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Visible light-induced ruthenium(i)-catalyzed
hydroarylation of unactivated olefinst
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Hydroarylation reactions have emerged as a valuable tool for the direct functionalization of C—H bonds with
ideal atom economy. However, common catalytic variants for these transformations largely require harsh
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reaction conditions, which often translate into reduced selectivites. In contrast, we herein report on

a photo-induced hydroarylation of unactivated olefins at room temperature employing a readily available
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Introduction

During the last decades, C-H activation has surfaced as
a powerful and sustainable tool in modern organic
synthesis.”® In this context, ruthenium has emerged as
a privileged metal for this type of transformation.”® Particu-
larly, the direct aryl addition to C-C double or triple bonds
via hydroarylation turned out to be an attractive and highly
atom-economic approach for the direct functionalization of
aromatic C(sp?)-H bonds. Different approaches were devel-
oped to realize the transition metal-catalyzed anti-
Markovnikov hydroarylation of unactivated olefins. Prom-
inent transition metal-catalysts for this transformation® are
primarily based on ruthenium'** - with pioneering contri-
butions by Lewis'® and Murai'” - rhodium*®*?* or iridium.?*>°
However, these processes are of limited utility for late-stage
functionalization, as they require elevated reaction temper-
atures. For the same reason, the degree of C-H bond
functionalization can be difficult to control, as over-
functionalization is observed in some cases. To overcome
this challenge, Yoshikai**** reported on the cobalt-catalyzed
hydroarylation of olefins at room temperature. Although
those reactions were performed at reduced temperature and
therefore prevented the formation of the bis-alkylated
product, they required a substoichiometric amount of
Grignard reagents which translates into reduced functional
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ruthenium(i) catalyst. Our findings include high position- and regio-selectivity and remarkable tolerance
of a wide range of functional groups, which further enabled the late-stage diversification.

group tolerance, and hence potentially limits viable late-
stage transformations of complex molecules (Scheme 1A).
To circumvent the harsh reaction conditions represented
either by high reaction temperatures or Grignard reagents, we
envisioned that a photochemical approach could realize the
desired transformation under significantly milder conditions.
Additionally, visible light irradiation appears as sustainable
and easily tunable driver for chemical reactions, comparable
to electrochemistry,*-*® that has proven to be highly efficient
in organic chemistry.*”~** Among a variety of different photo-
chemical approaches, dual-catalytic systems with a transition
metal-catalyst and an exogeneous photosensitizer, often
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Scheme 1 (A) Previous work: metal-catalyzed anti-Markovnikov
hydroarylation of olefins; (B) this work: photo-induced ruthenium-
catalyzed hydroarylation of non-activated olefins at room
temperature.
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based on ruthenium or iridium, showed remarkable effi-
ciency. Alternatively, in some cases the transition metal-
catalyst itself can show interesting photophysical properties,
thereby superseding the addition of a separate photocatalyst.
In the context of photochemical C-H functionalization, both

with and without an exogenous photocatalyst, trans-
formations utilizing transition metals,**** such as
palladium,**** rhodium,**** copper®=¢ or iron*” have been

exploited. Another metal with remarkable synergistic effects
of merging photochemistry and C-H activation is ruthe-
nium.”® Within our program on photoinduced, ruthenium-
catalyzed C-H functionalizations,**** we wondered whether
a photo-induced ruthenium-catalyzed hydroarylation of non-
activated olefins would indeed be viable at room tempera-
ture (Scheme 1B).

