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Wearable stethoscope for lung disease diagnosis
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Lung disease is one of the most widespread types of disease, especially in the era of COVID-19. Its

diagnosis is of great importance, as different types have diverse treatments and prognoses. The most

popular methods are computed tomography scanning, ultrasonogram, and bioimpedance sensors, but they

are not suitable for wearable applications. Here, we developed a wearable stethoscope with an

accompanying algorithm for lung disease diagnosis. It was demonstrated on 18 patients in hospital with

three types of lung disease. After collecting and pre-processing lung sound signals, several machine

learning methods with optimized features were applied and achieved high classification metrics. The

features of the low-frequency wavelets decomposed from the lung sound signals were found to be

important, serving as potential biomarkers for different types of lung disease. Overall, it was proven that

our wearable stethoscope could provide a more user-friendly method and find greater application

scenarios for lung disease diagnosis.

Introduction

Lung diseases are one of the most common types of disease
in the world. As the lung is a complex system, lung disease
can be divided into many types with totally different causes
and symptoms, affecting their diagnosis, treatment, and
prognosis. In general, lung diseases can be classified by the
affected region, such as the airways, air sacs, interstitium and
others.1 For lung diseases affecting the airways, chronic
obstructive pulmonary disease (COPD) is one of the most
common. COPD causes obstructed air flow from the lungs,
resulting in symptoms such as difficulty breathing,2 and is
often triggered by long-term exposure to cigarette smoke.3

However, it is treatable by bronchodilators using inhalers
after diagnosis. Among lung diseases affecting the air sacs,
pneumonia is the most widespread, especially in the era of
COVID-19. Pneumonia may cause the air sacs to fill with fluid
or pus, and affects mostly children younger than 2 years old
and people older than 65. After diagnosis, the symptoms may
ease in a few days, while a feeling of tiredness can remain for
a longer time. It is generally treated using antibiotics. Among
lung diseases affecting the interstitium, interstitial lung
disease (ILD) is prevalent, which causes progressive scarring
of lung tissue due to long-term exposure to hazardous
materials, such as asbestos.4 ILD is generally irreversible, so
an early diagnosis is critical. Many ILD patients are initially

treated with a corticosteroid and other drugs to suppress the
immune system.

Generally, as lung diseases occur in different parts of the
respiratory system, early and accurate diagnosis is critical for
different treatment strategies with various prognoses.
Currently, diagnosis is performed using pulmonary function
tests, which test the amount of the air inhaled and exhaled
by the lungs, arterial blood gas analysis, pulse oximetry, and
sputum testing. Furthermore, chest X-rays, computed
tomography (CT) scans,5 and echocardiograms can be
utilized to determine the severity and location of lung
diseases.6,7 However, for diagnosis of relatively healthy
people, portable or even wearable biomedical devices may
find more application scenarios than conventional
instruments in the hospital, and provide a key factor for the
early diagnosis of lung diseases.8,9 Also, for people in
hospital, a wearable device provides a more friendly method
than disturbing the patient by moving them from their ward
to the department with the relevant instruments, especially
for patients in an intensive care unit (ICU).

Current wearable technology is based on sensing the
physical vital signs or biochemical signals of the subject.
Optical methods such as photoplethysmography (PPG) use
visible or IR light to sense the signal, but penetrate only a
few millimetres into the skin and thus cannot reach the
lungs; it is mostly used to detect arterial blood vessels.
Electrophysiological methods such as electrocardiography
(ECG), electroencephalograms (EEG) or electromyography
(EMG) cannot be applied to the lungs,10 because they do not
generate strong enough electrical signals. Alternatively,
bioimpedance devices have been studied to monitor tidal
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volume and respiratory rate11,12 and used to classify
respiration disorders13,14 such as apnea and hypopnea.15

However, bioimpedance measurements require the injection
of a weak current into the body, which can be noticeable to
the subject, affecting the user experience and making this
method unsuitable for long-term monitoring. Respiration
causes vibrations or micromotions on the chest, which can
be directly sensed by strain or inertial sensors,16 but the
resulting information is not as rich as that of lung
sounds.17–19 As a result, wearable lung sensing is focused on
the generated sounds using ultrasonogram (USG) methods.
However, the ultrasonic technique is harmful to the tissue
and not recommended for usage longer than 30 min, which
may result in abnormal lung sounds being missed.
Additionally, its complicated piezoelectric sensor array makes
it not widely affordable. Nevertheless, the stethoscope, which
also detects sound signals, is the tool mostly widely used by
doctors to detect lung diseases. It passively receives lung
sounds, and thus it could be worn for hours or days, and
experienced doctors could make an initial diagnosis of the
type of lung disease directly using the stethoscope alone. In
addition to the sensing method, current research is focused
on different types of lung sounds, such as crackling, rhonchi,
wheezing and stridor.20–27 However, the lung sound type is
not directly related to the diagnosis of the type of lung
disease, and one type of disease is sometimes related to
several types of abnormal lung sounds.

