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Purifying alkenes (mainly ethylene and propylene) by removing their corresponding alkanes is crucial yet
challenging in the chemical industry. Selective physisorption shows promise for effective separation but
demands precise pore dimensions and/or pore chemistry of adsorbents. We report an yttrium-based
metal-organic  framework,  Y,(TCHB)(OH),-2H,O (HIAM-317, TCHB = 3,355 -tetrakis(4-
carboxyphenyl)-2,2’,4,4',6,6'-hexamethyl-1,1'-biphenyl), that can separate ethylene/ethane and
propylene/propane via mechanisms regulated by coordinated water arrays. In the presence of
coordinated water arrays, HIAM-317 sieves alkanes from alkenes. When fully activated by removing
coordinated water arrays, it selectively adsorbs ethane over ethylene and propylene over propane. This
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Introduction

Ethylene and propylene are key chemical feedstocks for the
production of plastics and high-value chemicals." In 2023, the
global production of ethylene and propylene are 220 and 130
million metric tons, respectively, growing at an annual rate of
5.50%.* Steam cracking serves as the primary method for
producing ethylene and propylene, where unwanted by-
products including alkanes are also generated. The subse-
quent purification of alkenes from alkanes currently relies
heavily on energy-intensive cryogenic distillation processes.>”
The substantial energy input required for alkene purification
process contributes significantly to global energy consumption,
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through theoretical calculations and modeling.

positioning it among the seven chemical separations to change
the world.*>*°

The separation of alkenes and alkanes by selective phys-
isorption using porous solids has attracted tremendous atten-
tion due to its great potential for energy-efficient alkene
purification under mild conditions."*** The key to achieve
efficient adsorptive separation lies in the development of
adsorbents with the desired separation mechanism and
optimal separation efficiency."*"® In general, physisorbents
discriminate alkenes and alkanes relying on appropriate pore
dimensions for kinetically-driven molecular sieving, or optimal
pore surface chemistry for thermodynamically-driven selective
adsorption.””* The subtle difference in the physicochemical
properties of alkenes and alkanes present a formidable chal-
lenge for their effective separation. Achieving high selectivity
imposes stringent requirements on pore dimensions and/or
pore surface chemistry of adsorbents, particularly for
complete molecular exclusion or reversed alkane-selective
separation.”*

Compared to traditional inorganic adsorbents such as
zeolites and organic adsorbents such as carbons, polymers,
covalent organic frameworks (COFs), and hydrogen-bonded
organic frameworks (HOFs), metal-organic frameworks
(MOFs) excel in separating physicochemically similar molecules
because of their intrinsic features, including diverse structures,
highly controllable pore dimensions and functionality.** In
particular, successful practice of reticular chemistry has
enabled chemists to precisely tailor the pore structure for
desired separation.’®*” Over the past decade, intensive studies

© 2024 The Author(s). Published by the Royal Society of Chemistry
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have been focused on fine-tuning of MOF pore aperture for full
sieving of alkenes over alkanes, or elaborate engineering of pore
surface chemistry for targeted selective recognition of alkanes
over alkenes. The current state-of-the-art MOFs separate
alkenes and alkanes via three mechanisms: kinetic sieving,
thermodynamically alkene-selective, and thermodynamically
alkane-selective (reversed separation).>* It is important to note
that each of the three mechanisms has pros and cons, and each
of them can be optimal for practical implementation depending
on application conditions (e.g., mixture compositions, separa-
tion temperature, impurities, etc.). Among the various adsor-
bents studied, the majority follow a single separation
mechanism, and it remains challenging and relatively unex-
plored to engineer adsorbent structures for controllable and
adaptable separation behaviour, especially on a single adsor-
bent (Fig. 1). This is critical for disclosing the relations between
the pore structure of the adsorbents and their selective
adsorption behaviour, and for rational design of desirable
adsorbents for high performance separation of alkenes and
alkanes.

