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tion of isobenzofurans from
phthalans: application to the formal synthesis of
(�)-morphine†‡

Mirai Kage, Hiroyuki Yamakoshi, Manami Tabata, Eisaku Ohashi,
Kimihiro Noguchi, Takeshi Watanabe, Manato Uchida, Minetatsu Takada,
Kazutada Ikeuchi and Seiichi Nakamura *

Treatment of phthalan derivatives with p-chloranil in dodecane in the presence of molecular sieves at 160–

200 °C allowed the generation of unstabilized isobenzofurans, which underwent intramolecular Diels–

Alder reaction to give endo cycloadducts exclusively. The cycloaddition turned out to be reversible,

providing an equilibrium mixture of endo adducts when heating a substrate with a stereocenter on the

tether. We also demonstrated the regioselective allylation of an oxygen-bridged cycloadduct upon

exposure to EtAlCl2 in the presence of allyltrimethylsilane, and the conversion to Rice's intermediate

completed a formal synthesis of (±)-morphine.
Introduction

Due to the structural features and the ease of aromatization of
Diels–Alder adducts under acidic conditions, isobenzofurans
(IBFs) have been recognized as useful intermediates for the
preparation of fused polycyclic aromatic compounds.1 Despite
being aromatic compounds with 10p-electrons, IBFs are
extremely reactive and prone to dimerization or polymerization
in solution.2 While aryl and electron-withdrawing substituents
on the furanoid ring stabilize the system, less stable IBFs should
be generated in situ and used for the following reaction without
isolation.

To date, a variety of methods involving retro Diels–Alder
reaction,2a,3 1,4-elimination of dihydroisobenzofuranols and
their ethers,4 isomerization of benzalphthalan,5 enolization of
phthalides,6 transannular cyclization of carbenes, carbenoids,
or Pummerer cations with adjacent carbonyl groups,7 and
electrophilic cyclization of o-carbonylated phenylacetylenes8

have been developed to generate IBFs.9 However, oxidation has
never been utilized for this purpose except for a few examples,10

probably due to the electron-rich nature of IBFs. With the
availability of phthalan derivatives in mind,11 we wondered
whether IBFs could be generated from the corresponding
phthalans by oxidation. Intramolecular trapping of IBFs with p-
, Nagoya City University, 3-1 Tanabe-dori,

l: nakamura@phar.nagoya-cu.ac.jp

of the late Dr Masaji Ohno, Professor

ESI) available. CCDC 2237321. For ESI
other electronic format see DOI:

19076
bonds at a suitable position can circumvent the aforementioned
stability issue, leading to the formation of benzene-fused,
oxygen-bridged polycyclic compounds that would be employed
for the syntheses of bioactive natural products12 (Scheme 1). In
this paper, we report a novel oxidation/intramolecular Diels–
Alder (IMDA) strategy for the construction of an octahydrophe-
nanthrene skeleton, the synthetic utility of which was demon-
strated by the formal total synthesis of (±)-morphine.
Results and discussion

At the outset of this study, we selected phthalan 1 (ref. 13) as
a substrate and investigated the tandem oxidation/IMDA
sequence. Although palladium catalysts can be used for
Scheme 1 Tandem oxidation/intramolecular Diels–Alder approach to
octahydrophenanthrene derivatives and the structure of morphine.
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dehydrogenative aromatization reactions,14 treatment of 1 with
Pd/C in 2-methylnaphthalene afforded no reaction and heating
at 240 °C led to partial decomposition (Table 1, entry 1). In
contrast, the use of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone
(DDQ)15,16 as a stoichiometric oxidant in CH2Cl2 at room
temperature resulted in a complex mixture of products (entry 2).
We then speculated that the IBF generated from 1 could not
adopt the folded conformation 2 at room temperature. This
hypothesis was validated by the observation that cycloadduct 3
was obtained as a single isomer in 20% yield when the reaction
was performed in dodecane at 100 °C (entry 3). However,
competitive overoxidation under these conditions was sug-
gested by the formation of ketoaldehyde 4 as a byproduct. This
overoxidation was suppressed by switching the oxidant from
DDQ to less reactive p-chloranil, although the reaction was quite
slow and the product yield (23%) was comparable at this
temperature due to the 40% recovery of 1 aer a prolonged
reaction time (10 h, entry 4). An examination of the temperature
prole of the reaction revealed that the product yield was
improved to 65% by raising the temperature to 180 °C, but the
reaction at a higher temperature (200 °C) afforded no discern-
ible benets (entries 4–6). A signicant solvent effect exists in
this transformation; dodecane proved to be the solvent of
choice for this transformation, whereas the reaction in o-
dichlorobenzene shortened the reaction time (entries 5 vs. 7, 8).
While the addition of 2,6-di-tert-butyl-4-methylphenol (BHT) as
a radical scavenger resulted in a low yield, we were gratied to
nd a benecial effect of molecular sieves (MS),17 providing
cycloadduct 3 in 91% yield by the use of 3 Å MS (entries 9–12). It
Table 1 Oxidation/IMDA sequence using phthalan 1a

