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n and functionalisation of
amorphous zirconium metal–organic frameworks†

Nattapol Ma, *ab Soracha Kosasang, c Jennifer Theissen, a Nick Gys, ad

Tom Hauffman,d Ken-ichi Otake, e Satoshi Horike cef and Rob Ameloot *a

Controlling the structure and functionality of crystalline metal–organic frameworks (MOFs) usingmolecular

building units and post-synthetic functionalisation presents challenges when extending this approach to

their amorphous counterparts (aMOFs). Here, we present a new bottom-up approach for synthesising

a series of Zr-based aMOFs, which involves linking metal–organic clusters with specific ligands to

regulate local connectivity. In addition, we overcome the limitations of post-synthetic modifications in

amorphous systems, demonstrating that homogeneous functionalisation is achievable even without

regular internal voids. By altering the acidity of the side group, length, and degree of connectivity of the

linker, we could control the porosity, proton conductivity, and mechanical properties of the resulting

aMOFs.
Introduction

The directionality of coordination bonding enables predictable
and precise positioning of atomic arrangements in three-
dimensional space,1,2 enabling the design of crystalline metal–
organic frameworks (MOFs) by selecting appropriate metal ion
and multitopic organic ligand building units.3–9 Additional
chemical functionalisation of assembled MOFs is also feasible
through post-synthetic modications.10,11 The recent emergence
of amorphous MOFs (aMOFs), some showing glass
transition,12–14 presents unique or complementary properties,
including improved ion mobility, transparency, and
processability.15–20

Typically, aMOFs are synthesised in crystalline form and
subsequently amorphised by melt-quenching,15,21 dehydration
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or desolvation,22,23 mechanical milling,24 pressure,25,26 or radia-
tion.27 Nevertheless, these approaches can only be applied when
the MOFs are stable during amorphisation. In practice, the
majority of materials are prone to organic linker decomposi-
tion. Additionally, controlling their properties and local struc-
ture poses a challenge, given their top-down preparation14 and
since post-synthetic modication is typically conned to the
outer surface due to the absence of regular pores.28

This article presents a bottom-up strategy for designing
a series of zirconium-based aMOFs. The approach uses pre-
dened zirconium oxo clusters (Zr6) cross-linked with a selec-
tion of exible ligands (Fig. 1). Analysis of the local structures
revealed the preservation of the Zr6 cluster units. Post-synthetic
modication is showcased in the gel phase before densication,
resulting in homogeneous functionalisation with sulfonic acid
groups. The presented strategy shows how the porosity, proton
conductivity, and mechanical properties of the formed aMOFs
can be systematically controlled via the presence of the side
group, ligand length, and degree of connectivity.
Results and discussion
Sol–gel synthesis of cross-linked Zr clusters

Water-soluble Zr6 oxo cluster, Zr6O4(OH)4(H2O)8(CH3COO)8Cl4,
denoted as ZrOAc, was synthesised as reported, and its forma-
tion was conrmed by powder X-ray diffraction (PXRD), Fourier
transform infrared (FTIR), and thermal gravimetric analysis
(TGA) (Fig. S1–S3†).29 We selected three exible aliphatic
bidentate ligands—succinic acid (L1), adipic acid (L2), and thi-
omalic acid (L3)—to prevent the formation of crystalline prod-
ucts (Fig. 1). The ZrOAc clusters were cross-linked by adding 2,
4, 8, and 12 molar equivalents of aqueous solutions of ligand (n
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Schematic overview of the synthesis routes and functionalisation of zirconium-based amorphous metal–organic frameworks (aMOFs).
The Zr–nL1, Zr–nL2, and Zr–nL3 aMOFs are synthesised by pairing the Zr6O4(OH)4(H2O)8(CH3COO)8Cl4 (ZrOAc) cluster with three bidentate
ligands, including succinic acid (L1), adipic acid (L2), and thiomalic acid (L3). Post-synthetic modification of a cross-linked Zr–nL3 in the gel phase
provides Zr–nL4 frameworks with sulfosuccinate (L4). Zr, O, C, and S atoms are represented by light blue, red, grey, and yellow spheres,
respectively. H atoms are omitted for clarity.
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ratio) to ZrOAc, followed by heating at 80 °C for 72 h. The
process resulted in the formation of gels (Fig. S4†).30–35

