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Abstract

We present the first hard-constraint neural network model for predicting activity

coefficients (HANNA), a thermodynamic mixture property that is the basis for many

applications in science and engineering. Unlike traditional neural networks, which

ignore physical laws and result in inconsistent predictions, our model is designed to

strictly adhere to all thermodynamic consistency criteria. By leveraging deep-set neu-

ral networks, HANNA maintains symmetry under the permutation of the components.

Furthermore, by hard-coding physical constraints in the model architecture, we ensure

consistency with the Gibbs-Duhem equation and in modeling the pure components.

The model was trained and evaluated on 317,421 data points for activity coefficients in

binary mixtures from the Dortmund Data Bank, achieving significantly higher predic-

tion accuracies than the current state-of-the-art model UNIFAC. Moreover, HANNA

only requires the SMILES of the components as input, making it applicable to any

binary mixture of interest. HANNA is fully open-source and available for free use.
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Introduction

Neural networks (NNs) have recently revolutionized many fields, including image analysis,1

speech recognition,2 predicting protein folding,3,4 and language modeling.5,6 These models

are universal and highly flexible function approximators,7 which perform best if they have

large amounts of training data. NNs are also gaining more and more attention in chemical

engineering8–12 but face two significant challenges preventing them from exploiting their full

potential in this field: sparse training data and inconsistent predictions. Like in other fields

of science and engineering, data sparsity is ubiquitous in chemical engineering due to the

high effort and costs related to experimental data collection, making predictions with purely

data-driven NNs difficult. Furthermore, since NNs are a priori agnostic about physical laws

and boundaries, there is no guarantee that their predictions obey these rules, frequently

leading to physically inconsistent results and predictions.13 This, in turn, is detrimental to

the trust in NN-based models and a severe obstacle to their adoption and use in practice.

The most promising solution to these challenges is to incorporate explicit physical knowl-

edge into NNs to support their training beyond using only the limited available data. Most

prominently, Physics-Informed Neural Networks (PINNs)14 have been successfully applied

in different fields,10,13,15–20 primarily to solve partial differential equations (PDE) efficiently.

PINNs incorporate the governing physical equation or boundary conditions into the loss

function of an NN by adding a term that penalizes solutions deviating from the constraint

(e.g., the compliance of a PDE).21 PINNs are inherently soft-constraint methods that do

not enforce exact compliance with the given constraints, which is a well-known limitation

of penalty methods in general22,23 and has potential drawbacks. Specifically, while approxi-

mately complying with physical laws and boundaries might be sufficient in some cases, this is

unacceptable in many applications; for instance, thermodynamic models that yield physically

inconsistent predictions will not be accepted and used in chemical engineering practice.

Hard-constraint models, which strictly enforce physical relations and constraints in NNs,

are generally considered challenging to develop.21,23–26 Thermodynamics is the ideal field for
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designing such hard-constraint models with its extensive treasure of explicit physical knowl-

edge on the one hand and the high demand for strict compliance of predictive thermodynamic

models with physical laws and constraints on the other. In this work, we introduce the first

hard-constraint NN-based model for thermodynamic property prediction, which opens up

an entirely new way of thermodynamic model development but also holds the promise to

advance model development in other fields of chemical engineering and beyond.

Predicting the thermodynamic properties of pure components and mixtures is fundamen-

tal in many fields of science and engineering. In chemical engineering, knowledge of thermo-

dynamic properties is the basis for process design and optimization. However, experimental

data on thermodynamic properties are scarce. The problem is particularly challenging for

mixtures, where missing data are prevalent due to the combinatorial complexity involved.