In order to take advantage of the stethoscope, make it
digital, and solve the issue of lung disease diagnosis, we
optimized a wearable small-scale electronic stethoscope
(WSES) system previously developed by us17 and applied it to
18 patients with lung diseases in hospital. The system has a
microphone IC chip with an integrated
microelectromechanical system (MEMS). Its small size, low
power consumption, and high signal-to-noise ratio (SNR)
makes this wearable stethoscope applicable for patients in
hospital. A user-friendly mobile application was developed to

collect signals from the device for further diagnosis, making
our device cable-free. In order to diagnose the type of lung
disease, several machine learning methods were compared to
obtain the best performance. Our results showed that the
system could reach a diagnosis accuracy higher than 90%
and could be applied in hospital to assist doctors in lung
disease diagnosis. Fig. 1 shows an overall flow chart of our
study design. Lung sounds from patients with different lung
diseases were collected and pre-processed to remove noise
and artifacts. Then, features in the time domain, from
wavelet decomposition and demography, were extracted.
Next, different feature sets were compared, and nine machine
learning algorithms were applied to find the optimized
algorithms with the highest performance metrics.

Methods
Subjects and ethical considerations

This study was conducted on 18 patients with lung disease
recruited from Nanjing Drum Tower Hospital. There were
nine male and nine female patients with a mean age of 74.2
years (standard deviation ± 10.4 years), with the specific
demographic and pathological characteristics detailed in
Table 1. All subjects had normal hearing, normal vision, and
normal speech function. The subjects were conscious and
able to communicate with doctors, and the gold standard for
lung disease type was evaluation by the doctor before the
experiment. Prior to the experiment, subjects were informed
of the procedure and related precautions, and that the
experiment was not harmful to humans. All participants
signed an informed consent form and the study was
approved by the Ethics Committee of Southeast University.
Data were obtained in accordance with the guidelines of the
University Ethics Committee and the ethical principles of the
Declaration of Helsinki for medical research involving
human beings.

Fig. 1 Flow chart of diagnosis of the type of lung disease using our wearable stethoscope system.
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Hardware and experimental procedure

Fig. 2 presents the design of the device and a photo of a
patient wearing it. The sensing chip is an ICS-43432
(InvenSense) with a size of 3.5 mm by 3.5 mm, and the
microcontroller unit (MCU) is nRF52840 (Nordic
Semiconductor) with a size of 3.5 mm by 3.6 mm. The ICS-
43432 senses the sound from the body and transmits the
digital signal to the nRF52840, which has a Bluetooth module
to send the data to a mobile phone. The device operates at a
sampling rate of 2.4 kHz, which is sufficient for lung sound
collection. Blue medical tape (Huaxi Sanitary Materials) was
placed between the device and the patient's skin for sanitary
purposes, and the battery used was 250 mA h. The device cost
is tens of US dollars, and it could be afforded by the general
public. The firmware was developed with uVision 5.28 based
on NordicSemi nRF SDK 15.3. The algorithm was
demonstrated on MATLAB R2021a and Scikit-Learn 0.24.2 in
Python 3.7.

In a quiet environment in the ward, the subjects wore our
device lying flat, keeping their body posture unchanged as
much as possible. We collected around three minutes of lung
sounds for each patient. The signal quality was initially
judged according to the frequency domain display in the app
interface, which was used to decide whether to repeat the
data acquisition process.

Data pre-processing and feature extraction

The app saved the lung sound data to the memory of the
smartphone as a text file. The name of the file contains time
information, such as “Tue Nov 08 10:09:47 GMT + 08:00
2023-282”. The first six digits of the last string are
timestamps and the seventh digit is the order of collected
data. The text file is read into MATLAB, and the sound data
of the corresponding period were searched and intercepted
according to the timestamps recorded during the experiment.
The data was processed using a 100 Hz high-pass filter and a
wavelet denoising algorithm.

