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egioselective oxidative Heck
reaction with internal olefins that tolerated
strongly coordinating heterocycles†

Ci Chen,‡ Qiaoya Zhang,‡ Zhiwei Huang, Wensen Ouyang, Yang Gao,
Jiye Luo, Yuan Liu, Yanping Huo, Qian Chen and Xianwei Li *

The oxidative Heck reaction of strongly coordinating heterocycles with internal olefins often led to elusive

reactivity and regioselectivity. Herein, by judicious choice of X-type directing groups under Ru(II) catalysis,

we achieved the regioselective oxidative Heck reaction of strongly coordinating heterocycles with sterically

demanding internal olefins. It was postulated that the “match/mismatch effect” of sterically demanding

internal olefins as coupling partners and subsequent kinetically favoured Michael addition or oxidative

aromatization act as driving forces to facilitate the desired reactivity and site-selectivity.
Introduction

The directing strategy-enabled oxidative Heck reaction (Fuji-
wara–Moritani reaction) has proven to be reliable for the expe-
dient construction of olens and ring systems, featuring step-
economy and exquisite reactivity and selectivity.1 Despite
signicant advancement in the development of metal catalysts
and directing groups, there remained some limitations: (1)
sterically demanding internal olens2 as coupling partners
oen exhibited low reactivity, probably due to the low binding
affinity of internal olens toward the metallocycle species and
sluggish migratory insertion; (2) elusive reactivity and regiose-
lectivity posed by the unproductive coordination of Lewis basic
nitrogen and sulfur atoms of the heterocycle substrates; (3)
costly stoichiometric metal oxidants3 were commonly employed
which offset the synthetic advantages.

Currently, only limited success was obtained using sterically
demanding internal olens for the oxidative Heck reaction by
meticulous design of directing groups and ligands under metal
catalysis. Yu2a–g developed MPAA (mono-N-protected amino
acids) and heterocycle ligands to promote the oxidative Heck
reaction enabled by weak coordination compatible with
internal olen coupling partners.

Moreover, regioselective enhancement of strongly coordi-
nating heterocycles remained synthetically appealing and
challenging. In this context, Yu and Dai developed a Pd-
ht Industry, Guangdong University of
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catalyzed C–H activation with isonitriles that overrides the
limitation of strongly coordinating heterocycles, using N–OMe
amides as the sole ionic ligands and directing groups, where the
formed localized PdIIX2 active species could cleave the specic
C–H bonds.4a Ackermann demonstrated Co(III)-catalyzed imi-
date enabled C–H amidation and annulation cascade with well-
tolerated heterocycles.4b–d Glorius reported Ru-catalyzed C–H
annulation with propargyl alcohol carbonates and an array of N-
heterocycles.4e Recently, using a well-designed N,N bidentate
tautomerizable pyridine-based ligand, Yu realized Pd(II)-cata-
lyzed C–H oxygenation of heterocycles with molecular oxygen,
in which strongly coordinating heterocycles are compatible
(Scheme 1).4f

Despite great advancement witnessed for the directed
oxidative Heck reaction, including the development of green
catalytic systems and synthetic application towards biologically
active molecules,5–8 sterically demanding internal olens with
compatible strongly coordinating heterocycles remained
underexplored.

Herein, by judicious choice of X-type directing groups, imi-
date esters, we developed the Ru(II)-catalyzed oxidative Heck
reaction7,8 of heterocycles with internal olens, using the Na2-
CO3$H2O2 oxidant and biomass-derived solvent. Signicantly,
regioselective modication of complex pharmaceuticals that
contained multiple functionalities, e.g., celecoxib that con-
tained strongly coordinating heterocycles, was realized.
Results and discussion

We commenced our study on the oxidative Heck reaction by
using imidate ester 1a9,10 and internal olen 2a as the model
substrates. Optimization of reaction conditions revealed that
with Ru[(p-cymene)Cl2]2 and AgNTf2 as the catalyst, NaOAc as
the base, Na2CO3$1.5H2O2 as the practical and inexpensive
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 Regioselective oxidative Heck reaction with internal olefins
that tolerated strongly coordinating heterocycles.