One of the most critical thermodynamic properties is the activity coefficient of a com-

ponent in a mixture. Activity coefficients are the key to modeling the chemical potential

in liquid mixtures, one of the most central properties in physical chemistry and chemical

engineering. Activity coefficients are essential for correctly describing chemical equilibria,27

reaction kinetics,28 phase equilibria,29 and many other properties of mixtures, such as elec-

trochemical properties.30,31 Since activity coefficients cannot be measured directly, they are

usually determined indirectly by evaluating phase equilibrium experiments. Since these ex-

periments are time-consuming and expensive, experimental data on activity coefficients are

often lacking, and many physical prediction methods have been developed and are widely

applied in industry.29

Physical methods for predicting activity coefficients model the molar Gibbs excess en-

ergy gE as a function of temperature T and mixture composition in mole fractions x, from

which the logarithmic activity coefficients lnγi are obtained by partial differentiation.29 The

two most widely used gE models are NRTL32 and UNIQUAC.33 These models generalize

over state points, i.e., temperature and mole fractions, but cannot extrapolate to unstudied

mixtures. In contrast, gE models based on quantum-chemical descriptors, such as COSMO-
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RS34 and COSMO-SAC,35–37 or group contributions models, such as the different versions

of UNIFAC38,39 (with modified UNIFAC (Dortmund) being the most advanced39,40) also

allow to generalize over components and mixtures. However, even though they have been

continuously developed and refined for decades, the state-of-the-art models show significant

weaknesses for certain classes of components. The consequential inaccuracies in predicting

activity coefficients result in wrongly predicted phase equilibria, leading to poor process

modeling and simulation.41,42 On the upside, the theoretical foundation of the established

physical models allows for good extrapolation performance, and, even more importantly, they

exhibit strict compliance with thermodynamic laws, boundaries, and consistency criteria.

Recently, machine learning (ML) methods have gained attention for predicting activity

coefficients43–45 and other thermodynamic properties.46–52 Even though these models are

purely data-driven, they surpassed the physical thermodynamic models in prediction accu-

racy. However, they were all limited to specific state points and could, e.g., not describe the

composition dependence of activity coefficients.

To improve the ML models further, various hybridization approaches53 were developed

that combine the flexibility of ML methods with physical knowledge. This was, e.g., done by

augmenting the training data with synthetic data obtained from physical prediction meth-

ods.42,54 Other recently developed hybridization approaches55–57 have broadened the appli-

cation range of physical thermodynamic models. In these approaches, an ML method is

embedded in a physical thermodynamic model to predict the parameters of the physical

model. By retaining the framework of the physical models, these hybrid models are intrinsi-

cally thermodynamically consistent. On the downside, these models are subject to the same

assumptions and simplifications taken during the development of the original model, limit-

ing their flexibility. Consequently, they have a restricted value range of predictable activity

coefficients,58 limiting the description of certain phase behaviours.59–62

Rittig et al. recently developed a PINN13and a hard-constraint approach63 consider-

ing the Gibbs-Duhem equation; however, their study was limited to synthetic data and the

4
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Gibbs-Duhem equation as only one of the relevant physical boundary conditions. Hybrid

models for activity coefficient prediction that fully exploit the flexibility of NNs while guar-

anteeing consistency with all thermodynamic constraints have not been available until now.

This work has addressed this gap.

Specifically, we have developed the first hard-constraint NN model for the Gibbs excess

energy gE of a mixture, which allows us to predict activity coefficients lnγi in any binary

mixture of arbitrary components at any state point. We name our method HArd-constraint

Neural Network for Activity coefficient prediction (HANNA) in the following. We restrict

ourselves here to binary mixtures. All physical models of mixtures are based on pair interac-

tions, which can, and practically always are, trained on data for binary mixtures. Therefore,

predictions for binary activity coefficients obtained from HANNA could be used to fit the

parameters of a physical model based on pair-interactions, which can then be used for pre-

dictions of multicomponent mixtures. However, it would also be very interesting to study

the generalization of HANNA to multicomponent mixtures in future work.

Development of HANNA

HANNA combines a flexible neural network with explicit physical knowledge. At its heart,

it predicts the Gibbs excess energy gE of a mixture, from which subsequently the activity

coefficients of the mixture components, typically given in the natural logarithm lnγi, can

be derived. The Gibbs excess energy gE and consequently the activity coefficients lnγi,

are typically expressed as functions of temperature T , pressure p, and the composition in

mole fractions x of the components. In the following, we will express gE and the activity

coefficients lnγi in binary mixtures as functions of T , p, and x1. For liquid mixtures, the

influence of the pressure is small and is often neglected, which is also the case for our model.