Entry Oxidant Solvent A

1 Pd/C 2-Methylnaphthalene
2 DDQ CH2Cl2
3 DDQ Dodecane
4 p-Chloranil Dodecane
5 p-Chloranil Dodecane
6 p-Chloranil Dodecane
7 p-Chloranil o-C6H4Cl2
8 p-Chloranil Triglyme
9 p-Chloranil Dodecane B
10 p-Chloranil Dodecane 3
11 p-Chloranil Dodecane 4
12 p-Chloranil Dodecane 5

a All reactions were carried out on a 0.13 mmol scale with 1.3 equivalents o
unreacted starting material remained. c The formation of overoxidation p

© 2024 The Author(s). Published by the Royal Society of Chemistry
should be mentioned that naphthalene derivatives arising from
aromatization were not detected under these conditions. The
stereochemical assignment for cycloadduct 3 was determined
by the diagnostic 1H NOE correlation between Hg and Hh.18

Having optimized the reaction conditions, the scope of the
tandem oxidation/IMDA sequence was explored (Scheme 2). As
expected, reactions of phthalans having trisubstituted or nitro-
substituted olens gave the corresponding endo cycloadducts 5
and 6 in good yields. It is noteworthy that chemoselective
oxidation could be attained under these conditions, leaving the
formyl group intact, albeit in modest yield of aldehyde 7 (54%).
The electron-withdrawing substituent on the olen was found
to be unnecessary, but the tandem reaction of phthalan 8a was
accompanied by aromatization of the 11-oxatricyclo[6.2.1.01,6]
undecane moiety, giving naphthalene and phenanthrene
derivatives 16 and 17 as byproducts in 19% and 7% yields,
respectively. A quaternary stereocenter could be created by
using 1,1-disubstituted alkenes 9a and 10a as substrates: even
the alkene bearing an electron-donating methyl group gave
cycloadduct 10, albeit in 15% yield, whereas the hetero atom-
substituted alkene in phthalan 11a did not undergo cycloaddi-
tion in accord with the general trend, resulting in decomposi-
tion. The tetrasubstituted alkene in phthalan 12a could also
serve as a dienophile for the sequential reaction, allowing for
the simultaneous construction of three contiguous quaternary
stereocenters.19 Although Kanematsu and co-workers reported
that IMDA reaction of an IBF lacking substitution on the tether
met with failure due to rapid decomposition of the IBF,20

unsubstituted product 13 was obtained according to this
dditive Temp. (°C) Time (h) Yield (%)

240 6 0b

25 1 0b,c

100 8 20b,c

100 10 23b

180 5 65
200 2 62
180 0.5 31b

180 6 0b

HT 180 7 38b

Å MS 180 5 91
Å MS 180 5 84
Å MS 180 5 77

f the oxidant at a concentration of 0.01 M. b TLC analysis indicated that
roduct 4 was observed.

