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Modulation of coordination configuration is crucial for boosting the biomimetic catalytic activity of
nanozymes, but remains challenging. Here, we found that the non-first-shell amino group in the ligand
was capable of steering the N/S coordination number through remote induction to enable the formation
of a low-coordinated CuN,S; configuration. This endowed the resulting nanozyme (ATT-Cu) with an
upshifted d-band center compared with a control nanozyme (TT-Cu) with CuN;Ss configuration,
enhancing the adsorption capabilities of ATT-Cu for O, and H,O, intermediates as well as its affinity for
catechol. Additionally, the low-coordinated CuN,S; configuration caused more charges to accumulate at
the atomic Cu site, which improved the capabilities of ATT-Cu for both donating electrons to oxygen-

related species and accepting electrons from catechol. As a result, this ATT-Cu nanozyme with a low-
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Accepted 18th October 2024 coordinated CuN,S; moiety presented a faster initial oxygen reduction step, which in turn accelerated
catechol oxidation, thus greatly boosting the catecholase-like activity of ATT-Cu that exceeded those of
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Introduction

Nanozymes with enzyme-like catalytic functions are potential
candidates for replacing natural enzymes due to their tunable
activities, excellent recyclability and low cost.™ Despite these
advantages, the broad application prospects of nanozymes are
usually hindered by their poor catalytic activities. To address
this challenge, various strategies have been employed to
improve the biomimetic catalytic activities of nanozymes.
Taking nanozyme-mimicking catechol oxidase (CO) as an
example, regulating multinuclearity,> chiral microenviron-
ment,'® coordination saturation* and the types of coordination
center atoms*™ have generally been used to manipulate the
catalytic activities of CO-like nanozymes. Despite great
advances, many CO-mimicking nanozymes or artificial
enzymes, especially those carrying M-N,O, moieties (where M
represents a metal) as catalytic sites, still exhibit unsatisfactory
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based, Zr-based and Pt-based nanozymes.

activities.'>'* One possible reason is the strong electronegativity
of coordinated N and/or O atoms with small atomic radius,
which results in the metal sites either have unsuitable free
energy for adsorption/desorption of reaction-related species
(including reactants, intermediates and/or products)*® or inap-
propriate electron transfer capability for donating and/or
accepting electrons.

To overcome these obstacles, a potential solution is to
choose a coordinating atom with comparatively large atomic
size and weak electronegativity’” to regulate the interface
configuration of the central metal atoms," thus boosting the
catalytic activity of CO-mimicking nanozymes by adjusting the
electronic state of the metal site to optimize the potential
barriers to adsorption/desorption as well as electron transfer
capability during biomimetic catalysis. In this regard, using S to
partially replace N or O as the coordinating atom may be
a promising choice due to its large atomic size and weak elec-
tronegativity compared to N and O atoms. However, few CO-
mimicking nanozymes with M-N,S, or M-O,S, moieties have
been reported.

With this goal in mind, we herein used the non-first-shell
amino group to perturb the N/S coordination number around
an atomic Cu center to construct two nanozymes with CuN,S;
and CuN;S; moieties for CO-mimicking catalysis. We found
that the low-coordinated CuN,S; configuration endowed the
resulting nanozyme with an upshifted d-band center, which
enhanced the adsorption strength of the Cu site for O, and
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H,O0, intermediates as well as the affinity for catechol. More-
over, this low-coordinated CuN,S; moiety promoted charge
accumulation over the atomic Cu center, enabling the resulting
nanozyme to more easily donate electrons to oxygen-related
species and accept electrons from catechol. Accordingly, when
applied to CO-mimicking catalysis, the unsaturated CuN,S; site
accelerated the initial oxygen reduction process, which in turn
promoted catechol oxidation, thereby endowing ATT-Cu with
a superior CO-like activity that surpassed that of a control
nanozyme with a CuN;S; moiety and those of many CO-
mimicking artificial enzymes/nanozymes with Cu-N,O, moie-
ties as well as those of other Zr-based, Ce-based or Pt-based
nanozymes.