In this work, we synthesized an yttrium-based MOF, Y,-
(TCHB)(OH),-2H,0 (HIAM-317, HIAM stands for Hoffmann
Institute of Advanced Materials), with coordinated water arrays
along its one-dimensional channels, which act as a regulatory
factor of its pore dimensions and pore surface chemistry. When
activated at relatively low temperature with coordinated water
molecules remaining intact, the pore aperture of the MOFs is
defined by these water arrays enabling the splitting of both
ethylene/ethane and propylene/propane. As the activation
temperature increases and coordinated water molecules are
removed, the accessible pore aperture expands significantly,
allowing all alkenes/alkanes (C2 and C3) to diffuse freely along
the open channel. However, the surface chemistry of the
expanded channel exhibits adsorbate-dependent molecular
recognition, favoring adsorption of ethane over ethylene and
propylene over propane. The separation capabilities of HIAM-
317 with and without coordinated water arrays have been
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validated experimentally by breakthrough measurements of
alkene/alkane mixtures. Furthermore, the role of coordinated
water arrays in regulating the pore dimensions and pore surface
chemistry is verified by DFT calculations and molecular
modelling, which also offer insights into the underlying sepa-
ration mechanisms.

Results and discussion

Crystal structure

The solvothermal reaction of Y(NOj);-6H,0 with H,TCHB
[3,3',5,5'-tetrakis(4-carboxyphenyl)-2,2’,4,4’,6,6'-hexamethyl-
1,1'-biphenyl] in N,N'-dimethylformamide (DMF) yielded block-
shaped crystals of HIAM-317 (Fig. S1t). Single-crystal X-ray
diffraction (SCXRD) analysis revealed that it crystallizes in the
orthorhombic crystal system with a space group of Ibam. In the
crystal structure of HIAM-317, the asymmetric unit contains
a nine-coordinated Y*" ion bonded to half of the TCHB*~ linker
and a water molecule (Fig. $67). Each central Y*" ion in the
structure is surrounded by nine oxygen atoms, with six of them
from the carboxyl groups of TCHB*~, two bridging OH~, and
one terminal water molecule. The bond length of Y-Oyater 1S
2.336(4) A, slightly longer than that of Y-Oqyy- (2.258-2.317 A),
suggesting a weaker bonding between water molecules and the
central Y**, and removal of the coordinated water can poten-
tially create an open Lewis acid active site. Adjacent Y** ions are
interconnected by the carboxylate groups from TCHB* ™ linkers,
forming one-dimensional (1D) Y-based chains along the crys-
tallographic c-axis (Fig. 2a). The infinite rod-like Y-O chains
serve as secondary building units (SBUs) which are propagated
through TCHB*~ struts, forming a three-dimensional (3D)
framework containing 1D channels (Fig. 2c¢). Notably, the
coordinated water molecules form 1D arrays along the chan-
nels, contracting the accessible pore aperture of the material.
We applied a detailed topological analysis of HIAM-317
using both standard and cluster representations as imple-
mented in ToposPro* following IUPAC suggestions.** Analysis

| Pore channel

Access barrier

Binding site

Binding site

‘ Gas A

0 Gas B

Thermodynamically controlled large-sized-selective

Fig. 1 Schematic diagram of the three separation mechanisms practiced in this work: (a) kinetically controlled size-sieving, (b) thermody-
namically controlled small-sized-selective, (c) thermodynamically controlled large-sized-selective.
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Fig. 2

(@) The 1D chain SBU of HIAM-317; (b) organic ligand H4TCHB; (c) the 3D framework structure and channel environment of HIAM-317a

and HIAM-317b (view from a direction). Color code: Y, blue; O, red; C, gray or golden; H, white.

by applying the standard representation, in which metal ions
and ligand's center of mass serve as network nodes, results in
the 6,8-connected sea net (with the Y ions serving as 6-c and the
ligand as 8-c nodes) as shown in Fig. S7a. We have also ob-
tained an alternative straight rod (STR) net representation®
because the standard sea net does not reflect the rod-MOF
essence of the HIAM-317 with clarity, although it may serve as
a starting point for the search of analogous MOFs using the data
from the TopCryst service® as described in full detail in the ESIT
Methods. In the STR representation the biphenyl core of the
TCHB*" ligand is represented as two linked 3-c nodes and the
rods comprise carboxylate-connected Y** ions. The rods appear
as zig-zag chains of nodes upon simplification and each of the
nodes is 4-connected. The 3,4-c net obtained in such a way
corresponds to the jeb topological type (Fig. S7bt). In addition,
to comply with the point-of-extension (PE) approach described
by O'Keeffe and coworkers®** the metals are discarded and only
the carbon atoms of the carboxylates serve as points of exten-
sion and form ladders connected by 4-c nodes representing the
biphenyl ligand. The corresponding underlying net is the 4,4-c
binodal fil net (Fig. S7ct).*