Chem. Sci., 2024, 15, 19070–19076 | 19071
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Scheme 2 Substrate scope.a a All reactions were carried out on a 0.13 mmol scale with 1.3 equivalents of the oxidant at a concentration of
0.01 M. b Yields in parentheses are based on recovered starting material. c Naphthalene and phenanthrene derivatives 16 and 17were obtained as
byproducts in 19% and 7% yields, respectively. d At a concentration of 1 mM.
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protocol. With regard to substituents on the benzene ring, an
ortho-methoxy group in phthalan 14a did not reduce the
product yield, and this transformation could be applicable even
to the unsubstituted substrate 15a.

The scope of the present method is not limited to the use of
alkene dienophiles (Scheme 3). The reaction of alkyne 18 fur-
nished conjugated ester 19 (67% yield), the alkene moiety of
which can be used as a handle for further functionalization.

To demonstrate the synthetic utility of our method, we then
addressed the formal synthesis of (±)-morphine. Due to their
important pharmacological properties and strained pentacyclic
structure, morphine and related natural products have been
recognized as attractive targets of synthetic interest, and many
groups have made impressive contributions to the literature on
the syntheses of these molecules.21–54

The synthesis was initiated with the sequential Heck/oxa-
Michael reaction between iodide 20 (ref. 55) and enone 21
(ref. 56) in the presence of Ag3PO4 (ref. 59) in N,N-dime-
thylformamide (DMF) at 110 °C, affording phthalan 22 in 82%
yield (Scheme 4). The carbonyl group was reduced with Li(s-
Bu)3BH in THF at −78 °C,60,61 and the resultant alkoxide was
Scheme 3 Tandem oxidation/intramolecular Diels–Alder reaction of
ynoate 18.

19072 | Chem. Sci., 2024, 15, 19070–19076
protonated and silylated in situ62 to give tert-butyldimethylsilyl
(TBS) ether 23 as an inseparable 15 : 1 mixture of diastereomers
in 85% yield. Aer reduction of the Weinreb amide with i-
Bu2AlH in CH2Cl2 at −78 °C, one-pot homologation of aldehyde
24 to nitroalkene 25 under Merck conditions63 set the stage for
the key oxidation/IMDA sequence.

We expected that stereoinduction would be observed when
using phthalans with a stereocenter in the tether as substrates.
As anticipated, a 1 : 2.7 mixture of cycloadducts 26 and 27 was
obtained in 81% yield upon heating at 200 °C for 3 h. Transition
state 29, in which the cyclohexane ring adopts a chair confor-
mation, is favoured over the diastereomeric transition state 28,
thus leading to the preferential formation of 27.64 At this junc-
ture, we noticed that independent submission of cycloadducts
26 and 27 to BHT in dodecane at 200 °C provided identical
ratios of isomers (26 : 27 = 1 : 3.6).65 While the reactions of IBFs
were reported not to be reversible under the conditions nor-
mally employed,1b,66 our results clearly revealed that the cyclo-
addition was reversible. Although both stereoisomers 26 and 27
could be carried forward, it was more expedient to work with
a homogeneous material. We then proceeded forward in the
synthesis with major isomer 27.

Given characteristic oxygen-bridged products obtained by
the present oxidation/IMDA reactions, regio- and stereoselective
ring-opening methods need to be devised for the application to
total synthesis. Aer considerable experimentation with regard
to the ring-opening of 27, reaction of amine 30, obtained by
reduction of 27 using NiCl2/NaBH4 in MeOH in 82% yield,67

