in diverse matrices, making them important tools in
healthcare, environmental monitoring, and food safety
applications. Direct writing facilitates the customization of
graphene electrodes, alternating their shape, morphology,
conductivity and electrochemical properties. This means that
graphene electrodes possess the versatility required for
detecting a range of targets including pH, ions, molecules,
proteins, and pathogens (Table 2).

The early detection of health-related biomarkers greatly
aids disease prevention and enhances the efficiency of
medical treatments. As well as traditional POC sensors,
wearable biosensors are a hot topic for active real-time
monitoring of health conditions.'®® Inkjet printing can use a
wide variety of inks and design flexibility to fabricate
wearable sensors for multiplexed biosensing (Fig. 5a)."* The
fully-printed system was capable of detecting glucose,
alcohol, pH, and skin temperature in sweat. The influence of
pH and temperature variations were monitored to allow the
stable monitoring of glucose and alcohol for more than 30 h.

The electrochemical properties of graphene composites
are well-suited to detecting biomarkers in vivo. For example,
Li et al used direct laser scribing of metal-complexed
polyimide to fabricate stretchable, tissue-resembling
electrodes, consisting of interconnected graphene/metal
oxide nanoparticle/elastomer networks (Fig. 5b)."”> These
electrodes were used for continuous, real-time, monoamine
sensing in the brain, and serotonin detection in the gut
without disturbing peristalsis. All the work was done in a
living mouse via fast-scan cyclic voltammetry with a portable
potentiostat.

3D printed graphene electrodes have been used for the
detection of COVID-19, proving it could be a promising
method of decentralized and low-cost manufacturing of POC
diagnostic tools. Competitive immunosensors were developed
to monitor COVID-19 in both buffered and diluted serological
samples, realizing trace level response in 20 min (Fig. 5c)."**
Similarly, infectious pathogens were detected in spiked buffer
and artificial urine with LIG-based immunosensors,
exhibiting a wide dynamic range (917-2.1 x 10° CFU mL™")
with a low LOD (283 CFU mL™") (Fig. 5d).">> POC detection
was demonstrated by incorporating a portable wireless
system controlled and monitored by a smartphone.

Environmental monitoring and food safety have direct
implications for both human and animal welfare. Both
require POC analytical methods to accurately monitor
relevant hazards. A recent work by Chen et al. has shown that

© 2024 The Author(s). Published by the Royal Society of Chemistry
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four different targets could be detected by integrating
microfluidics and electrochemical cells through the direct
laser writing of PI (Fig. 5e)."”® By tuning the laser parameters,
the electrical conductivity, surface morphology, and
wettability of the LIG were adjusted, meaning that both the
microfluidics and electrodes could be fabricated by the laser
on the same substrate. The developed ion-selective and
enzymatic electrodes, capable of detecting K', NO;~, NH,',
and parathion simultaneously. An aerosol jet-printed high-
resolution interdigitated electrode with a line width of
around 40 pm was developed for the detection of histamine
using electrochemical impedance spectroscopy.”® The
functionalization of the electrode with monoclonal antibody
resulted in a wide histamine sensing range of 56.25 uM-1.8
mM and a low detection limit of 30.7 puM, in tuna broth
samples.

4 Conclusions, challenges and
perspectives

Direct writing methods have been developed for the rapid
prototyping of graphene electrodes using various graphene
inks, filaments, or precursors. The choice of direct writing
techniques, their parameters, and the chemistry of the
materials being used, can be tuned to obtain graphene
electrodes with different morphologies, geometries, and
electrochemical performances. The advantages of direct
writing, such as affordability, potential for mass production,
ease of modification and integration, combined with the
remarkable properties of graphene, have led to significant
progresses in electrochemical sensing. This progress is
driving a shift from traditional bulky electrochemical setups
to flexible, portable, cost-effective, miniaturized POC devices.
Despite the recent advancements in the literature, graphene-
based devices for POC testing in real-life scenarios still
encounter challenges in fabrication, operation, and data
analysis.