However, for the sake of clarity, all thermodynamic derivations are written here without this

assumption.

5
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The predictions of HANNA strictly comply with all relevant thermodynamic consistency

criteria, which are listed for binary mixtures as follows.

1) The activity coefficients of pure components are unity:

lim
xi→1

lnγi(T, p, xi) = 0 (1)

2) The activity coefficients of the components in a mixture are coupled by the Gibbs-

Duhem equation, which reads for the binary mixture:

x1

(
∂lnγ1
∂x1

)
T,p

+ (1− x1)

(
∂lnγ2
∂x1

)
T,p

= 0 (2)

3) The activity coefficients in a pseudo-binary mixture A + B where A = B are always

unity:

lnγi(T, p, xi) = 0 (3)

4) Upon changing the order of the components in the input of a model for predicting

the activity coefficients lnγ1 and lnγ2 in a binary mixture, the values of the predicted

activity coefficients must not change, only their order. Mathematically, this is called

permutation-equivariance and can be expressed as:

γ(P (x)) = P (γ(x)) (4)

where γ is the vector containing the (logarithmic) activity coefficients of the mixture

components, x is the vector containing the information on the components in the input,

including their descriptors and mole fractions, and P is a permutation operator.

In Figure 1, we visualize how HANNA strictly enforces these constraints for predicting

activity coefficients, leading to the novel class of hybrid NNs developed in this work. The
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SMILES2

SMILES1

Pure-component learning Mixture learningPretrained pure-component embeddings

Thermodynamic constraints

Mixture embedding
network 

Property network 

      
   

ChemBERTa-2 Component 
embedding network 

Autograd

Figure 1: Scheme of HANNA, the first hard-constraint NN for predicting activity coefficients
in binary mixtures. Technical details on the architecture are given in Section Data splitting,
training, and evaluation of the model.

central idea is to learn the molar excess Gibbs energy gE of the mixture rather than the

individual activity coefficients (γ1 and γ2) directly. The values of γ1 and γ2 can then be

obtained from gE by the laws of thermodynamics, ensuring strict thermodynamic consistency.

HANNA consists of four parts:

1) Pure-component embeddings from pretrained ChemBERTa-2

We use SMILES64 strings to represent the components and preprocess them with

ChemBERTa-2,65 a language model pretrained on an extensive database of molecules

for learning “pure component embeddings” of the molecules from the respective SMILES.

2) Refining pure-component embeddings for thermodynamic property predic-

tion

Since the embeddings of ChemBERTa-2 were not explicitly trained on thermodynamic

properties, we “fine-tune” them to predict thermodynamic properties in a two-step

process. We first feed them into a “component embedding network” fθ to get a lower

dimensional representation of each component i. Then, the information on the stan-

dardized temperature T ∗ (see Section Data splitting, training, and evaluation of the

model for the definition) and the composition (here: mole fraction x1 of component

1) are concatenated to each of the component embeddings. The result of this step

is a refined embedding for each component i, represented as vector Ci, tailored for

7

Page 7 of 30 Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
O

ct
ob

er
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

1/
8/

20
24

 1
1:

25
:5

8 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D4SC05115G

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sc05115g


thermodynamic mixture property prediction.

3) Learning mixture embeddings and preliminarly prediction

The component embeddings Ci are then individually processed by the “mixture em-

bedding network” fα, whose outputs are then aggregated using the sum operation to

yield Cmix. This step guarantees permutation invariance, i.e., independence of the

order of the components, an idea inspired by deep-set models,66,67 and ensures that

Equation (4) is fulfilled. Subsequently, the sum is fed into another “property predic-

tion” network fϕ whose output gENN is a scalar that can be understood as a preliminary

prediction of the molar Gibbs excess energy gE of the mixture.