Results and discussion

We commenced our studies by probing reaction conditions for
the envisioned photo-enabled, room-temperature ruthenium-
catalyzed hydroarylation of olefins with ketimine 1a as
model substrate. [Ru(OAc),(p-cymene)] turned out to be the
catalyst of choice for this transformation, affording the cor-
responding alkylated ketone 2a in 85% yield after hydrolysis
(Table 1, entry 1). Other ruthenium(u) catalysts, such as
[RuCl,(p-cymene)], or [Ru(O,CMes),(p-cymene)], allowed the
formation of the desired product 2a, albeit with lower efficacy
(Table 1, entries 2 and 3). Several other arene-containing
ruthenium-complexes were also employed giving comparable
efficacy.*® The biscationic ruthenium-aqua complex®
[Ru(H,O0)(t-BuCN);][BF,], gave low yields, also in the presence
of KOAc (Table 1, entry 4). Likewise, the arene-free, biscationic
complex®® [Ru(MeCN)¢][BF,], failed to furnish the desired
product 2a in the absence of light, highlighting the unique
features of the metallaphotocatalysis (Table 1, entry 5).
RuCl;-3H,0 and Ru;(CO);,, failed to give the desired product
(Table 1, entries 6, 7). Additional carboxylate sources®” did not
improve the catalytic performance (Table 1, entries 8, 9).
Finally, a similar result was obtained when the p-methox-
yphenyl (PMP) moiety was substituted by a 3,4,5-trimethox-
yphenyl group (TMP) (Table 1, entry 10). Control experiments
were conducted, leading to a complete inhibition of reactivity
in the dark or without the ruthenium catalyst, mirroring their
essential role in the catalysis (Table 1, entry 11).

Substrate scope evaluation

With the optimized conditions in hand, we explored the
versatility of the direct hydroarylation of 1-octene with various
ketimines 1 (Scheme 2A). Initially, the synthetic utility was
successfully demonstrated by upscaling our standard reaction
on 1.2 mmol scale yielding the alkylated compound 2a in 90%
yield. Subsequently, a wide range of substituted ketimines 1
were subjected to our reaction conditions to evaluate the func-
tional group compatibility. Noteworthy, numerous functional-
ities were well tolerated, and the mono-alkylated product was
selectively obtained in all cases. Different alkyl substituents in
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Table 1 Optimized conditions and deviation effects®

1) [Ru(OAc),(p-cymene)] (10 mol%)

NP blue LED e}
| 1,4-dioxane (0.2 M), RT, 48 h
Me * Zn-Hex Me
2) HCI (1 M)
H RT, 16 h n-Hex
1a (3.0 equiv.) 2a

Entry  Deviation from standard conditions Yield 2a” (%)

1 No deviation 85

2 [RuCl,(p-cymene)], 32

3 [Ru(O,CMes),(p-cymene)] 69

4 [Ru(H,0)(#-BuCN)s][BF,], + KOAc (20 mol%)  (6)

5¢ [Ru(MeCN)][BF,], + KOAc (20 mol%) 0

6 RuCl,-3H,0 0

7 Ru;(CO);, 0

8? 1-Cyclohexenecarboxylic acid as additive 85

9¢ Boc-Leu-OH as additive (30)

10 3,4,5-Trimethoxyphenyl instead of 68
p-methoxyphenyl

11 Without light or without [Ru] 0

“ Reaction conditions: 1a (0.20 mmol), 1-octene (0.60 mmol),
[Ru(OAc),(p-cymene)] (10 mol%), 1,4-dioxane (1.0 mL), room
temperature (30-35 °C). Subsequent hydrolysis with 1 M HCI (3.0 mL).
Detailed experimental procedures are shown in the ESL ? Yields of
isolated product. Yields in parentheses determined ‘t;y '"H NMR using
an internal standard. 24 h, 30 °C, in the dark. “ Using [RuCl,(p-
cymene)], as catalyst. PMP = p-methoxyphenyl.

the para-position (2b-2e) or a phenyl-group (2f) afforded the
desired compounds in excellent yields. Additionally, the use of
various electron donating groups such as methoxy (2g), thio-
ether (2h), dimethylamine (2i), 1,3-dioxole (2j) or mesylate (2k)
led to the targeted products in high yields. It is noteworthy that
only one isomer was observed in the case of 1,3-dioxole deriv-
ative (2j). Other interesting functionalities, such as methyl ester
(21), p-fluoro (2m), p-chloro (2n), p-trifluoromethyl (20) or even
p-mesyl (2p) were well tolerated. Subsequently, the use of keti-
mines bearing a heterocycle in para-position were also smoothly
transformed into the corresponding hydroarylation products
with yields up to 95%, demonstrating the excellent functional
group tolerance of this approach (2q-2s). Finally, substituents
in the meta-position of the aromatic ring were also tolerated,
and only one constitutional isomer was obtained (2t, 2u) in 59%
and 74% yield, respectively.