The ongoing development of graphene inks faces
challenges associated with non-uniform particle sizes and
structures. While various methods exist for producing
graphene-based materials, the industrial scale production
has yet to accomplish. Achieving a balance between ideal
printing and an electrode with good functional performance
is difficult, as both depends factors such as the surface
tension and viscosity of the ink, the substrate surface energy,
and sintering conditions. This can potentially be overcome
by preparing novel inks, pre-functionalizing the substrates,
and post printing treatments. For 3D printing, the availability
of graphene-based fillers is limited. The presence of polymer
fillers can significantly diminish the advantages of graphene,
such as its large specific surface area and conductivity. The
underlying mechanism for LIG production is not yet fully
understood, making it difficult to precisely tune the
properties of LIG with high reproducibility. Nevertheless,
doping with heteroatoms or nanoparticles can improve its
performance.'®® Mechanical stability is also a concern, as the
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Table 2 Representatives of electrochemical sensors based on direct written graphene electrodes
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Patterning Dynamic Limit of
Precursors methods  Sensing platform Targets range detection Ref.
Gr dispersion AJP Gr/antibody Histamine 56.25 pM-1.8 mM  30.7 uM 78
Gr dispersion AJP Gr/antibody Interferon gamma 0.1-5 ng ml™* 25 pg ml ™ 79
Interleukin 10 0.1-2 ng ml™" 46 pg ml™*
Gr dispersion AJP Gr/antibody Spike RBD 1-1000 ng ml™" 22.91 + 4.72 pg 168
ml™
Spike s1 (COVID - 19) 110.38 + 9.00 pg
ml™*
Paperboard DLW LIG/aluminosilicate Ascorbic acid 2.0-5.0 mM — 169
particle Caffeic acid 0.91-2.86 mM
Picric acid 0.48-2.0 mM
GO/noble metal ions DLW rGO/Au Caffeic acid 0.5-100 uM 50 nM 170
rGO/Au NO,~ 1-100 uM 120 uM
Pt@rGO H,0, 5-2000 uM 0.6 uM
PI DLW LIG/PEDOT/MIP Chloramphen 1 nM-10 mM 0.62 nM 171
PI DLW LIG Clothianidin 10-40 uM 823 nM 172
Imidacloprid 384 nM
Thiamethoxam 338 nM
Dinotefuran 682 nM
PI DLW LI/PPPA/anti-cortisol Cortisol 0.43-50.2 ng mlI™"  0.08 ng mI™* 173
PI DLW LIG/magmatic Cryptosporidium parvum 0.1 pM-25 nM 3 pM (ECL) 174
bead/DNA 47 pM (EC)
GO DLW rGO/anti-E. coli E. coli 0157:H7 917-2.1x 107 cfu 283 cfu ml™ 152
ml™
GO DLW rGO/Cu NPs Glucose 1 uM-4.54 mM 0. 35 uM 175
GO DLW rGO/Ag NPs H,0, 0.1-10 mM 7.9 uM 176
PI DLW LIG/AuNS/aptamer Human epidermal growth 0.1-200 ng ml™" 0.008 ng ml™* 177
factor receptor 2
PI DLW LIG/ion selective K 10°-107 M 107" M 178
membrane NO*” 107 M
LIG/enzyme NH* 40-120 pM 107%™
Parathion 15.4 pM
PI DLW LIG/anti-Salmonella Salmonella enterica 25-10° cfu m1™* 13 + 7 cfu ml™" 179
PI DLW LIG Uric acid 20-80 uM 0.74 uM 162
Tyrosine 50-200 uM 3.6 UM
PI DLW LIG Trans-resveratrol 0.2-50 uM 0.16 uM 180
GO/MWCNTs/Nafion EXP rGO/MWCNTs/Nafion Acetone vapor 0-100 ppm 5 ppm 57
aerogel Dopamine 0.1-10 uM
CNT/GO EXP Field effect transistor, Dopamine 1 uM-10 mM 6 UM 181
with CNT/rGO electrodes,
PEDOT: PSS channel
Chitosan/rGO EXP Chitosan/rGO Glucose 0.5-4 mM 0.45 mM 58
Gr/PLA FDM rGO-PLA/tyrosinase Catechol 30-700 uM 0.26 M 182
Serotonin 0.3-10 uM 0.032 M
Gr/PLA FDM Gr/PLA/Bi NPs cd** 100-500 nM 82 nM 183
Gr/PLA/Bi NPs Pb*" 80-500 nM 11 nM
Gr/PLA Hg™ 20-100 nM 6.1 nM
Gr/PLA FDM Gr/PLA Cocaine 20-100 uM 6 uM 184
Gr/PLA FDM Gr/PLA/Au NPs/DNA COVID-19 1.0-50.0 uM 0.30 uM 185
Gr/PLA/Au NPs Creatinine 0.050-3.2 m M 0.02 mM
Gr/PLA FDM Gr/PLA/GOx Glucose 0.5-6 mM 15 uM 186
Gr/PLA Uric acid 0.5-250 uM 0.02 uM
Gr/PLA Nitrite 0.5-250 uM 0.03 uM
Gr/PLA FDM Gr/PLA/Au NPs/HRP H,0, 150-600 pM 9.1 uM 187
Gr/PLA FDM Gr/PLA L-methionine 5.0-3000 uM 1.39 uM 188
Gr dispersion JpP Gr/Au NPs/anti-cortisol Cortisol 0.2-1.0 mM 10 uM 189
Gr/GOx/PB Glucose 10 pm-100 nM 10 pm
Gr dispersion JpP Gr/aminated Gentisic acid 1-21 uM 0.33 uM 190
montmorillonite clay
mineral
Gr dispersion IJP Gr gate electrode/GOx Glucose 30-5000 pM 100 nM 191
Gr gate electrode/lactate Lactate 2-30 mM 100 nM
oxidase
GO dispersion IJP rGO/anti-HT-2 Ht-2 mycotoxin 6.3-100 ng mI™" 1.6 ng ml™* 42
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Table 2 (continued)