4) Enforcing all physical consistency criteria

In this step, gENN is further processed to guarantee the compliance of HANNA’s predic-

tions with the remaining consistency criteria, cf. Equations (1)-(3). Step 4 basically

corrects the preliminary gENN to hard-constrain the final predicted molar Gibbs excess

energy gE on physically consistent solutions. Specifically, gE of the mixture of interest

is calculated by:

gE

RT
= gENN · x1 · (1− x1) · (1− cos(fθ(E1),fθ(E2))) (5)

where

1− cos(fθ(E1),fθ(E2)) = 1− fθ(E1) · fθ(E2)

∥fθ(E1)∥2 ∥fθ(E2)∥2
(6)

denotes the cosine distance between the two component embeddings fθ(E1) and fθ(E2),

R is the ideal gas constant, and T is the absolute temperature. The term x1 ·(1−x1) in

Equation (5) ensures that gE becomes zero in the case of pure components (x1 = 1 or

x1 = 0), thereby enforcing strict consistency with regard to Equation (1). The cosine

distance, cf. Equation (6), ensures that if the two component embeddings are identical,

i.e., the studied “mixture” is, in fact, a pure component (cosine distance equals zero),

8
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gE always becomes zero to guarantee consistency regarding Equation (3).

Finally, the logarithmic activity coefficients lnγi are derived in a thermodynamically

consistent way from gE by partial differentiation, which reads for a binary mixture:29,68

lnγ1 =
gE

RT
+ (1− x1)

(
∂gE

∂x1

)
T,p

RT

lnγ2 =
gE

RT
− x1

(
∂gE

∂x1

)
T,p

RT

(7)

For this purpose, the auto-differentiation function “autograd” from pytorch69 is used

to calculate lnγi following Equation (7). This last step intrinsically ensures the Gibbs-

Duhem consistency of the predicted activity coefficients, cf. Equation (2). Further-

more, since gE is enforced to be permutation-invariant in step 3, the differentiation in

Equation (7) always yields permutation-equivariant predictions for lnγi.

HANNA was trained end-to-end and evaluated on 317,421 data points for lnγi in 35,012

binary systems from the Dortmund Data Bank (DDB),70 cf. Section Data for details. The

data set was randomly split system-wise in 80% training, 10% validation, and 10% test

set. Technical details on HANNA and the optimization procedure are given in Section Data

splitting, training, and evaluation of the model. We also trained and validated a version of

HANNA on 100% of the data with the final set of hyperparameters. This version is not

discussed or used to evaluate the predictive performance of HANNA in this work but will be

provided together with this paper as an open-source version. This final version of HANNA

should be used if activity coefficients in any binary mixture need to be predicted. The only

inputs needed are the SMILES of the components, their mole fractions, and the temperature.

9
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Results

In the following, we discuss the performance of HANNA for predicting activity coefficients

from the test set, which were not used for training or hyperparameter optimization. For

comparison, we also include the results of modified UNIFAC (Dortmund),39,40 referred to

simply as UNIFAC in the following. The UNIFAC training set has not been disclosed.

However, since the groups developing UNIFAC and maintaining the DDB are essentially the

same, one can assume that a large share of the data considered here was also used for training

UNIFAC. Hence, contrary to the results of HANNA, the results obtained with UNIFAC

cannot be considered true predictions. This generates a strong bias of the comparison in

favor of UNIFAC.

We compare the performance of the models using a system-wise error score. Specifically,

we calculate system-specific mean absolute errors (MAE) by averaging the absolute devia-

tions of the predicted logarithmic activity coefficients from the experimental data for each

system from the test set. This procedure ensures equal weighting of all systems irrespective

of the number of data points and prevents overweighting well-studied systems like water +

ethanol. All 3,502 systems in the test set can be predicted with HANNA, but due to missing

parameters, only 1,658 can be modeled with UNIFAC. Therefore, both models are compared

on the smaller shared horizon, called the “UNIFAC horizon” in the following.

Figure 2 shows the system-specific MAE of the predicted logarithmic activity coefficients

in boxplots; the whisker length is 1.5 times the interquartile range. Outliers are not depicted

for improved visibility. The left panel of Figure 2 shows the results for the UNIFAC horizon,

i.e., for the data points that can be predicted with both models. HANNA significantly

outperforms UNIFAC, with a mean MAE reduced to approximately a third of UNIFAC’s,

particularly indicating a reduced number of very poorly predicted data points. Furthermore,

the significantly reduced median MAE (from 0.09 to 0.05) indicates higher overall accuracy

than UNIFAC. Figure 2 (right) shows that the performance of our model on all test data

(“complete horizon”), including those that cannot be predicted with UNIFAC, is similar to
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the UNIFAC-horizon performance. In Figure S.7 in the Supporting Information, we show

the robustness of HANNA over different random seeds for data splitting.