Stability

Powder X-ray diffraction (PXRD) analysis revealed that the
pattern of the as-synthesized HIAM-317 fully agreed with the
simulated ones, suggesting the phase purity of the obtained
material (Fig. S81). In order to remove the non-bonded high

19558 | Chem. Sci., 2024, 15, 19556-19563

boiling point solvents (DMF and water) residing inside the
channels without disturbing the coordinated water arrays,
solvent exchange by CH,Cl, was employed. The thermogravi-
metric (TG) curve of the CH,Cl,-exchanged HIAM-317 (CH,-
ClL,@HIAM-317) displays distinct two-step weight losses
(Fig. S10%). The one before 100 °C corresponds to the loss of
CH,Cl,, and the other at ~200 °C corresponds to the removal of
coordinated water molecules (calculated: 3.7 wt%, experimen-
tally observed: 3.67 wt%).

Activation of CH,Cl,@HIAM-317 was initially carried out at
120 °C for 12 hours under vacuum. The process yielded HIAM-
317a. Based on the TG curve, it was expected that under this
activation condition, CH,Cl, can be fully removed from the
channels while leaving the coordinated water intact. Indeed, the
morphology and crystallinity of the crystals were completely
preserved upon activation, and subsequent structure analysis of
HIAM-317a by SCXRD directly confirmed the preservation of
coordinated water arrays. Further activation of CH,Cl,@HIAM-
317 was conducted at 300 °C under vacuum, yielding HIAM-
317b. Apparently, it no longer contained any coordinated water
arrays based on the TG profile. This was also supported by TG-
MS analysis of CH,Cl,@HIAM-317 which confirmed that the
coordinated water molecules were removed at ~200 °C
(Fig. S137). Our attempt to determine the crystal structure of
HIAM-317b by SCXRD failed due to cracking of the crystals
upon heating at high temperature.***” It is important to note
that the PXRD patterns and morphology of HIAM-317a and
HIAM-317b are identical to those of HIAM-317, indicating its

© 2024 The Author(s). Published by the Royal Society of Chemistry
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framework robustness (Fig. S2-S4 and S9f). Moreover, no
notable structure flexibility was observed for HIAM-317.

Porosity characterization and single-component gas
adsorption

Controllable activation of HIAM-317 led to the formation of
HIAM-317a and HIAM-317b with distinct pore dimensions and
pore surface chemistry. This prompted us to explore their
porosity and possible selective adsorption of alkenes/alkanes.
The permanent porosity of HIAM-317a and HIAM-317b was
analyzed by measuring N, adsorption at 77 K. As shown in
Fig. 3a, HIAM-317a took up essentially no N,. This is not
surprising considering the ultra-narrow pore aperture of HIAM-
317a because of the presence of coordinated water arrays. In
contrast, HIAM-317b displayed a typical Type-I adsorption
profile with saturated adsorption capacity of 145.29 cm® g~ * at
P/P, = 1, yielding a Brunauer-Emmett-Teller (BET) surface area
of 535 m* g~ . In the subsequent CO, adsorption measurements
at 195 K, both HIAM-317a and HIAM-317b exhibited Type-I
adsorption isotherms, with saturated uptake of 116.37 and
173.33 cm® g~ ', respectively. The calculated BET surface area of
HIAM-317a is 248 m” g~ '. Furthermore, the pore size distribu-
tion curves are centered at 4.8 and 7.4 A for HIAM-317a and
HIAM-317b, respectively, consistent with the values determined
by their crystal structure (Fig. 3b, inset).