Then, the effect of substituents on the alkene was explored
(Scheme 2B). A longer alkyl chain did not impact the reactivity
as ketone 2v was obtained in 95% yield. The use of an alkene
bearing a phenyl ring led to an excellent yield of 98% (2w). A
sensitive bromide derivative (2x) and a free alcohol (2y) were
also compatible and afforded the corresponding compounds in
good yields. Different silyl groups (2z-ab) proved to be suitable
as well. Similarly, a boronic acid masking group (MIDA) was
well tolerated (2ac). Finally, terminal alkenes incorporated in
important biorelevant compounds were successfully trans-
formed into the desired hydroarylation products. Therefore, the
reaction was performed in the presence of ibuprofen (2ad) and

© 2024 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sc06005a

Open Access Article. Published on 23 October 2024. Downloaded on 2/7/2026 4:01:01 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Edge Article

Substrate Scope

[Ru(OAc),(p-cymene)] (10 mol%)

View Article Online

Chemical Science

<L, 70
Z

o o o
Me’ n-Hex n-Hex R n-Hex

2a, 85% 2b, 91%

1.2 mmol: 90%

o o o
MeO,C n-Hex X n-Hex  F3C n-Hex

2¢c, 81% 2d, R = i-Bu, 94%

2e, R = t-Bu, 98%

21,74% 2m,X=F, 87% 20, 92% 2p, 71%
2n,X=CI, 72%
o o o
Me Me Me
Me Ph Br
13 2 ]
2v, 95% 2w, 98% 2x,73%
o o o
OH TS SiMe,Ph
4 n
2y, 67% n=0,2z 95% 2ab, 90%

n=1,2aa, 91%

/©/0Me /©/t-Bu
N N
| |

t

n-Hex n-Hex

3a, 59%°] 3b, 58%[°!

H 1,4-dioxane (0.2

o [o} [o}
Ph’ n-Hex R’ n-Hex [o) n-Hex
\—o

o o o
Ms’ n-Hex = n-Hex /7 ‘n-Hex
\ |
S 3

Me
@i”e " de%
0
BMIDA e

2ac, 62%

blue LED
), RT, 48 h

2f, 84%[01 2g, R = OMe, 78%
2h, R = SMe, 72%

2i, R = NMe,, 76%

2}, 79%

o o
M
n-Hex

2q, 64% 2r,X=S,50% 2t,59%

2s,X=0, 95%

2ae, 41%!
From Cholesterol

2ad, 92%!
From Ibuprofen

SNSRI

n-Hex n-Hex n-Hex

3d, 71% 3e, 18% 31, 15%L

(from aldimine)

Scheme 2 Substrate scope for various ketimines 1 with 1-octene. Reaction conditions: 1 (0.20 mmol), 1-octene (0.60 mmol), [Ru(OAc),(p-
cymene)] (10 mol%), 1,4-dioxane (1.0 mL), room temperature (30—-35 °C). Detailed experimental procedures are shown in the ESIL.T (a) Subse-
quent hydrolysis with 1 M HCL (3.0 mL). (b) 96 h reaction time. (c) 1.6 equiv. of 1-octene.

cholesterol (2ae) derivatives giving the targeted products in
acceptable to excellent yields.

Additionally, the ruthenium-catalyzed hydroarylation proved
viable for different directing groups (Scheme 2C). The use of
a bis(p-methoxyphenyl)imine led to the corresponding mono-
alkylated product 3a in a satisfactory yield of 59%. A good
yield of 58% was observed for bis(diethylamino phenyl)imine
3b. Moreover, a cyclic imine was employed to furnish the cor-
responding dihydroisoquinoline 3¢ in moderate yield.
Furthermore, heteroarenes also enabled the photo-induced
hydroarylation. Therefore, 2-phenylpyridine gave access to the
alkylated product 3d in 80% yield. The mild conditions of the
photo-induced C-H activation translated into improved mono-
selectivities as compared to thermal mode of action.’®** A
reduced efficacy was observed for a pyrimidyl coordinating
group (3e) and an aldimine (3f).