HANNA UNIFAC HANNA
0.0

0.1

0.2

0.3

0.4

0.5

S
ys

te
m

-s
pe

ci
fic

M
A

E

0.08

0.29

0.09

0.05

0.09

0.04

UNIFAC horizon Complete horizon

Mean
Median

Figure 2: System-specific MAE of the predicted logarithmic activity coefficients lnγi from
HANNA and UNIFAC. Left: results for those data from the test set that can also be predicted
with UNIFAC (UNIFAC horizon). Right: results for the complete test set (complete horizon).

As each data point in the test set corresponds to a binary system, three different cases

can occur:

1) Only the combination of the two components is new, i.e., the respective system was

not present in the training or validation data. However, for both components, some

data (in other systems) were used for training or validation.

2) One component is unknown, i.e., only for one of the components, some data (in other

systems) were used during training or validation.

3) Both components are unknown, i.e., no data for any of the components (in any system)

were used during training or validation.

While we do not differentiate between these cases in Figure 2, we demonstrate in Figure S.6
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in the Supporting Information that HANNA significantly outperforms UNIFAC in extrapo-

lating to unknown components.

In Figure 3, the results for the test set are shown in a histogram representation of the

system-specific MAE. Furthermore, the cumulative fraction, i.e., the share of all test systems

that can be predicted with an MAE smaller than the indicated value, is shown in Figure 3.

Again, in the left panel, the predictions of HANNA are compared to those of UNIFAC

on the UNIFAC horizon; in the right panel, the predictions of HANNA for the complete

test set are shown. The results underpin the improved prediction accuracy of HANNA

compared to UNIFAC, e.g., while approximately 78% of the test systems on the UNIFAC

horizon can be predicted with MAE < 0.1 with HANNA, which is in the range of typical

experimental uncertainties for activity coefficients, this is the case for only approximately

54% with UNIFAC.

Figure 3: Histograms and cumulative fractions (lines) showing the system-specific MAE for
predicting logarithmic activity coefficients lnγi. Left: comparison of HANNA with UNIFAC
on those test data that can be predicted with UNIFAC (UNIFAC horizon). The shown
range covers 98.1% of the predictions of HANNA and 93.2% of the predictions of UNIFAC.
Right: results of HANNA on the complete test set. The shown range covers 97.9% of the
predictions.

Figure 4 shows detailed results for five isothermal systems of the test set. In addition to

the predicted activity coefficients as a function of the composition of the mixtures (middle
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panel), the corresponding Gibbs excess energies are plotted (left panel), which are inter-

nally predicted in HANNA, cf. Figure 1. Furthermore, the respective vapor-liquid phase

diagrams obtained with the predicted activity coefficients are shown (right panel), cf. Sec-

tion Data for computational details. In all cases, HANNA’s predictions (lines) are compared

to experimental test data (symbols) from the DDB.

The shown systems were chosen randomly from the test set but to cover various phase

behaviors from low-boiling azeotropes (top) over approximately ideal systems (middle) to

high-boiling azeotropes (bottom). In all cases, excellent agreement is found between the

predictions and the experimental data. The results also demonstrate the thermodynamic

consistency of the results: gE = 0 and lnγi = 0 for the pure components, and the Gibbs-

Duhem equation is fulfilled throughout.
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Figure 4: From left to right: Gibbs excess energies gE

RT
, resulting logarithmic activity coef-

ficients lnγi, and isothermal vapor-liquid phase diagrams for five systems from the test set
plotted as a function of x1 as predicted with HANNA (lines) and comparison to experimental
test data from the DDB70 (symbols). No data for any of the depicted systems were used for
training or hyperparameter optimization.
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In Section Ablation studies in the Supporting Information, results of ablation studies for

which different parts in HANNA have been removed are presented. These results demon-

strate the importance of hard-coding physical knowledge in the architecture of HANNA,

not only regarding the thermodynamic consistency of the predictions but also regarding the

predictive accuracy. Overall, the results clearly underpin the power of the hybrid approach,

which combines the strengths of flexible NNs with that of physical knowledge. Given that

our space of possible binary mixture is easily in the millions, even if we only take components

with experimental data on activity coefficients into account, it is remarkable that HANNA

can generalize well based on only a fraction of about 1% of the binary systems.