The pore dimensions of HIAM-317a and HIAM-317b fall in
the range that is well suited for alkene/alkane separation. Thus,
we collected the single-component adsorption isotherms for
C,H,, C,Hg, C3H, and C3Hg at ambient temperature. At 298 K,
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HIAM-317a showed kinetic sieving for both C,H,/C,Hs and
C3Hg/C3Hg. It took up 16.62 cm® g~ of C,H, and 19.77 cm?® g7*
of C3Hg at 1.0 bar. In contrast, its adsorption toward C,Hg was
much slower with substantially lower adsorbed amount than
that of C,H,, and C;H; was fully excluded by the material with
essentially no adsorption. The absorption ratio of C;He/C3Hjg is
23.2, which is at a high level among the reported adsorbents.***°
With coordinated water arrays removed from the channel,
HIAM-317b demonstrated distinct adsorption behavior from
that of HIAM-317a because of the notable change of pore
dimensions and pore surface chemistry. HIAM-317b exhibited
substantial adsorption toward all four hydrocarbon molecules
without notable diffusion restrictions. At 298 K and 1 bar, the
adsorption capacity of C,Hg was 45.08 cm® g™ ', exceeding that
of C,H, (40.82 cm® g™ "), displaying alkane-selective behavior.
The IAST adsorption selectivity calculated for C,He/C,H, is 1.51
at 1 bar (Fig. S12}).** We also calculated isosteric heats of
adsorption (Qg) using adsorption isotherms at 298 K and 273
K. The higher Q; value for C,Hg (24.1 k] mol ") than that of
C,H, (22.6 k] mol™") confirmed the stronger interaction
between the former and the channel of HIAM-317b (Fig. 3c).
Interestingly, the adsorption selectivity for C3 is reversed. The
adsorption capacities for C;Hg and C3Hg are 47.52 cm® ¢~ and
38.12 em® g7, respectively, showing alkene-selective behavior
(Fig. 3d and e). This was further confirmed by the Qs of C3Hg
(47.5 kJ mol ") and C;H, (40.4 k] mol ). These results indicate
that HIAM-317 serves as a highly tunable adsorbent and its
adsorptive separation behavior can be tailored in a controllable
manner by manipulating the coordinated water arrays in its
channels.
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Fig. 3
Qg curves of CoHy, CoHg, C3Hg, and CsHg for HIAM-317b; (d) adsorption

Pressure (bar) Pressure (bar)

(a) Adsorption isotherms of N, at 77 K; (b) adsorption isotherms of CO, at 195 K (insert: pore width of HIAM-317a and HIAM-317b); (c) the

isotherms of C,H4 and C,Hg for HIAM-317a and HIAM-317b at 298 K; (e)

adsorption isotherms of CsHg and CsHg for HIAM-317a and HIAM-317b at 298 K.
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Dynamic breakthrough experiments

To confirm the alkene/alkane separation capability of HIAM-317a
and HIAM-317b, and the role of coordinated water arrays, alkene/
alkane binary breakthrough experiments were conducted for
equimolar mixtures of C,H,/C,Hs and C3;Hy/C3Hg at 298 K. The
results of breakthrough measurements are fully consistent with
the single-component adsorption isotherms. HIAM-317a exhibits
a noticeable molecular sieving effect for both C,H,/C,Hs and
C;3H4/C3Hg, with negligible dynamic adsorption for C,He and
C;H; and notably longer retention of their corresponding alkenes
in the column. HIAM-317b, on the other hand, exhibits notable
retention for all four gases. In the measurement of C,H,/C,Hs,
C,H, eluted out first at the 30th minute, followed by the detection
of C,H,. This validated its selective adsorption of ethane over
ethylene. As expected, the measurement of C3;H¢/C3H;g displayed
a different elution sequence. As shown in Fig. 4d, C;Hg was first
detected at the outlet, and the elution of C;He was notably
delayed, confirming the favored adsorption of propylene over
propane. In equimolar alkane-alkene mixtures, the productivity
of pure C,Hg (>99.99%) and C;Hg (>99.99%) is approximately
5.54 x 10 % L kg~ and 1.96 L kg %, respectively, by HIAM-317a.
Meanwhile, HIAM-317b can produce high-purity C,H, (>99.99%)
at roughly 1.38 x 10~> L kg™, effectively purifying approximately
2.5% of ethylene from the mixture, as well as C3Hg (>99.99%) at
around 1.58 L kg . These results experimentally confirmed the
separation capability of HIAM-317a and HIAM-317b and align
with the calculated breakthrough data (Fig. S16T), demonstrating
the adjustable separation on a single adsorbent through pore
structure engineering.