Table 1 Oxidative Heck reaction of heterocycles with internal olefinsa

Entry Variation of standard conditions Yieldb (%)

1 Standard conditions 76
2 Pd(OAc)2, NiCl2 or [IrCp*Cl2]2 as the catalyst n.r.
3 [RhCp*Cl2]2 as the catalyst 73
4 AgSbF6 instead of AgNTf2 65
5 Without [Ru(p-cymene)Cl2]2 n.r.
6 Without AgNTf2 27
7 Without NaOAc Trace
8 HOAc, PivOH instead of NaOAc 30, 38
9 NaOTFA, NaOPiv instead of NaOAc 56, 67
10 Without Na2CO3$1.5H2O2 24
11 AgOAc, DTBP or Cu(OAc)2 as the oxidant 68, trace, 66
12 DCE, acetone, tBuOH, EA as the solvent 72, 34, 53, 22
13 30 °C, 60 °C or 80 °C Trace, trace, 46
14 1-AdCO2H (0.5 equiv.), EtOH <10

a Standard conditions: 1a (0.10 mmol), 2a (0.20 mmol), [Ru(p-cymene)
Cl2]2 (2 mol%), AgNTf2 (5 mol%), NaOAc (30 mol%), Na2CO3$H2O2
(2.0 equiv.), GVL (1.0 mL), 100 °C, 12 h. b Isolated yield.
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oxidant, and biomass-derived GVL (g-valerolactone) as the
sustainable solvent, the desired olen 3a was obtained in good
yield (Table 1, entry 1). The Rh(III) complex exhibited compa-
rable reactivity, whereas other metal complexes such as Pd(II),
Ni(II), Ir(III) complex candidates showed no reactivity (entries 2
and 3). Control experiments indicated that the Ru(II) catalyst
was essential, and AgSbF6 could also serve as a halide scavenger
to facilitate the generation of cationic Ru(II) catalytically active
species (entries 4–6).

The utilization of acid, including HOAc, HOPiv or acetate
salts such as NaOTFA or NaOPiv instead of NaOAc gave no
improvement in the yield of 3a (entries 7–9). The Cu(II) salt and
Ag(I) oxidant effectively promoted the reaction with moderate
yields, while DTBP prohibited the reactivity. It is noteworthy
that Na2CO3$1.5H2O2 could serve as the synthetically practical
oxidant (entries 10–12). DCE was also an amenable solvent to
give comparable efficiency (entry 12). Reactions with decreased
temperature furnished the desired product 3a in much lower
yields (entry 13). Notably, only trace production of 3a was
observed under Jeganmohan's conditions7 (entry 14).

We then moved to examine reactivity of various directing
groups for the oxidative Heck reaction with internal olens
conducted under optimal Ru(II) catalysis (Scheme 2). Notably,
nitrile showed no reactivity (1-A), indicating that this trans-
formation proceeded via the imidate ester directed oxidative
Heck reaction where base promoted elimination of EtOH gave
the desired product 3a. Moreover, ketone (1-B), ester (1-C) or
© 2024 The Author(s). Published by the Royal Society of Chemistry
carboxylic acid (1-D), and other X-type ligands such as N–OPiv
amide (1-E) or NMe2 (1H) showed no reactivity.

The oxidative Heck reaction followed by Michael addition
proceeded smoothly for internal oxidizing N–OMe amide (3-F).
N–OMe-2-carboximidamide was also applicable for the stereo-
selective construction of tri-substituted olens (3-G).