Results and discussion

Considering that the active site of natural CO involved Cu,"® we
chose Cu as the coordination center atom. To construct
a nanozyme with a CuN,S, moiety, two ligands, i.e., 3-thiol-
1,2,4-triazole (TT) and 3-amino-5-thiol-1,2,4-triazole (ATT),
were used to synthesize nanozymes (TT-Cu and ATT-Cu, Scheme
1) through a simple one-step coordination reaction between the
ligands and CuSO, in water at room temperature. (See the
Experimental section in ESI.t) The only difference between TT
and ATT was whether there existed an amino group, which was
introduced to perturb the coordination microenvironment,
thus modulating the coordination configuration of the Cu
center.

A transmission electron microscope (TEM) was first used to
observe the morphologies of TT-Cu and ATT-Cu. Interconnected
nanoparticles with average sizes of 15.4 nm and 42.2 nm were
observed for TT-Cu and ATT-Cu (Fig. 1A and B), respectively.
The larger size of ATT-Cu could probably be attributed to the
existence of -NH, in the ATT ligand, contributing to forming an
extra H-bond network.* Such a morphology with the formation
of interconnected nanoparticles was also confirmed by scan-
ning electron microscope (SEM) (Fig. 1C and S17). The survey
scan spectra of X-ray photoelectron spectroscopy (XPS) detected
the elemental signals of C, N, O, S and Cu (Fig. S2t), which were
uniformly distributed in both nanozymes based on energy
dispersive spectroscopy (EDS) mapping images (Fig. 1D and
S3+t). The results of inductively coupled plasma optical emission
spectrometry (ICP-OES) indicated that the Cu contents in TT-Cu

Scheme 1 Coordination configurations of atomic Cu sites in ATT-Cu
and TT-Cu. Note that only the structures of ligands and local motifs
around Cu centers are presented for simplicity.
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Fig. 1 TEM images of TT-Cu (A) and ATT-Cu (B); SEM image (C) and
EDS mapping (D) of ATT-Cu; N, adsorption—desorption (E) and pore
size distribution (F) curves of ATT-Cu and TT-Cu; (G) contact angles of
ATT-Cu and TT-Cu.

and ATT-Cu were 43.9% and 31.9% (Fig. S4f), respectively.
According to an N, adsorption/desorption experiment, we
found that introducing the amino group caused a reduced
surface area and pore volume in ATT-Cu compared with those of
TT-Cu (Fig. 1E), although both showed similar mesopore-
dominated porous structures (Fig. 1F). Meanwhile, both ATT-
Cu and TT-Cu exhibited hydrophilic features (Fig. 1G), which
would endow the active sites with an easy accessibility for
hydrated O, during CO-mimicking catalysis.*

The collected N 1s spectra displayed that most N atoms in
the TT ligand coordinated with Cu to form Cu-N bonds, in
addition to the presence of a few uncoordinated N (Fig. 2A).
Likewise, the formation of Cu-N bonds was also found for ATT-
Cu (Fig. 2A). Differing from TT-Cu, another signal in the N 1s
spectrum of ATT-Cu was also observed, which probably corre-
sponded to exocyclic -NH,.** The calculated ratio of Cu-N and
C-NH, was close to 3, implying that Cu possibly tended to
coordinate with heterocyclic N atoms rather than exocyclic -
NH,. This result was attributable to the weak Lewis basic feature
of -NH, in the ATT ligand,* probably resulting in the poorer
coordination ability of -NH,.”® The O 1s spectra of ATT-Cu and
TT-Cu detected H,0 and SO,>~ originating from CuSO,
(Fig. S51). In the S 2p spectra, the important Cu-S signals were
observed for both nanozymes apart from C-S and SO4>~
(Fig. 2B),** confirming the occurrence of coordination between
Cu and the S atom of the ligand.