Conclusion

This work introduces a novel type of thermodynamic models: a hard-constraint neural net-

work (NN) model combining the flexibility of NNs with rigorous thermodynamics. We

demonstrate this for an essential thermodynamic modeling task: predicting activity coef-

ficients in binary mixtures. The new hybrid model, HANNA, incorporates thermodynamic

knowledge directly into the NN architecture to ensure strict thermodynamic consistency.

HANNA was trained end-to-end on comprehensive data from the Dortmund Data Bank

(DDB).

HANNA enables thermodynamically consistent predictions for activity coefficients in any

binary mixture whose components can be represented as SMILES strings. It is fully disclosed

and can be used freely. The predictive capacity of HANNA was demonstrated using test

data from the DDB that were not used in model development and training. HANNA clearly

outperforms the best physical model for predicting activity coefficients, modified UNIFAC

(Dortmund), not only in terms of prediction accuracy but also regarding the range in which

it can be applied, which is basically unlimited for HANNA but restricted for UNIFAC by

the availability of parameters. Only about 50 % of the mixtures in the test data set could
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be modeled with UNIFAC, while all could be predicted with HANNA.

Now that the path for developing hard-constraint NN in thermodynamics is clear, many

exciting options exist. As the framework presented here is based on the Gibbs excess energy,

the Gibbs-Helmholtz equation is implicitly considered so that HANNA can be extended

easily to include also excess enthalpies, which is expected to improve the description of the

temperature dependence of the activity coefficients. Furthermore, not only could enthalpies

of mixing be incorporated, but other types of thermodynamic data could also be used,

e.g., activity coefficients determined from liquid-liquid equilibria. The approach described

here could also be extended to multicomponent mixtures. However, this can already be

achieved by using HANNA to predict the binary subsystems and employing established

physical models based on pair interaction for extrapolations to multicomponent mixtures.

Finally, the approach described here for Gibbs excess energy models can also be trans-

ferred to other thermodynamic modeling approaches, e.g., equations of state based on the

Helmholtz energy. More broadly, it could be adapted to merge physical theory with NNs in

other scientific fields.

Methods

Data

Experimental data on vapor-liquid equilibria (VLE) and activity coefficients at infinite di-

lution in binary mixtures were taken from the Dortmund Data Bank (DDB).70 In prepro-

cessing, data points labeled as poor quality by the DDB were excluded. Furthermore, only

components for which a canonical SMILES string could be generated with RDKit71 from

mol-files from DDB were considered.

From the VLE data, activity coefficients were calculated with extended Raoult’s law:

γi =
p yi
pSi xi

(8)
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where γi is the activity coefficient of component i in the mixture, xi and yi are the mole

fractions of component i in the liquid and vapor phase in equilibrium, respectively, p denotes

the total pressure, and pSi is the pure-component vapor pressure of i, which was computed

using the Antoine equation with parameters from the DDB. The vapor phase was treated as

a mixture of ideal gases in all cases. Furthermore, the pressure dependence of the chemical

potential in the liquid phase was always neglected. Consequently, VLE data points at total

pressures above 10 bar were excluded. The activity coefficients at infinite dilution, also

normalized according to Raoult’s law, were adopted from the DDB. The VLE diagrams in

Figure 4 were predicted using Equation (8) with the activity coefficients from HANNA and

pure-component vapor pressures from the DDB.

The final data set after preprocessing comprises 317,421 data points and covers 35,012

binary systems and 2,677 individual components.