C2- and C3-substituted thiophenes (3a–3e) and furans (3j)
led to tri-substituted olens with exquisite stereoselectivity,
which was conrmed by X-ray analysis (3e). Internal olens
including (E)-hex-2-enoates (3a), (E)-but-2-enoates (3e–3i) and
(E)-but-2-enamides (3c and 3d) acted as amenable coupling
partners. Notably, the reactions of both (E)-but-2-enoate 2b and
methyl (Z)-but-2-enoate 2b0 as the coupling partners furnished
the identical product 3b, indicating that intermediate 3b-Int
that was enabled by imidate ester 1a under this Ru(II) catalysis
might be involved. Additionally, the oxidative Heck reaction
with methyl methacrylate took place at the allylic C(sp3)-H
position, affording a-olen 3f as the sole product. Site-selective
functionalization of natural products and drugs, including
crotonate (3k), (+)-menthol (3l) and probenecid (3m) was also
achieved.

Preliminary mechanistic studies indicated that the oxidative
Heck reaction of N-phenyl pyrazole 1a-I with terminal olen 2o
proceeded smoothly, while the use of internal olen 2a led to
low conversion with recovery of starting material 1a-I
(Scheme 3(1)). The observed results might be attributed to the
low binding affinity of sterically demanding internal olens to
the in situ formedmetallocycles via directed C–H activation, and
subsequent sluggish migratory insertion.

Intriguingly, imidate ester 1d was applicable in the oxidative
Heck reaction with internal olen 2a, affording isoindole
Chem. Sci., 2024, 15, 20064–20072 | 20065
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Scheme 2 Regioselective oxidative Heck reaction of heterocycles
with internal olefins.

Scheme 3 Preliminary mechanistic studies.
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product 4a in a high yield (Scheme 3(2)). Moreover, the oxidative
Heck reaction of pyrazole substituted acrylamide ester 1o with
terminal olen 2m gave olenation product 3op exclusively,
indicating that the directing priority is that pyrazole is superior
to imidate ester (Scheme 3(3)). Signicantly, sterically
demanding internal olens 2 led to complementary regiose-
lectivity (Scheme 3(4)).

The facile Michael addition was envisaged to reduce the
overall energy barrier, thus facilitating the oxidative Heck
reaction with sterically demanding internal olens. Conse-
quently, terminal and sterically demanding internal olens
showed the ‘match and mismatch effect’4e for the directing
strategy enabled oxidative Heck reaction, respectively, even
using strongly coordinating heterocycles. Furthermore, this
‘match/mismatch effect’ could be tuned by the incorporation of
X-type directing groups, in which the following facile trans-
formation could accelerate the overall oxidative Heck reaction
with internal olens, and thus, compatible with strongly coor-
dinating heterocycles.

We thus investigated the imidate ester assisted oxidative
Heck reaction (Scheme 4). The internal olens bearing stronger
electron-withdrawing nitrile (4c) exhibited better performance
than ester, while crotonamide showed low reactivity (4b), which
20066 | Chem. Sci., 2024, 15, 20064–20072
is probably due to the relative reactivity of these olens for the
further Michael addition step. Synthetically versatile function-
alities including uoride (4e), bromide (4h), iodide (4f), and
nitro (4g) were tolerated. This oxidative Heck showed high
regioselectivity and took place at less steric positions (4i and 4j).
The reactions with fused ring systems including naphthalene
(4k), indole (4l and 4m), dibenzo[b,d]thiophene (4n and 4o)
proceeded smoothly. Notably, imidate esters exhibited directing
priority to the competing coordinating ketone (4q), ester (4r), N–
Ts aniline (4s), and O-bridged pyridine (4t) in this trans-
formation. The oxidative Heck reaction of imidate esters with
internal olens is accessible in the presence of strongly coor-
dinating heterocycles including pyrazole (4u and 4v). For meta-
pyrazole acrylamide ester that contained multiple reactive C–H
bonds, the oxidative Heck reaction with internal olens took
place exclusively at the ortho position to imidate ester with less
steric hindrance (4w). Signicantly, commonly strongly coor-
dinating pyridine could be also compatible for this imidate
ester enabled oxidative Heck reaction with internal olens (4x).

