

Showcasing research from Professor Cunpu Li's laboratory, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China.

Toward robust lithium-sulfur batteries \emph{via} advancing $\textrm{Li}_2\textrm{S}$ deposition

Lithium-sulfur batteries can deliver about 2 - 3 times the energy compared with commercial lithium-ion batteries. However, there exists a common misunderstanding that lithium polysulfide conversion is a stepwise reaction: where S_8 is reacted to liquid polysulfides, then the liquid polysulfides further react to solid $\text{Li}_2S_2/\text{Li}_2S$. We find in practical working conditions, the discharge/charge process of battery is cross-executed rather than a stepwise reaction. Thus, a $\text{GeS}_2\text{-MoS}_2$ "butterfly" heterostructure was designed to facilitate the conversion of LiPSs and advance the deposition of Li_2S , thereby achieving robust lithium sulfur batteries.