To further confirm the existence of Cu-N and Cu-S coordi-
nation, time-of-flight secondary ion mass spectrometry (ToF-
SIMS) was conducted to disclose coordination information
about the Cu center by identifying the mass fragments ejected
from ATT-Cu and TT-Cu. In Fig. 2C, the characteristic fragment
ions with mass-to-charge ratios (m/z) of 255.8 (Cu;C,N;H;) and
287.7 (CuzC,N;3S1H;) were detected for ATT-Cu, which may be
assigned to Cus-coordinated ATT fragments involving Cu-N and

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig.2 N1s(A)and S 2p (B) XPS spectra of ATT-Cuand TT-Cu; (C) ToF-
SIMS analysis of ATT-Cu and TT-Cu and possible fragment assign-
ments; (D) Cu 2p XPS spectra of ATT-Cu and TT-Cu.

Cu-S coordination, indicating that the S atom and three
heterocyclic N atoms of ATT could bond with Cu. The possible
existence of Cu-N and/or Cu-S coordination in the Cu,-coor-
dinated ATT fragment ions, featuring m/z of 191.9 (Cu,C,N3),
208.9 (Cu,C,N,H3) and 240.8 (Cu,C,N,S,Hj3), as well as the Cuy-
coordinated ATT fragments with m/z of 147.0 (Cu;C,N,H,),
177.9 (Cu;C,N,S,H;), 178.9 (Cu,C,N,S;H,) and 262.9 (Cu,C,-
NeS,H,) supported coordination mainly occurring between the
heterocyclic N and S atoms of ATT and Cu. Similar to ATT-Cu,
the Cu,/Cu,/Cujz-coordinated TT fragments involving Cu-N
and/or Cu-S coordination were also found for TT-Cu. These
ToF-SIMS data, together with the XPS results, physically
demonstrated that the three heterocyclic N atoms and S atoms
of ATT/TT tended to coordinate with Cu to form CuN,S,
configurations.

To explore how the coordinated N/S atoms in ATT and TT
affected the electronic state of Cu, we collected the Cu 2p XPS
spectra of ATT-Cu and TT-Cu (Fig. 2D). The Cu® and Cu*
species coexisted in both ATT-Cu and TT-Cu. Importantly, the
binding energy of Cu in ATT-Cu was shifted positively compared
with that in TT-Cu, verifying the accumulation of more positive
charges at the Cu center of ATT-Cu. In Cu K-edge X-ray
absorption near-edge structure (XANES) spectroscopy, the
absorption edge energies of both ATT-Cu and TT-Cu were
higher than that of Cu foil (Fig. 3A), indicating that Cu was in
the oxidized state in both nanozymes.** Compared with TT-Cu,
the absorption edge energy of ATT-Cu was shifted positively,
and the intensity of the white line peak corresponding to the 1s
— 4p,, transition also increased (Fig. 3A).>* These results
reconfirmed the accumulation of more positive charges at the

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 X-ray absorption spectra of ATT-Cu, TT-Cu and Cu foil. (A) Cu
K-edge XANES spectra; (B) Fourier-transform EXAFS curves in R space;
(C) wavelet-transform EXAFS spectra; Fourier-transform EXAFS fitting
curves in k-space (D) and R-space (E).

Cu center of ATT-Cu, agreeing well with the Cu 2p XPS result.
Upon rechecking the N 1s and S 2p XPS spectra, we found that
the Cu-N bond in ATT-Cu was shifted to a higher binding
energy than that in TT-Cu, while the binding energy of the Cu-S
bond in ATT-Cu was lower than that in TT-Cu (Fig. 2A and B).
These results together with the Cu 2p and Cu K-edge XANES
spectra illustrated that the more electrons of the Cu-N bond in
ATT-Cu flowed toward the S atom compared with TT-Cu,
causing more positive charges to accumulate at the Cu center
of ATT-Cu.