We then performed site-selective functionalization of key
skeletons of materials and drugs (Scheme 4(4)). For instance,
2,5-diaryl-1,3,4-oxadiazoles, potent scaffolds for electron trans-
fer materials (ETM), underwent the regioselective oxidative
Heck reaction successfully (4y). Triphenylamine (TPA), an
electroluminescent material, was also an amenable substrate
(4z). Natural products and drugs including (+)-menthol (4zb),
probenecid (4zc), and cholesterol (4zd) derived internal olens
could serve as coupling partners for this oxidative Heck
reaction.

Celecoxib analogue derived imidate ester, bearing diverse
reactive C–H bonds, could assist the regioselective oxidative
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Scheme 4 Regioselective oxidative Heck reaction with internal olefins.
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Heck reaction with internal olens (4ze). Late-stage modica-
tion of the letrozole drug analogue, which contained triazole
and nitrile functionalities (4zf), was achieved. The observed
high reactivity and regioselectivity for complex drugs and
materials further demonstrated the synthetic potential of this
oxidative Heck reaction with sterically demanding internal
olens in the presence of strongly coordinating heterocycles.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Further investigation of electron-unbiased allylic alcohols as
the coupling partners11 disclosed that imidate esters enabled
the [3 + 2] oxidative Heck reaction regioselectively. Notably,
strongly coordinating heterocycles, including pyrazole (5a and
5b), pyridine (5g and 5h) and oxygen-bridged pyridine (5c and
5d), and oxygen-bridged pyrimidine (5e and 5f) were compatible
for this regioselective oxidative Heck reaction with internal
olens, furnishing indenes together with the release of ethanol
Chem. Sci., 2024, 15, 20064–20072 | 20067
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Scheme 6 Mechanistic studies.
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and water. The obtained diverse indenes contained carbonyl
and amine functionalities, which could serve as a synthetic
handle for the synthesis of heterocycles (please see the ESI† for
further discussion).

The oxime enabled Heck reaction has been demonstrated for
the construction of heterocycles, while the use of heterocycles
and sterically demanding internal olen partners remained
elusive to achieve regioselectivity and efficiency.12 Herein, we
found that N–OPiv oxime esters could well assist the oxidative
Heck reaction with sterically demanding internal olens,
affording fused heterocycles (Scheme 5), including thieno[3,2-c]
pyridines (7a and 7b). Notably, 1,6-naphthyridines (7c) could be
readily accessed, which exhibited superior performance in
organic light-emitting diodes (OLEDs),12g while typical proce-
dures suffered from limited substrate availability and harsh
conditions. Moreover, this N–OPiv oxime enabled regioselective
Heck reaction could also tolerate pyrazole (7d). It was specu-
lated that the mismatch reactivity of pyrazole to the sterically
demanding internal olens and the oxidative Heck reaction
followed by aromatization serve as key driving forces to the
observed reactivity and regioselectivity.

Extensive exploration of the reactivity of various X-type
nitrogen directing groups revealed that the oxidative Heck
reaction of N-methoxy benzimidamide 1a-I took place at the
ortho position to pyrazole, which indicated that pyrazole
showed directing priority to N–OMe benzimidamide. As for
pyrazole substituted N–OMe amide 1a-II might be responsible
for the coordinative saturation of pyrazole to the metal catalyst,
thus leading to catalyst poisoning (Scheme 6).

According to the experimental observations and related
references, three typical reaction types might be involved in
directed C–H functionalization of heterocycles. For type I reac-
tivity, competing coordination of directing groups (DG) and
heterocycles to the metal catalyst revealed that heterocycles
showed directing priority to the DG, and undesired regiose-
lectivity was oen obtained, e.g., 8 (Scheme 6(1)).13,14

For type II reactivity, the strongly coordinating heterocycles
led to coordinating saturation and catalyst poisoning, and thus,
recovery of the starting materials, e.g., 9.