Considering that all starting components are highly soluble in
water, the distinct change in solubility suggests the cross-
linking of ZrOAc clusters.36 For L1 and L2, the minimum n
ratio required to initiate gelation is 4, while n = 2 is sufficient
for L3. The gels were then washed and dried at 60 °C for 72 h.
The resulting aMOFs are referred to as Zr–nLx, where n repre-
sents the molar equivalent of ligands (Lx = L1, L2, or L3) used
during cross-linking. The amorphous nature of all samples was
conrmed by the board diffuse scattering patterns observed by
laboratory (Fig. S5–S7†) and synchrotron PXRD (Fig. 2A). Optical
images of Zr–nL1 samples show transparent, glass-like mono-
lith, while Zr–nL2 and Zr–nL3 became more opaque at higher
linker ratios (Fig. 2B and S8–S10†). Scanning electron micros-
copy (SEM) images of as-synthesised Zr–4L1, Zr–4L2, and Zr–4L3
samples revealed smooth surfaces without any trace of distin-
guishable microparticles (Fig. S11–S13†). Based on TGA data
under N2 ow before and aer dehydration at 200 °C (Fig. S14–
S23†), the interstitial water contents were determined at 10.0–
15.2 wt%. Additionally, all cross-linked compounds were found
to be thermally stable up to at least 220 °C.

The incorporation of the ligands was conrmed by FTIR and
1H NMR (Fig. 2C and S24–S37†), with ethanol residue detected
in Zr–nL2 and Zr–nL3. FTIR Peaks at 2926–2936, 1300–1306, and
© 2024 The Author(s). Published by the Royal Society of Chemistry
1153–1173 cm−1 were assigned to the n(CH), s(CH2), and s(CH2)
vibrations of succinate.39,40 In Zr–nL2, an additional n(CH) band
appeared around 2864–2871 cm−1, corresponding to longer
aliphatic chain units. For Zr–nL3, a peak associated with the
S–H bond was identied at 2556–2561 cm−1.41 Additionally, the
presence of C]O stretching at 1690–1730 cm−1 suggests the
coexistence of non-coordinating carboxylate or carboxylic acid
arising from monodentate ligands.42 When n = 4, the ratios of
incorporated bidentate ligands and acetate were comparable for
L1, L2, and L3 (Fig. S38†). Consequently, Zr–4L1, Zr–4L2, and Zr–
4L3 were selected for further characterization. The TGA analysis
under air indicated the presence of linker vacancies, revealing
the ratios between bidentate ligands and Zr6 clusters in Zr–4L1,
Zr–4L2, and Zr–4L3 to be 3.5, 4.3, and 3.7 instead of 6 for full
cross-linking (Fig. S39†).43

The thermal behaviour of dehydrated Zr–4L1, Zr–4L2, and Zr–
4L3 was further investigated using differential scanning calo-
rimetry (DSC, Fig. S40†).44 All samples exhibit an endothermic
baseline shi between 104.4 and 112.7 °C at a heating rate of
10 °C min−1. However, these baseline shis are smaller than
previously reported values. For example, the measured change
in heat capacity (DCp) of Zr–4L1, using sapphire reference, is
0.013 J g−1 °C−1 (Fig. S41†), which is signicantly lower than the
DCp associated with the glass transition temperature in other
Chem. Sci., 2024, 15, 17562–17570 | 17563
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Fig. 2 Sol–gel synthesis of cross-linked zirconium-based aMOFs. (A) Synchrotron PXRD (l = 0.109795 Å) of Zr–4L1, Zr–4L2, and Zr–4L3. (B)
Optical image of the as-synthesised Zr–4L1. Scale bar = 0.5 mm. (C) FTIR spectra of Zr–4L1, Zr–4L2, and Zr–4L3. (D) Zr-cluster model repre-
sentations for (E and F) peak assignments. The structures are determined from single crystal data of (top) [Zr6O4(OH)4(H2O)8(Gly)8]$12Cl$8H2O37