To gain an insight into the origin of charge accumulation at
the Cu center, extended X-ray absorption fine structure (EXAFS)
spectroscopy was conducted to investigate the atomic-scale
coordination configuration of Cu. As shown in Fig. 3B, the
characteristic peaks of ATT-Cu and TT-Cu in Fourier-transform
EXAFS spectra in R space were located at about 1.44 and 1.66 A,
respectively, and no Cu-Cu scattering peak at ~2.24 A was
observed for them, suggesting that the Cu atom of ATT-Cu and
TT-Cu existed in the form of atomic dispersion. In wavelet
transform (WT)-EXAFS spectra (Fig. 3C), the intensity maximum
for ATT-Cu and TT-Cu were situated at about 3.90 A~* and 4.05
A, respectively, which were clearly different from that for Cu
foil (7.05 A™?), again supporting the atomic dispersion of Cu in
both nanozymes. Additionally, we observed another prominent
scattering path at ~3.48 A in WT-EXAFS (Fig. 3C), which could
possibly be assigned to the nonbonded Cu---Cu scattering
originating from the adjacent geminal copper centers, similar
to the reported triazole-Cu complex.'**

The Fourier-transform EXAFS signal in k-space revealed that
both ATT-Cu and TT-Cu presented two different oscillation
periods, which corresponded to the Cu-N and Cu-S paths
(Fig. 3D). This favored the formation of Cu-N and Cu-S

Chem. Sci., 2024, 15, 19513-19519 | 19515
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coordination, coinciding with the results of the N 1s/S 2p
spectra and ToF-SIMS data. We thus performed Fourier-
transform EXAFS fitting analysis in R space to determine the
first-shell N/S atom numbers around the Cu center (Fig. 3E and
Table S1t). For ATT-Cu, the average number of S atoms coor-
dinating with Cu was 0.5, suggesting that each S atom was
shared by two Cu atoms. Meanwhile, each Cu atom in ATT-Cu
was also connected with two N atoms. Therefore, the Cu
center of the ATT-Cu nanozyme formed the coordination-
unsaturated CuN,S; configuration. In contrast to ATT-Cu,
each Cu center in TT-Cu boned with one N atom, and the
average number of S atoms coordinating with Cu attained 2.5,
suggesting that the adjacent two Cu atoms shared five S atoms,
thus forming the CuN;S; coordination configuration in the TT-
Cu nanozyme. These XANES and EXAFS data, together with the
XPS and ToF-SIMS results as well as the different coordination
structures of the nanozymes illustrated that introducing an
amino group into the ATT ligand could modulate the
coordination-unsaturated configuration of atomically dispersed
Cu centers by steering the first-shell N/S atom numbers, thus
promoting the more notable accumulation of positive charge at
the Cu center of ATT-Cu.

The CO-like catalytic activities of ATT-Cu and TT-Cu were
evaluated using 3,5-di-tert-butylcatechol (3,5-DBTC) as a model
molecule.” In the absence of nanozyme, 3,5-DBTC in an air-
saturated solution showed a characteristic absorption peak at
280 nm (Fig. 4A). Once the ATT-Cu nanozyme was introduced
into the reaction solution, a new absorption peak located at
416 nm appeared, which was assigned to the oxidation product
(i.e., 3,5-di-tert-butyl-o-benzoquinone, 3,5-DTBQ) (Fig. 4A).
When the reaction solution containing ATT-Cu was filtered
using a filtration membrane with an average pore size of
100 nm, the reaction rate in this system obviously decreased
(Fig. S61). Meanwhile, increasing the O, concentration accel-
erated the CO-mimicking catalysis of ATT-Cu, suggesting that
ATT-Cu activated O, to oxidize 3,5-DBTC (Fig. S77). These
results jointly verified the CO-mimicking activity of the ATT-Cu
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Fig. 4 Evaluation of CO-like activities of ATT-Cu and TT-Cu. (A) UV-
vis spectra of 3,5-DTBC, 3,5-DTBQ and nanozyme-catalyzed oxida-
tion of 3,5-DTBC in air-saturated PBS (pH = 8)/CH=CN solution; (B)
specific activities; (C) Michaelis—Menten curves; (D) kinetic parameters
(Km, Kcat and Keat/Km); (E) recyclability; (F) comparison of the kinetic
parameters (K, Kear and Kea/Km) of ATT-Cu with reported CO-like
artificial enzymes.
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nanozyme. Moreover, the CO-like activity of ATT-Cu increased
with the increasing pH of the solution (Fig. S8). For compar-
ison with reported CO-like nanozymes,>'* a solution of pH = 8
was used. Additionally, we found that sodium metabisulfite
(Na,S,0s5) acting as an inhibitor could significantly inhibit the
catalytic activity of ATT-Cu nanozyme (Fig. S9At), analogous to
reported CO and CO-like nanozymes.***®