After the pre-processing, the features in the time domain,
frequency domain, and nonlinear domain of the signal were
extracted, as listed in Table 2. Other information listed in
Table 1, such as HR, SpO2, RR, SBP and DBP, was collected
but not included as features because during the collection
period they were not continuously monitored. They were only
utilized to confirm that the patient status was stable. Here,
nine features, namely, maximum value, minimum value,
maximum minus minimum value, standard deviation, mean
of absolute, median of absolute, mean, kurtosis, and mean of
absolute of the derivative in the time domain were extracted.
Next, the mean of absolute of coefficients, mean of power of
coefficients, and standard deviation of coefficients of five
wavelets were extracted, resulting in 15 features. Also, the
ratio between the mean of absolute of coefficients was

Table 1 Demographic and pathological characteristics of 18 subjects. HR: heart rate/BPM, RR: respiration rate/RPM, SBP: systolic blood pressure/
mmHg, DBP: diastolic blood pressure/mmHg

No Sex Age HR SpO2 RR SBP DBP

1 Male 91 60 99 30 137 55
2 Female 84 114 95 50 110 64
3 Male 87 75 98 17 130 77
4 Female 88 114 97 18 128 79
5 Female 75 96 98 36 105 75
6 Male 67 70 99 25 105 67
7 Female 70 89 100 13 143 78
8 Female 72 84 99 26 101 51
9 Female 82 76 99 18 138 64
10 Male 75 65 98 24 113 62
11 Female 55 53 95 22 110 66
12 Male 79 70 99 14 111 N/A
13 Female 80 96 98 21 159 71
14 Male 69 71 83 30 152 91
15 Male 63 106 88 15 120 72
16 Male 55 62 96 17 98 64
17 Female 74 72 99 24 126 73
18 Male 69 87 89 24 125 83

Fig. 2 a) Schematic and b) photo of the wearable stethoscope. c)
Photo of a patient wearing our device.
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derived as four features. Adding sex and age as features, in
total there are 30 features involved.

Machine learning models

Supervised learning is the most applicable method for lung
disease classification, in which input data with labels are
propagated by an algorithm, which then learns the patterns
associated with each label. A supervised machine learning
model was trained with extracted features as the dataset and
the predetermined lung disease types as labels. This study
utilizes the base classification models ExtraTreesClassifier,
DecisionTreeClassifier, LinearDiscriminantAnalysis,
LogisticRegression, QuadraticDiscriminantAnalysis,
KNeighborsClassifier, AdaBoostClassifier, SVC, and
MLPClassifier from the Python machine learning library
scikit-learn. Parameter optimization was performed using
RandomizedSearchCV. The performance of the above
machine learning models was judged by accuracy, precision,
recall, and F1 score. Accuracy, recall, precision, and F1 scores
were used to evaluate our algorithms. They are related to true
positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN). Accuracy is calculated as (TP + TN)/(TP +
TN + FP + FN), recall is quantified as (TP/(TP + FN)) and
precision is (TP/(TP + FP)). The F1 metric is the harmonic
mean of precision and recall for overall performance
evaluation. Also, a confusion matrix was studied.

The features were first standardized by removing the
mean and scaling to unit variance. The dataset was divided
into training and test subsets at a ratio of 9 : 1. The classifier
was trained using the training subsets and then utilized for
prediction on the test subsets. The algorithm's capability and
performance to tell the difference between different lung
diseases was studied. K-Fold was adopted for cross-validation.
The dataset was split randomly into K parts, with one part as
test subsets and the remaining as training subsets.

Results and discussion
Feature extraction and selection

The acquired lung sound signals were filtered using a 100 Hz
high-pass filter, as lung sound frequency is typically higher
than 100 Hz, and then decomposed using ‘wavedec’ at level
5 with the wavelet ‘coif4’ in MATLAB. Then, ‘wthresh’ and

‘waverec’ were utilized to denoise and reconstruct the lung
sound signals. Fig. 3 shows the raw data and the signals
denoised using wavelet thresholds.