and (bottom) [Zr6O4(OH)4(CH3COO)12]$8.5H2O.38 Zr, C, andO atoms are represented by light blue, grey, and red, respectively. The longer Zr–m3-
O pair distance in the trigonal zirconium plane is marked with an asterisk. (E) Pair distribution function (PDF) and (F) extended X-ray absorption
fine structure (EXAFS) at the Zr-K edge of ZrOAc, Zr–4L1, Zr–4L2, and Zr–4L3.
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MOF and coordination polymer glasses, such as 0.16 J g−1 °C−1

in ZIF-4 or 0.34 J g−1 °C−1 in [CsHSO4]0.5[ZnPIm]0.5 glasses.45,46
Chemical structures and short-range ordering

Using synchrotron X-ray total scattering, we characterised the
short-range ordering within Zr–4L1, Zr–4L2, and Zr–4L3. The
Fourier transformation and the Lorch modication of the
Faber–Ziman total structure factor, S(Q), were employed to
obtain atomic pair information represented as pair distribution
functions (PDFs, Fig. 2D and E).47–49 The peak features of Zr–4L1,
Zr–4L2, and Zr–4L3 closely resemble those of the pristine ZrOAc
cluster up to 5.0 Å. The range includes the retention of Zr–O
bonds (2.2 Å), Zr/Zr correlations of the adjacent site (Zr–Zradj,
3.5 Å), and Zr/Zr correlations of the opposite site (Zr–Zropp, 5.0
Å). These observations conrm that the Zr6 building unit is
maintained in all aMOFs.

The peak between 6.5 and 6.8 Å (Fig. 2E, labelled with I) in
Zr–4L1, Zr–4L2, and Zr–4L3 corresponds to the distance between
Zr4+ and the fourth neighbour C atoms of the stretched bridging
ligand and opposite carboxylate O atoms that link the nearby
cluster. The pair distance closely aligns with the Zr/C (6.4–7.0
Å) and Zr/O of the carboxylate (6.9–7.1 Å) observed in Zr-MOFs
comprising fumarate or aspartate ligands.50,51 To support the
peak assignments, we conducted additional X-ray total scat-
tering and PDF analysis on two crystalline MOFs with Zr6 units,
MOF-801 and UiO-66 (Fig. S43†), together with a partial PDF
simulation for MOF-801 (Fig. S44†). Above 7 Å, the PDF proles
17564 | Chem. Sci., 2024, 15, 17562–17570
of Zr–4L1, Zr–4L2, and Zr–4L3 show less intense and broader
peaks, reecting the diminishing periodicity characteristic of
their amorphous nature.52 The peak labelled II in Fig. 2E is the
expected position for inter-cluster Zr/Zr correlations for Zr–4L1
and Zr–4L3. For Zr–4L2, the same correlation is expected around
9–12 Å due to a wide conformational arrangement of the adipate
linker.40,53