Interestingly, compared with ATT-Cu, TT-Cu displayed poor
CO-mimicking activity (Fig. 4A), as demonstrated by its lower
specific activity (Fig. 4B). Moreover, both the Cu content and the
surface area of ATT-Cu were lower than those of TT-Cu, mani-
festing that the Cu content and surface area were not the crucial
causes dominating the different CO-like activities between ATT-
Cu and TT-Cu. To further compare the difference in intrinsic
catalytic activities between ATT-Cu and TT-Cu, kinetic param-
eters such as substrate affinity (K,,), catalytic rate constant (Kca;)
and catalytic efficiency (K./Km) were assessed at room
temperature under the condition of pH = 8 by varying the initial
concentration of 3,5-DTBC. The catalytic reaction rates of both
ATT-Cu and TT-Cu nanozymes followed Michaelis-Menten
kinetics while performing CO-like catalysis (Fig. 4C), analogous
to reported CO-mimicking nanozymes.>'® According to the
Michaelis-Menten equation, K, Kcar and K.,/Ky,, were acquired
through non-linear curve fitting. ATT-Cu exhibited better
substrate affinity, as confirmed by its lower K,, value compared
with TT-Cu (Fig. 4D). The K, and K,/K, values of ATT-Cu were
obviously superior to those of TT-Cu, demonstrating the better
CO-mimicking activity of ATT-Cu (Fig. 4D). After five catalytic
cycles, the CO-like activity of the ATT-Cu nanozyme did not
notably decrease (Fig. 4E), indicating its good recyclability.
Moreover, the corresponding XRD pattern of ATT-Cu did not
show a notable difference compared with the original ATT-Cu
(Fig. S9Bt). Meanwhile, adding interfering ions such as K,
Na' or CI~ also did not result in a notable decrease in the
catalytic activity of ATT-Cu (Fig. S9Ct). Importantly, some of
these kinetic parameters presented by this ATT-Cu nanozyme
with a low-coordinated CuN,S; configuration surpassed those
of many reported CO-mimicking artificial enzymes/nanozymes
with CuN,O,, moieties'®*® as well as those of Ce-based,>* Zr-
based® or Pt-based> nanozymes (Fig. 4F and Table S27). This
demonstrated that using large-sized and weakly electronegative
S as a coordinating atom could endow the Cu center with
superior CO-like activity when the N/S coordination numbers
were controlled to manipulate the coordination unsaturation of
the Cu center to modulate its charge accumulation.

To explore why this low-coordinated CuN,S; configuration
with accumulation of more positive charges at the Cu center
accelerated the CO-mimicking catalysis of ATT-Cu, we first used
electrochemical technology to understand this biomimetic
oxidation process. According to the cyclic voltammetry (CV)
curve acquired in the absence of O,, it could be seen that the
potential for oxidizing 3,5-DTBC over ATT-Cu was lower than
that over TT-Cu (Fig. 5A), indicating that accumulation of more
positive charges at the Cu center endowed ATT-Cu with easier
reception of electrons during the oxidation of 3,5-DTBC.
However, the ATT-Cu nanozyme showed a lower redox constant
(k) determined in the absence of O, based on Laviron's method