For type III reactivity, by judicious choice of X-type directing
groups and exploring the match/mismatch effect (e.g., steric
effect, low affinity of internal olens for the oxidative Heck
reaction in this work), as well as facile subsequent trans-
formations (e.g., kinetically favoured facile Michael addition, or
thermodynamically favoured aromatization with the release of
Scheme 5 N–OPiv oxime enabled oxidative Heck reaction of
heterocycles with sterically demanding internal olefins.

20068 | Chem. Sci., 2024, 15, 20064–20072
small molecules) to reduce the overall energy barrier, C–H
functionalization that overrides the limitation of strongly
coordinating heterocycles might be achieved.15

The native functionality-enabled oxidative Heck reaction of
heterocycles with internal olens remains underexplored; so
while considering the versatile nitrile functionality, we thus
conducted selective modication of the obtained products
(Scheme 7). Nitrile in the product 3b was a versatile handle to an
array of functionalities, including N-hydroxy carboximidamide
(3b-I), tetrazole (3b-II), carboxylic acid (3b-III) and ester (3b-IV),
which thus complement this directing strategy enabled oxida-
tive Heck reaction of heterocycles with internal olens (Scheme
7(1)).

Moreover, Suzuki coupling of thiophene 3e proceeded to give
phenyl-linked AMT analogue 3e-I, which further demonstrated
the synthetic applications of this oxidative Heck reaction of
heterocycles (please see the ESI† for details on the further
synthetic applications).

Site-specic functionalization of drugs was also performed
(Scheme 7(2)), e.g. the probenecid analogue (4w) could be
further transformed to the corresponding isoindolin-1-ones
(4w-I and 4w-II). Signicantly, site-selective modication of
the celecoxib analogue that contained diverse directing groups,
using this internal olen participated oxidative Heck reaction,
proceeded smoothly that overrides the traditional directing
priority (4ze). This transformation provided valuable insight
into the precise modication of complex molecules that con-
tained multiple reactive C–H bonds.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Scheme 7 Synthetic transformations. Conditions: (a) 3b (0.1 mmol), NaOAc (2.0 equiv.), NH2OH$HCl (2.0 equiv.), MeOH/H2O (1.0mL/1.0mL), 90
°C, 2 h; (b) 3b (0.1 mmol), NaN3 (4.0 equiv.), NH4Cl (2.0 equiv.), DMF (1.0mL), N2, 120 °C, 24 h; (c) 3b (0.1 mmol), NaOH aqueous solution (3 equiv.,
3 M), 80 °C, 15 h; (d) 3b-V (0.05 mmol), K2CO3 (2.0 equiv.), MeI (2.0 equiv.), THF (1.0 mL), 40 °C, 5 h; (e) 3e (0.10 mmol), Pd(PPh3)4 (0.005 mmol),
K2CO3 (0.4 mmol), Ar–B(OH)2 (0.12 mmol), EtOH/H2O/toluene = (0.3 mL/0.4 mL/1.0 mL), 95 °C, 12 h.
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Conclusions

In summary, by judicious choice of X-type N-directing groups,
we developed imidate ester enabled regio- and stereo-selective
oxidative Heck reactions with internal olens that tolerated
strongly coordinating heterocycles. The match/mismatch effect
and subsequent kinetically or thermodynamically favourable
transformations served as key driving forces to achieve prom-
ising efficiency and regioselectivity. Synthetic applications were
demonstrated by rapid construction of molecular libraries of
heterocycle-containing drugs and materials, and modication
of functional molecules that contained diverse functionalities
with unconventional regioselectivity. Further exploration of the
synthetic potential of this site-selective C–H functionalization
that overrides the strongly coordinating heterocycles towards
materials and drugs is underway.
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