After feature extraction, the ranking of feature importance
was calculated, and is shown in Fig. 4a. Two sets of features
(28 features vs. 30 features) were trialed (Table 3).
Classification using 28 features in the time domain and
wavelet decomposition results in an accuracy of 0.85 ± 0.04,
recall of 0.84 ± 0.04, precision of 0.84 ± 0.03, and F1 of 0.83 ±
0.03, which is rather good already. Interestingly, Fig. 4b
shows that after adding the demographic information, all
performance metrics were boosted, with an accuracy of 0.99 ±
0.01, recall of 0.98 ± 0.02, precision of 0.99 ± 0.01, and F1 of
0.99 ± 0.01. Indeed, age and gender are the most important
features, which indicates the relationships between lung
disease type and demographic information. Thus, it was
decided to include all 30 features for all machine learning
methods. It should be noted that obviously, age and sex
alone could not determine the lung disease type; all three
lung disease groups included patients with a wide range of
ages and of both sexes. In addition to age and sex, the
features related to low-frequency wavelets ranked higher,
such as coefficients from the decomposition at level 5 and
level 4, which indicates that the lower-frequency lung sounds

Table 2 Time domain, frequency domain and nonlinear domain features

Time domain features

Max Min Max–min
Standard deviation Mean of absolute Median of absolute
Mean Kurtosis Mean of absolute of derivative

Wavelet decomposition features

Mean of absolute of coefficients Mean of power of coefficients Standard deviation of coefficients

Demographic features

Sex Age

Fig. 3 Lung sound pre-processing using filters and then denoising
using wavelet threshold.
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are biomarkers for diagnosis. It could also be observed that
the higher the frequency of a wavelet feature, the lower its
ranking in the frequency importance.

Classification results

After feature selection, nine machine learning methods were
compared, and the model parameters were optimized. The
classification results for the top four algorithms are shown in
Fig. 5. K-Fold validation was utilized on accuracy, recall,
precision and F1 to test the robustness of the model. The
optimized hyperparameters for ExtraTreesClassifier were
n_estimators = 125, min_samples_split = 3,
min_samples_leaf = 1, criterion = entropy, with a mean cross-
validation F1 score of 0.986 ± 0.016. The optimized
hyperparameters of MLPClassifier were alpha = 0.0001,

hidden_layer_sizes = (200, 200, 200), max_iter = 1000,
learning_rate_init = 0.001, tol = 0.0001, beta_1 = 0.99, beta_2
= 0.99, epsilon = 1 × 10−7 with a mean cross-validation F1
score of 0.966 ± 0.015. The optimized hyperparameters of
KNeighborsClassifier were algorithm = ball_tree, leaf_size =
40, n_neighbors = 30, p = 1, weights = distance with a mean
cross-validation F1 score of 0.942 ± 0.022. The optimized
hyperparameters of svm.SVC were C = 2, kernel = rbf, gamma
= scale, tol = 0.0001 with a mean cross-validation F1 score of
0.954 ± 0.018. ETC performed the best, followed by MLPC
and KNN. Fig. 5b presents the confusion matrix of ETC, with
especially high metrics for PI and IPF. The only missed label
was an instance of “others” wrongly classified as “PI”. Thus,
it is proven that using our wearable device with the
corresponding optimized diagnosis algorithm, our system
could accurately diagnose lung disease and could find further
applications in clinics.

Nevertheless, several insights and limitations were
identified. First, different biocompatible adhesives could be
applied to attach our device to the patient's skin to minimize
the environmental noise and match the sound impedance in
order to obtain the highest SNR. Second, different types of
sound could be categorized in detail to determine the

Fig. 4 a) Feature importance of ETC and b) classification performance of ETC for two sets of features.

Fig. 5 Model performance characterization. a) Performance metrics of the best four models. b) Confusion matrix of the ETC model.

Table 3 Comparison for 28 vs. 30 features

Accuracy Recall Precision F1

28 0.85 ± 0.04 0.84 ± 0.04 0.84 ± 0.03 0.83 ± 0.03
30 0.99 ± 0.01 0.98 ± 0.02 0.99 ± 0.01 0.99 ± 0.01
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relationships between the sound type and lung disease type.
Third, most of the patients were more than 60 years old, and
the robustness of our system in lung disease diagnosis
should be proven with other ranges of ages.

Conclusions

Lung disease type classification is critical for deciding the
treatment strategy and prognosis monitoring. Currently, most
lung disease studies with wearable technology are focused on
sound type classification, which is not clinically significant.
Here, we introduced a wearable stethoscope and applied it to
18 lung disease patients with the three most widespread
disease types. Machine learning methods were used to
achieve high performance metrics, proving its potential for
application in clinics.
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