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 (A) CV curves of ATT-Cu and TT-Cu in the presence of Ar and
3,5-DTBC; (B) ks values of ATT-Cu and TT-Cu during oxidation of 3,5-
DBTC based on Laviron analysis; (C) changes in OCP over time; (D) CV
curves of ATT-Cu and TT-Cu in the presence of O,; (E) CV curves of
ATT-Cuand TT-Cu in the presence of 3,5-DTBC as well as O, or Ar; (F)
work functions of ATT-Cu and TT-Cu; (G) ESR spectra of DMPO-
trapped O,"~; (H) specific trapping of H,O, during ATT-Cu- and TT-
Cu-catalyzed oxidation of 3,5-DTBC using catalase; (I) electron
transfer numbers (n) and H,O; yields of ATT-Cu and TT-Cu during
ORR.

(Fig. 5B and S10t),*® suggesting the slower oxidization rate of
3,5-DBTC over ATT-Cu compared with that over TT-Cu. In fact,
the catalytic kinetics experiment disclosed that ATT-Cu exhibi-
ted a faster rate for oxidizing 3,5-DBTC compared with TA-Cu
while performing CO-like catalysis (Fig. 4C and D). This
implied that the process of the oxygen reduction reaction (ORR)
should be the key initial step for controlling CO-like catalysis,
rather than the oxidation step of 3,5-DBTC.

If the above deduction was reasonable, the preferentially
triggered ORR process would make the Cu center of the nano-
zyme become more electron-deficient, thus elevating the elec-
trochemical potential of the Cu site to accelerate 3,5-DBTC
oxidation. Meanwhile, this rising electrochemical potential
would also make the nanozyme a weaker reductant, attenuating
the ORR rate. Accordingly, the “mixed potential” of reductive
and oxidative half-reactions (i.e., the open-circuit potential
(OCP))* would experience a continuous change until the rates
of ORR and oxidation of 3,5-DBTC were balanced to attain
a steady state, which coincided with Fig. 5C, demonstrating that
the ORR process was the key initial step during CO-mimicking
catalysis. Furthermore, compared with TT-Cu, ATT-Cu showed
a more notable change in OCP when reaching a steady state
(Fig. 5C), signifying that the initial ORR step driven by ATT-Cu
was faster. Fig. 5D verified this, showing that the onset poten-
tial and current of ORR over ATT-Cu exceeded those over TT-Cu.
Combining these results and the above structural information
indicated that accumulating more positive charges at the low-

© 2024 The Author(s). Published by the Royal Society of Chemistry
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coordinated CuN,S; site contributed to boosting the CO-
mimicking activity of ATT-Cu by accelerating the key initial
ORR step.

To clarify the origin of the faster ORR step exhibited by ATT-
Cu, we compared the CV curves of the two nanozymes, which
were collected in the presence of 3,5-DTBC as well as Ar or Oy,
respectively. We found that introducing O, into the reaction
system resulted in the disappearance of the oxidation peak of
3,5-DTBC, and the reduction peak of 3,5-DTBQ (i.e. the oxida-
tion product of 3,5-DTBC) was negatively shifted (Fig. 5E), which
illustrated that the electrochemical oxidation of 3,5-DTBC and
the reduction of 3,5-DTBQ became more difficult in the pres-
ence of O,, suggesting that O, may be more easily preferentially
adsorbed by both nanozymes to occupy their Cu sites. It is worth
noting that after replacing Ar with O,, the 3,5-DTBQ reduction
peak presented by ATT-Cu was negatively shifted by 116 mV,
which obviously exceeded that shown by TT-Cu (76 mvV)
(Fig. 5E), reflecting the stronger adsorption of O, by ATT-Cu
during CO-like catalysis. After O, was adsorbed, the lower
work function of ATT-Cu enabled an easier electron transfer to
O, (Fig. 5F). These factors ensured the formation of more O, ™~
species, which were confirmed in the presence of air and 5,5-
dimethyl-1-pyrroline N-oxide (DMPO) without adding 3,5-DBTC
through electron spin resonance (ESR) spectra (Fig. 5G).