The local coordination environments of the Zr6 clusters
before and aer cross-linking were examined using Fourier-
transform (FT) Zr K-edge extended X-ray absorption ne struc-
ture (EXAFS, Fig. 2F).38 The main characteristic peaks for Zr6
units at ca. 1.58, 3.10, and 4.64 Å, corresponding to the radial
distances of Zr–O, Zr–Zradj, and Zr–Zropp pairs (Fig. 2D), are
observed in all samples: ZrOAc, Zr–4L1, Zr–4L2, and Zr–4L3. The
peak assignments were conrmed by EXAFS tting for Zr–4L1,
Zr–4L2, and Zr–4L3 using the Zr6(O)4(OH)4(CH3COO)12$8.5H2-
O38 crystal structure as a model (Fig. S47 and Table S1†). The
tted Zr–Zr distances of 3.54–3.55 Å align well with the pair
distances observed in PDF analysis. Apart from the ligand types,
the local environments of Zr–4L1, Zr–4L2, and Zr–4L3 are
indistinguishable. When comparing the ZrOAc building unit
with the cross-linked frameworks, an additional peak at ca. 1.80
Å only observed for ZrOAc is attributed to longer Zr–m3-O link-
ages in the trigonal zirconium plane. The identical elongation
of the Zr–O bond is also observed in other Zr6 clusters with 8
bidentate bridging carboxylate coordination, such as [Zr6(O)4(-
OH)4(H2O)8(Gly)8]$12Cl$8H2O and
© 2024 The Author(s). Published by the Royal Society of Chemistry
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[Zr6(OH)8(H2O)8(HGly)4(Gly)4]$(SO4)6$14H2O (HGly = proton-
ated glycine), where the equatorial edges of both clusters are not
coordinated by glycine ligand but are instead capped with 8
water molecules (Fig. S48†).37,54 This Zr–O bond elongation,
however, is absent in the 12-coordinated Zr6 cluster, such as
Zr6(O)4(OH)4(CH3COO)12$8.5H2O,38 or in defective Zr6 clusters
capped with water or hydroxide molecules in irregular posi-
tions.55 These results suggest that cross-linking occurs in an
alternate position and differs from the regular 8-coordination in
the starting Zr6 cluster (ZrOAc).

The change in oxidation state and chemical environment
was probed by X-ray photoelectron spectroscopy (XPS). The
presence of Cl− in ZrOAc (267 and 196 eV) further emphasises
that the Zr6 cluster comprises 8 coordinated water molecules, as
counter anions are necessary to compensate for the overall
charge balance requirements (Fig. S49†).37,54 This is not the case
for Zr–4L1, Zr–4L2, and Zr–4L3, since Cl− are eliminated aer
the cross-linking process and the charge neutrality should be
maintained by hydroxide anions (Fig. S50–S52†).55 XPS further
conrms the presence of the S atom in Zr–4L3 (Fig. S52†), and
XPS at the Zr 3d region remains identical to ZrOAc, indicating
the retention of the Zr4+ oxidation state for all samples
(Fig. S53–S56†).
Post-synthetic modication

The absence of regular internal voids in aMOF usually impedes
the diffusion of reactants, resulting in inhomogeneous func-
tionalisation. To circumvent this limitation, we conducted post-
synthetic modications in the gel phase (Fig. 3A). Oxidation of
thiols (–SH) to sulfonic acid groups (–SO3H) was achieved by
soaking Zr–nL3 gels in a 35% H2O2 solution for 2 h.41,57 The
resulting material was washed with deionised water, and
protonation was completed with 0.02 M H2SO4 (see ESI†).
Subsequently, the protonated gels underwent further washing
cycles, solvent exchange with ethanol, and densication to
obtain Zr–nL4 (n = 2, 4, 8, and 12; Fig. S57 and S58†). PXRD
patterns measured for the resulting material conrmed the
retention of its amorphous nature aer the modication
without forming any crystalline oxide byproduct (Fig. 3B and
S59†). Additionally, TGA results revealed that Zr–nL4 samples
are thermally stable to at least 250 °C and contain 15–17 wt% of
interstitial water (Fig. S60–S63†).