Patterning Dynamic Limit of
Precursors methods  Sensing platform Targets range detection Ref.
FeO NPs/rGO/graphite P FeO NPs/rGO/graphite Lurasidone 50-2150 ng ml™'  15.64 ng ml™" 192
dispersion

Abbreviations: AJP, aerosol jet printing; EHDP, electrohydrodynamic printing; EXP, extrusion printing; FDM, used deposition modelling; DLW,
direct laser writing; Gr, graphene; MWCNTs, multi-walled carbon nanotube; CNT, carbon nanotube; PPPA, poly (pyrrole propionic acid); Gox,
glucose oxidase; NPs, nanoparticles.
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Fig. 5 Direct written graphene-based sensors for electrochemical sensing. (a) A fully inkjet printed wearable system for multiplexed epidermal
sweat analysis. Reproduced from ref. 194 under creative commons CC-BY license. (b) Stretchable, implantable LIG-based neurochemical sensors,
for the detection of dopamine (DA) in the brain and serotonin in the gut. Reproduced from ref. 195 with permission from Springer Nature,
copyright 2022. (c) 3D printed graphene electrodes for the POC detection of COVID-19. Reproduced from ref. 124 with permission from Elsevier,
copyright 2021. (d) A laser-reduced graphene oxide electrode-based portable platform for E. coli detection. Reproduced from ref. 152 under
creative commons CC-BY license. (e) LIG-based open microfluidic system for multiplexed environmental biosensing. Reproduced from ref. 178
with permission from American Chemical Society, copyright 2022.

delicate porous structure of LIG may degrade over long-term
exposure to the atmosphere. This becomes more pressing
when flexible/portable or wearable sensors are highly desired
these days. Combining with elastomers'®®> and hydrogels'®”
can be promising to obtaining robust, flexible, stretchable
graphene electrodes.

There are still difficulties for the commercialization of
electrochemical sensors, so as to graphene-based ones. One

© 2024 The Author(s). Published by the Royal Society of Chemistry

of the main reasons is the fouling of sensors due to the
complexity of the biomatrix. Nanoengineered structures and
coatings can be a promising avenue for antifouling.'®®
Notably, most biosensing processes necessitate multiple
washing steps, which are both time-consuming and relying
on trained personnel, thereby rendering them less user-
friendly for POC testing. Label-free sensing strategies'®® and
automatic sample processing setups®’® present a potential
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solution. However, it is crucial to thoughtfully select stable,
specific bioreceptors with strong affinity towards the targets.

Machine learning could guide the entire design-to-
fabrication process, eliminating the intricate and time-
consuming optimization of the printing process.”*' It can
also aid in eliminating signals stemming from contaminants
and facilitates the interpretation of extensive data, thereby
achieving heightened sensitivity, accuracy, and a broader
response range.>>

Miniaturized, integrated, multifunctional devices are
highly desired for electrochemical sensing, but significant
challenges persist.>®® Such devices require sampling and
sensing structures, software, data transmission/analysis, and
power sources. New functional inks and improved printing
resolutions, could help to enhance the detection sensitivity
and reduce the device size. Moreover, the ability to direct
write many of other components, such as: substrates,
electronics, microfluidics and batteries>**2°® means that we
are heading towards a truly whole printed system.

With all the fabrication techniques described in this review,
there is a constant need to improve their respective devices
compliance with the REASSURED criteria established by the
WHO. All devices and fabrication methods can be improved to
reduce their costs, make them more environmentally friendly,
more sensitive, specific, and deliverable. User friendliness can
be improved by incorporating with sister technological
developments such as smartphones. Direct writing methods are
inherently suited to these requirements, since the devices can
be quickly fabricated at the point of use at a low cost and
typically with less waste than other methods, but there is always
scope for improvement in all of these aspects of the device
performance.
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