ChemBERTa-2 embeddings

The numerical embeddings of the components were generated from a pretrained language

model called ChemBERTa-2,65 which was trained on a large database of SMILES. We used

the “77M-MTR” model that is openly available on Huggingface.72 The “77M-MTR” model

used 77 million SMILES to train ChemBERTa-2 in a multiregression task using the CLS

token embedding.65 We use the CLS token embedding of the last layer of ChemBERTa-2,

which results in a 384-dimensional input vector Ei for each pure component i, cf. Fig-

ure 1. The maximum number of tokens, i.e., the individual SMILES building blocks used

by ChemBERTa-2, was set to 512. The tokenization process of the original ChemBERTa-

2 was slightly adapted here as explained in detail in Chapter ”Improved tokenization of

ChemBERTa-2” in the Supporting Information due to an error in the default tokenizer.
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Data splitting, training, and evaluation of the model

For training and evaluating the hybrid model HANNA, the data set was split randomly

system-wise as follows: all data points for 80% of the binary systems (28,009) were used

for training, all data points for another 10% of the systems (3,501) were used for validation

and hyperparameter optimization, and all data points for the remaining 10% of the systems

(3,502) were used to test the model. The data split was carried out system-wise, i.e., all

data points for an individual system are only present in a single set (training, validation, or

test). This procedure ensures a fair evaluation of our model on truly unseen systems in the

test set. The splitting of the systems to the different sets was completely random. In Figure

S.7 in the Supporting Information, we demonstrate the robustness of HANNA for different

random splittings of the data set.

All models and training and evaluation scripts were implemented in Python 3.8.18 using

PyTorch 2.1.2.69 HANNA was trained on one A40 GPU using the ADAMW73 optimizer

with an initial learning rate of 0.0005 or 0.001, a learning rate scheduler with a decay factor

of 0.1, and a patience of 10 epochs based on the validation loss. The training was stopped

if the validation loss (cf. below) was not improving for 30 epochs, and the model with the

best validation loss was chosen. Typical training times for the model were between 30 and

60 minutes.

The pure-component embedding network fθ and the property network fϕ consist of one

hidden layer, whereas the mixture embedding network fα consists of two hidden layers,

cf. Figure 1. In all cases, the Sigmoid Linear Unit (SiLU) function with default PyTorch

settings was used as the activation function.

HANNA uses the same number of nodes in each layer, except for the mixture embedding

network fα, where the input size is increased by two to include the standardized temperature

and mole fraction of the respective component. Also, the output dimension of the property

network fϕ is always one.

The embeddings of ChemBERTa-2 and the temperature in the training set were standard-
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ized using the StandardScaler from scikit-learn 1.3.0,74 whereas the mole fractions remained

unchanged. The loss function SmoothL1Loss from PyTorch69 was used to mitigate the effect

of experimental outliers of the activity coefficients. The hyperparameter β that controls the

change between the L2 and L1 loss in the SmoothL1Loss was set to 0.25 and not varied. A

batch size of 512 was used. The ADAMW optimizer was used to update the NN weights

during training. The validation data were used for early stopping, which was implemented

by tracking the loss of the validation set with a patience of 30. The validation loss was also

used for hyperparameter tuning. The only varied hyperparameters were the weight decay

parameter λ in the ADAMW optimizer, the number of nodes in each network, and the initial

learning rate, cf. above.. Based on the results of the validation set, λ = 0.01 and 96 nodes

with an initial learning rate of 0.001 were chosen. In the Supporting Information in Sec-

tion Hyperparameter optimization, we discuss the influence of the different hyperparameters

and present the validation loss results.

We provide a “final” version of HANNA with this paper that was trained as described

above, except that no test set was used, i.e., 90% of all systems were used for training and

10% for validation.
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Data availability

All data were taken from the Dortmund Data Bank.70 The final version of HANNA, which

was trained and validated on 100% of the data (without using a test set), is available on

Github (https://github.com/tspecht93/HANNA) and distributed under the MIT license.

Supplementary information
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Data availability statement 

 

All data were taken from the Dortmund Data Bank. The final version of HANNA, which was 

trained and validated on 100 % of the data  (without using a test set), is available on Github 

(https://github.com/tspecht93/HANNA) and distributed under the MIT license. 
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