Mechanistic investigations

To gain insights into the working mode of the metal-
laphotocatalysis, mechanistic studies were conducted. Initially,

© 2024 The Author(s). Published by the Royal Society of Chemistry

the role of the blue light irradiation was investigated in detail
with an on-off experiment (Scheme 3A). Here, the essential role
of the light was confirmed. Next, the reaction was monitored via
"H NMR spectroscopy, with free p-cymene being observed.* The
addition of a substoichiometric amount of p-cymene to the
reaction mixture inhibited catalysis.®* Additionally, a quantum
yield® of 1.2% was in good agreement. Finally, UV-spectroscopy
allowed us to identify that both the ruthenium complex and
ruthenacycle Ru-1 show a strong absorbance of light in the
range between 380-460 nm. Analysis of the reaction mixture
before and after irradiation with blue light also show the
formation of new species (Scheme 3C).*

To gain further insights into the potential mode of action, an
intermolecular competition experiment was performed between
electron-rich ketimine 1b and electron-deficient ketimine 10
(Scheme 4A). After 24 h, the trifluoromethyl-substituted
compound 20 was obtained in 30% yield against 5% for the
methyl-substituted product 2b. Consequently, the C-H activa-
tion may occur preferentially on electron-poor arenes with
weaker C-H bonds indicating a carboxylate-assisted

Chem. Sci., 2024, 15, 19037-19043 | 19039
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Scheme 4 Key mechanistic findings.
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= reaction mixture.

cycloruthenation. This tendency was also observed during the
evaluation of the substrate scope of the ketimine 1, as slightly
higher yields were obtained in the case of electron-poor keti-
mines (Scheme 2). To pursue our studies, the independently
synthesized ruthenacycle Ru-1 was employed as catalyst under
our standard conditions. Notably, this complex was only effec-
tive in the presence of a catalytic amount of potassium acetate
(20 mol%), further substantiating that a carboxylate-assisted
ruthenation is involved in the catalytic cycle (Scheme 4B).
Interestingly, product formation was not observed in the dark
with complex Ru-1 as catalyst, being suggestive of light-
independent cyclometallation, along with a light-induced acti-
vation - arguably through decoordination of the p-cymene
ligand.** Next, deuterium-labelling experiments were carried
out. When ketimine 1a-ds was treated with [Ru(OAc),(p-cym-
ene)] under blue light irradiation, a significant H/D exchange
was observed (Scheme 4C). This result points to the reversibility
of the cleavage of the ortho C-H bond. The hydroarylation
reaction between 1la-ds; and dimethyl(phenyl)(vinyl)silane was
also examined. Deuterium incorporation was only observed at
the B-position of the hydroarylation product 2ac-ds while no
deuterium was introduced at the a-position (Scheme 4C). This
observation is in contrast to rhodium(i)-catalyzed alkylations of
aromatic amides reported by Chatani whose mechanistic
proposal was considered to undergo a carbene mechanism
which was confirmed by deuterium labelling experiments and
DFT calculations.®® The carbene mechanism was therefore
considered unlikely for the photo-induced hydroarylation.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Scheme 5 Proposed catalytic cycle.

Based on our experiments and literature precedents,’*
a plausible mechanism for the photo-enabled hydroarylation of
olefins involves an initial C-H ruthenation of ketimine 1 to
generate ruthenacycle A (Scheme 5). After light-induced p-cymene
dissociation, the catalytic active species B is formed. Subsequently,
the coordination of the olefin via intermediate C, along with
migratory insertion into the Ru-C bond forms intermediate D
Then, acetic acid enables proto-demetallation to generate the
species E. Finally, ligand exchange with another equivalent of the
starting material releases the desired product 2a’, while regener-
ating catalyst B through cyclometalation.

Conclusions

In summary, we reported on versatile C-H alkylations enabled
by photo-induced ruthenium(u)-catalyzed hydroarylation of
non-activated alkenes. In sharp contrast to established catalytic
systems, the carboxylate-assisted ruthenium(u) catalysis proved
efficient under exceedingly mild reaction conditions, namely at
ambient temperature, enabled by visible light irradiation. The
ruthenaphotocatalysis was easily conducted on gram-scale and
its robustness was mirrored by a broad functional group
tolerance.
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