Initial evidence of complete thiol oxidation was obtained
from FTIR spectra (Fig. 3C and S64–S67†). The S–H band (2556–
2561 cm−1) was replaced by newly formed bands centred at
1205, 1125, and 1038 cm−1, corresponding to vas(O]S]O),
vs.(O]S]O), and S–O stretching, respectively.41,58 Additionally,
the post-synthetic modication eliminated non-coordinating
carboxylate or carboxylic acid, as C]O stretching at 1690–
1730 cm−1 disappeared in all samples. Following this conr-
mation, Zr–4L4 was chosen for further characterisation. XPS
conrmed no changes in the oxidation state of Zr4+ (Fig. 3D),
while the S 2p peaks shied to a higher binding energy aer the
oxidation treatment (Fig. 3E), with S 2p3/2 shiing from 163.4 eV
of –SH to 168.8 of –SO3H in Zr–4L3 and Zr–4L4, respectively.41,59

The 1H NMR of the digested Zr–4L4 conrmed a complete
© 2024 The Author(s). Published by the Royal Society of Chemistry
conversion, as evidenced by the shi of the CH peak adjacent to
the functional group from 3.50–3.54 ppm in Zr–4L3 (Fig. S35†)
to 3.93–3.97 ppm in Zr–4L4 (Fig. S69†). TGA analysis under air
indicated a partial linker elimination aer the treatment, as the
ratio between bidentate ligands and Zr6 clusters decreased to
2.8 in Zr–4L4 (Fig. S70†).

The local structure aer post-synthetic modication (Zr–4L4)
was analysed through X-ray total scattering (Fig. 3F) and EXAFS
(Fig. 3G). PDF data revealed a distortion in the Zr6 node, as
evidenced by a shi in the Zr–Zradj peak from 3.53 Å in Zr–4L3 to
3.49 Å in Zr–4L4, along with the emergence of a peak at 4.0 Å. A
minor contraction in the Zr–O distance was also observed,
decreasing from 2.21 to 2.18 Å. While the Zr–O, Zr–Zradj, and Zr–
Zropp peaks are retained, their relative intensities are altered. In
the FT-EXAFS (Fig. 3G), we observed a decrease in the peak
intensities for Zr–Zropp pairs and a splitting of the Zr–Zradj peak
in Zr–4L4 compared to Zr–4L3. The relative intensity of the Zr–O
peak was increased in both PDF and EXAFS results. This is
explained by incorporating capping water or hydroxide ions
around Zr4+ to complete the coordination sphere following
partial ligand elimination.55 Similar node distortions and
alterations in PDF peaks have been observed in a series of
crystalline NU-1000 MOFs, where varying node capping ligands
inuenced the extent of ligand elimination during thermal
treatment.60,61 No amorphous ZrO2 or Zr(OH)4 byproducts were
observed (Fig. S71†).

Another cause of the node distortion is the coordination of
sulfate anions to the outer surface of Zr6 clusters during the
protonation step. EXAFS tting conrmed the incorporation of
sulfate anions in Zr–4L4, with the data tted well to the crystal
structure of the [Zr6O4(OH)4(OH2)8(HCOO)4(SO4)4]$2HCl$3H2-
O56 (Fig. 3H, I and Table S2†), showing a reduced Zr–Zr distance
of 3.47–3.50 Å. Similar behaviour has been observed inMOF-808
(Zr6O5(OH)3(BTC)2(HCOO)5(OH2), BTC = benzenetricarbox-
ylate), where sulfate anions replaced coordinated formate
groups on Zr6 clusters aer washing with dilute sulfuric
acid.62,63 These sulfate anions increase node distortion by
coordinating with the Zr6 clusters in multiple binding modes.
Porosity, proton conductivity, and mechanical properties