DFT calculation and molecular modeling

To gain a deeper insight into the underlying mechanisms of the
different separation behavior and molecular-level interactions
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between guest molecules and the framework of HIAM-317a and
HIAM-317b, DFT calculation and molecular simulation were
performed.**** First, the climbing-image nudged elastic band
(cNEB) calculations were employed to evaluate the diffusion
energy barrier of all four gases within the channels of HIAM-
317a. As illustrated in Fig. 5, the energy barriers for alkanes
(C3Hg and C,Hg) are notably higher than those of alkenes (C3Hg
and C,H,). This fully supports the gas adsorption results that
HIAM-317a adsorbs alkenes while their corresponding alkanes
can be barely adsorbed because of its limiting pore aperture.
The molecular simulation results show that the coordination
water array in the pore is not only the main reason for regu-
lating the adsorption mechanism transformation, but also the
main adsorption site (Fig. S17t) for alkenes. In contrast, the
main binding sites in HIAM-317b are located nearby the
carboxyl oxygen atoms as well as the neighboring benzene ring.
Compared to C,H,, C,H, binds to the framework with stronger

0.8

0.6

Energy barrier (eV)

2.0 25

Diffusion path

1.0 15

Fig.5 Energy barrier for CoH,4, CoHg, CsHg and CsHg to diffuse into the
channels of HIAM-317a.
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Fig. 4 The dynamic breakthrough curves of equimolar C,H4/C,He mixtures for HIAM-317a (a) and HIAM-317b (b) and equimolar CsHg/C3Hg

mixtures for HIAM-317a (c) and HIAM-317b (d) at 298 K.
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C-H---O (3) (2.55~3.08 A)
C-H--m (1) (3.85 A)

C-H---0 (3) (3.01~3.25 A)
C-H--r (1) (3.51 A)

C-H--O (7) (2.42~3.39 A)
C-H--m (1) (3.43 A)

(d)

C-H--0 (2) (3.01~3.09 A)
C-H--n (1) (3.43 A)

Fig. 6 The preferential adsorption sites of HIAM-317b for (a) CoHa4, (b) CoHe, (c) CsHg and (d) CsHg, the C—H---t and C-H---O interactions are

presented by orange and blue dashed lines respectively.

interaction due to its more C-H binding contacts with the
framework through seven C-H:--O (2.42-3.39 A) bonds (Fig. 6a
and b). Interestingly, C3Hg exhibits notable contacts with the
adjacent benzene ring through C-H---7 interaction (C-H---7
distance: 3.51 A). In addition, it also has a closer contact with
the carboxyl oxygens (C-H-+-O: 3.01-3.25 A) compared to that of
CsHg (Fig. 6¢). This explains the preferential adsorption of C;Hg
over C;Hg in HIAM-317b. The calculated binding energies (AE)
of C,H,, C,Hg, C3Hg, and C3Hg on HIAM-317b are 27.64, 32.58,
51.84 and 44.93 k] mol ', respectively (Fig. S1871), which are
consistent with the trends of Qg obtained from adsorption
isotherms.

Conclusions

In this study, we present a strategy to engineer the pore struc-
ture of an yttrium-based MOF [Y,(TCHB)(OH),-2H,0] (HIAM-
317) via coordinated water arrays, and controllable separation
of alkenes and alkanes by the two forms of HIAM-317 (with and
without coordinated water molecules). Our single-component
adsorption, multicomponent breakthrough measurements,
and theoretical calculations and simulations suggest that the
coordinated water arrays serve as a regulatory factor for its
effective pore aperture and pore surface chemistry. In the

© 2024 The Author(s). Published by the Royal Society of Chemistry

presence of coordinated water, HIAM-317a splits ethylene/
ethane and propylene/propane because of its suitable pore
aperture. In the absence of coordinated water, HIAM-317b
exhibits thermodynamically driven ethane-selective separation
of ethylene/ethane and propylene-selective separation of
propylene/propane. The distinct selectivity for C2 and C3
alkenes/alkanes originates from the oxygen-rich pore surface
and the adsorbate-dependent recognition mechanisms. We
demonstrate the practice of all three separation mechanisms on
a single adsorbent by engineering its pore structure.
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