with allyltrimethylsilane with the aid of EtAlCl2 in CH2Cl2 at
−45 °C was found to fulll this requirement, providing a 2 : 1
mixture of allylation products 31 and 13-epi-31 in 57% yield
aer N-protection with ClCO2Et.68 Oxidative cleavage of the
olen in allylation product 31 with OsO4/NaIO4 (ref. 69) was
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Scheme 4 Formal synthesis of (±)-morphine. Reagents and conditions: (a) enone 21 (1.2 equiv.), Pd(OAc)2 (10 mol%), (o-MeC6H4)3P (40 mol%),
Ag3PO4 (10mol%), Et3N (3.1 equiv.), DMF, 110 °C, 25 h, 82%; (b) Li(s-Bu)3BH (2 equiv.), THF,−78 °C, 1 h, then TBSCl (7 equiv.), imidazole (11 equiv.),
DMF, 9 h, 85%, dr= 15 : 1; (c) i-Bu2AlH (1.6 equiv.), CH2Cl2,−78 °C, 16 h, 80%; (d) CH3NO2 (102 equiv.), tetramethylguanidine (0.1 equiv.), toluene,
0 °C, 1 h, then MsCl (15 equiv.), Et3N (15 equiv.), 1 h, 86%; (e) p-chloranil (1.5 equiv.), 3 Å MS, dodecane, 200 °C, 3 h, 81% (26 : 27 = 1 : 2.7); (f) BHT
(0.1 equiv.), dodecane, 200 °C, 25 h, 98% (26 : 27 = 1 : 3.6); (g) NiCl2$6H2O (0.5 equiv.), NaBH4 (13 equiv.), MeOH, 3 h, 82%; (h) H2C]CHCH2TMS
(1.7 equiv.), EtAlCl2 (3 equiv.), CH2Cl2,−45 °C, 6 h, then ClCO2Et (5 equiv.), 1 M aq. NaOH, 14 h, 31 38%, 13-epi-31 19%; (i) OsO4 (2 mol%), NaIO4 (4
equiv.), 2,6-lutidine (2 equiv.), 3 : 1 1,4-dioxane/H2O, 36 h, 77%; (j) Et3SiH (3 equiv.), BF3$OEt2 (2.5 equiv.), CH2Cl2, −78 to 0 °C, 2.5 h, 70%; (k)
Et3SiH (3 equiv.), BF3$OEt2 (3 equiv.), CH2Cl2,−78 to 0 °C, 2 h, then Dess–Martin periodinane (2 equiv.), pyridine (2.5 equiv.), 1 h, 73%; (l) CuBr2 (2.2
equiv.), 1 : 1 CHCl3/AcOEt, 70 °C, 2 h; (m) DMF, 140 °C, 25.5 h, 42% (59% after two cycles). Ms = methanesulfonyl; TMS = trimethylsilyl.
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accompanied by cyclization to furnish enecarbamate 32 in 77%
yield. The benzylic hydroxy group and double bond were
successfully reduced upon treatment of enecarbamate 32 with
Et3SiH in the presence of BF3$OEt2 in CH2Cl2 at −78 °C, and
raising the temperature to 0 °C effected desilylation, affording
crystalline alcohol 33, the stereochemistry of which was
unambiguously established by X-ray crystallography.70 Ene-
carbamate 32 could be converted to ketone 34 by a one-pot
procedure involving oxidation of alcohol 33 with Dess–Martin
periodinane57 buffered with pyridine. Ketone 34 underwent a-
bromination with CuBr2 in reuxing CHCl3/AcOEt,46,71 and
heating the crude product in DMF at 140 °C effected intra-
molecular etherication to provide N-carbethoxynorcodeinone
(35)72a in 59% yield aer one recycle.73 While the conversion of
35 to codeine72a and its O-demethylation to morphine72b were
reported by the Rice group, the synthesis of 35 constitutes
a formal synthesis of (±)-morphine.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Conclusions

We have developed a novel oxidation/IMDA reaction sequence,
wherein unstabilized IBFs were generated as transient species
from phthalans upon oxidation with p-chloranil. Exclusive
formation of endo cycloadducts was observed and the reaction
proved to be reversible under these conditions. This metal-free
protocol represents the rst general method for oxidative
generation of IBFs and the rst example that provides experi-
mental evidence for the reversibility of Diels–Alder reactions of
IBFs without using maleic anhydride as a dienophile. The
method presented herein offers the advantage of obtaining
cycloadducts without aromatization in most cases, and the
bridging oxygen can serve as a handle for the installation of
substituents at the benzylic position. The successful application
to the formal synthesis of (±)-morphine attests to the power of
the present method in natural product synthesis.
Chem. Sci., 2024, 15, 19070–19076 | 19073
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