The inuence of the ligand on gas-accessible porosity was
investigated via N2 physisorption. All samples were activated at
130 °C for 12 h under a dynamic vacuum. At 77 K, Zr–4L1 and
Zr–4L2 with aliphatic ligands exhibited negligible N2 adsorption
(Fig. S72†). Positron annihilation lifetime spectroscopy (PALS)
on Zr–4L1 and Zr–4L2 was used to further probe the free spaces
in both samples that are quasi-inaccessible to probe molecules
(Fig. S73 and S74†).35,64 PALS detects free space within materials
by measuring the lifetime of ortho-positronium (o-Ps) when
exposed to a 22Na positron source. The average pore diameter of
each sample is calculated from the lifetime of o-Ps, with a longer
lifetime corresponding to a larger average pore diameter. The o-
Ps lifetime of Zr–4L1 is 2.90 ± 0.04 ns, corresponding to an
average pore diameter of 3.57 ± 0.03 Å. The longer ligand in Zr–
4L2 results in a longer o-Ps lifetime of 3.71± 0.09 ns, translating
to a pore diameter of 4.08 ± 0.05 Å. These results conrm the
Chem. Sci., 2024, 15, 17562–17570 | 17565
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Fig. 3 Post-synthetic modification of cross-linked zirconium-based aMOF. (A) Schematic overview of the oxidation of thiols (–SH) to sulfonic
acid groups (–SO3H) in gel phase before densification. (B) Synchrotron powder X-ray diffraction (PXRD, l= 0.109795 Å) of Zr–4L3 and Zr–4L4. (C)
FTIR spectra of Zr–4L3 and Zr–4L4. XPS spectra at (D) Zr 3d and (E) S 2p of Zr–4L3 and Zr–4L4. (F) PDF and (G) EXAFS at Zr K-edge of Zr–4L3 and
Zr–4L4. (H) Model for EXAFS fitting derived from the crystal structure of [Zr6O4(OH)4(OH2)8(HCOO)4(SO4)4]$2HCl$3H2O,56 with Zr, C, O, and S
atoms represented by light blue, grey, red, and yellow, respectively. (I) Fourier transforms (magnitude and real component) of EXAFS at the Zr K-
edge with fitting curves for Zr–4L4. The fitted results are presented in Table S2.†
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presence of free spaces in both samples that are large enough to
accommodate N2 (3.6 Å) but remain inaccessible.

At 77 K, Zr–4L3 and Zr–4L4 show N2 uptakes of 22.2 and 17.2
cm3 g−1, respectively (Fig. S72†). The presence of side groups
likely introduces steric hindrance, preventing pore collapse and
preserving space large enough for N2.65 While Zr–4L3 displays
a type I isotherm characteristic of microporous materials, the
type IV isotherm observed in Zr–4L4 further conrms the partial
elimination of bidentate linkers and the formation of meso-
pores following post-synthesis modication.66

Promoting proton (H+) conductivity in crystalline MOFs is
achievable by increasing the H+ carrier concentration or estab-
lishing continuous H-bonding networks.6,71 However, no
example of systematic H+ conductivity control by gradually
modifying the structure in aMOF has been demonstrated.6,13,71,72

We chose Zr–4L1, Zr–4L3, and Zr–4L4, with comparable ligand
lengths, to investigate the effects of tethered functional groups
in aMOFs on H+ conductivity (Fig. 4A). We measured the H+

conductivity of the aMOFs by variable-temperature alternating
17566 | Chem. Sci., 2024, 15, 17562–17570
current (AC) impedance spectroscopy under a humidied
atmosphere (95% RH). The H+ conductivity of Zr–4L1 is 6.7 ×

10−3 mS cm−1 at 30 °C and increases to 8.5 × 10−2 mS cm−1 at
70 °C. The activation energy for H+ conduction (Ea, Fig. S75†) is
0.63 eV. In this case, H+ mainly diffuses through the H-bonding
network between interstitial water guest molecules and non-
coordinating or protonated carboxylates since the main alkyl
chain of the L1 ligand contains no tethered functional groups to
act as a hopping site.6 Note that Zr–4L1 contains ca. 10.7 wt%
water molecules (Fig. S14†). Zr–4L3 contains weakly acidic thiol
(–SH, pKa z 7.8) side groups, contributing as an additional
hopping site. The H+ conductivity values of 1.7 × 10−2 mS cm−1

and 9.9 × 10−2 mS cm−1 were achieved at 30 °C and 70 °C,
respectively. Replacing thiols with sulfonic acid groups (–SO3H,
pKaz−1.7), a strong Brønsted acid site, in Zr–4L4 together with
the incorporation of sulfate anion on the surface of the Zr6
clusters further increases the conductivity to 3.1 × 10−2

mS cm−1 and 0.16 mS cm−1 at 30 °C and 70 °C. Sulfonic acid
groups also contribute to the hydrophilic character of Zr–4L4,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (A) Variable-temperature H+ conductivity measurements at
95% RH of Zr–4L1, Zr–4L3, and Zr–4L4. The activation energy for H+

conduction was calculated from Arrhenius plots (Fig. S75†). (B) Hard-
ness values obtained with the triangular pyramid nano-indenter with
a 115° tip angle of Zr–4L1, Zr–4L2, Zr–4L3, and Zr–4L4. Data points
represent mean hardness with 95% confidence intervals. Reference
hardness data from other CP/MOF glasses are taken from ref. 40, 45
and 67–70.
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with an interstitial water content of 17 wt%. Incorporating
functional groups in Zr–4L3 and Zr–4L4 reduced the Ea to 0.44
and 0.40 eV, respectively. The order of H+ conductivity and
inverse Ea for proton conduction in this series is Zr–4L1 < Zr–4L3
< Zr–4L4. Thus, the H+ conductivity is controlled via the acidity
of the side group, even in amorphous forms.

In addition to porosity and H+ conductivity, we investigated
the correlation between the choice of ligands and bulk
mechanical properties of the aMOFs using nano-indentation
equipped with a standard triangular pyramid indenter with
a 115° tip angle (Fig. 4B). From load-depth curves, we deter-
mined the mean hardness (HT115) for Zr–4L1, Zr–4L2, Zr–4L3,
and Zr–4L4 as 0.82, 0.39, 0.57, and 0.43 GPa, respectively. A
notable decrease in hardness was observed in Zr–4L2 compared
to Zr–4L1, attributed to an increase in ligand length. A similar
trend in mechanical properties was also noted in Zr6-based
crystalline MOFs when comparing the theoretical average bulk
modulus of 40 GPa in UiO-66 with 17.4 GPa in UiO-67 [Zr6O4(-
OH)4(bpdc)6] (bpdc: 4,40-biphenyl dicarboxylate), an extended
counterpart.73–75 Beyond ligand length, functional side groups
and interstitial molecules also decreased the mechanical
hardness, likely due to steric hindrance.70,75 This hypothesis is
© 2024 The Author(s). Published by the Royal Society of Chemistry
supported by increased N2 uptake in Zr–4L3 and Zr–4L4
compared to Zr–4L1 and Zr–4L2. However, a substantial
decrease in mechanical modulus is evident when framework
connectivity is lowered,76 elucidating the behaviour observed in
Zr–4L3 and node-distorted Zr–4L4.

Conclusions

We demonstrated a method for systematically designing and
synthesising a series of aMOFs by crosslinking a well-dened
metal cluster with various exible carboxylate ligands. Aer
gelation and densication, glass-like monolithic products were
formed. Synchrotron X-ray total scattering and EXAFS revealed
the preservation of Zr6 cluster units aer forming extended
networks in all samples, even without long-range ordering. To
demonstrate the versatility of our approach, we conducted post-
synthetic thiol oxidation to obtain sulfonic and functionalised
aMOFs. Finally, we established a correlation between the choice
of functional groups, ligand length, porosity, proton conduc-
tivity, and mechanical properties. Our results indicate that the
properties of aMOFs can be modied in a way comparable to
their crystalline counterparts, emphasising the impact of
precursor selection. This work thus establishes a foundation for
the systematic design of novel amorphousmetal–organic hybrid
systems.
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