As the ORR process progressed, this formed O,"~ would be
further transformed into the product H,O via the formation of
H,0, intermediate by further accepting electrons stemming
from oxidation of 3,5-DTBC during CO-mimicking catalysis, as
shown by the result of a catalase trapping experiment (Fig. 5H)
and the evaluated electron transfer number approaching 4
(Fig. 5I). Such a 4e reduction of O, to form H,O via the H,0,
intermediate was also confirmed by the CV curve. It displayed
two obvious stages corresponding to O, — H,0, — H,O during
the nanozyme-catalyzed ORR process (Fig. 5D). Moreover,
according to Fig. 5H, we found that the drop in the relative CO-
like activity of ATT-Cu was smaller than that of TT-Cu after
adding catalase into the reaction system. Given that catalase
specifically competed with the nanozyme for H,O,, the smaller
decrease in relative CO-like activity demonstrated the stronger
adsorption capability of ATT-Cu for H,0,. As a result, the
stronger capabilities for adsorbing O, and H,0, intermediate as
well as the faster electron transfer jointly enabled the ATT-Cu
nanozyme to exhibit better ORR activity than TT-Cu, as
confirmed by its more positive onset potential and larger
current for ORR (Fig. 5D). Such an enhanced ORR process
contributed to boosting the CO-mimicking activity of ATT-Cu.

To further understand why the ATT-Cu nanozyme with more
accumulated positive charges enabled by the low-coordinated
CuN,S; configuration enhanced adsorption of O, and H,O,
intermediates, an ultraviolet photoelectron spectroscopy (UPS)
test was conducted to evaluate its d-band center. In general,
upshifting the d-band center of a catalyst is beneficial for
enhancing the adsorption strength of a catalyst for reactive
species. As expected, the d-band center of ATT-Cu was upshifted
toward the Fermi level compared to that of TT-Cu (Fig. 6A),
contributing to enhanced O,/H,0, adsorption. Furthermore,
this upshifted d-band center prompted the ATT-Cu nanozyme

Chem. Sci., 2024, 15, 19513-19519 | 19517


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc05014b

Open Access Article. Published on 29 October 2024. Downloaded on 2/8/2026 4:37:42 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chemical Science

7
Ao ATT-Cyl Tl B E H,O N\(Nw/s%— ‘0,

5 g 5

s 5 . —am—

k3 s 065 S

5% oa1ev A 8 3 e T

2 o RN e s
o g ) I

5 3 e N N

16 05 N»—é&g%}—n u—gﬁo%)_u

02l
ATT-Ca TG E

; I ip ot 4 "

o
=2l

Fig. 6 (A) UPS spectra of ATT-Cu and TT-Cu; (B) positive relationship
between d-band center and K., of ATT-Cu and TT-Cu; (C) UV-vis
spectra of TCNQ solutions in the presence of ATT-Cu and TT-Cu; (D)
trapping other reactive oxygen species (‘OH and O,) during the
biomimetic oxidation of 3,5-DTBC over ATT-Cu; 2,2,6,6-tetrame-
thylpiperidine (TEMP) and 5,5-dimethyl-1-pyrroline N-oxide (DMPO)
were used to trap 'O, and ‘OH, respectively; note: the *OH signal was
inconspicuous, and the DMPO-H adduct and TEMPO were found; (E)
proposed catalytic mechanism of ATT-Cu.
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to present better affinity for 3,5-DTBC, as shown by its lower K;,,
value (Fig. 6B).

Once 3,5-DTBC was adsorbed, the nanozyme would catalyze
the oxidation of 3,5-DTBC by accepting its electron. To compare
their capabilities for accepting electrons, 7,7,8,8-tetracyano-
quinodimethane (TCNQ) was employed as a probe molecule to
mix with the nanozyme in acetonitrile solution. After stirring at
80 °C for 20 min, the centrifuged solution was monitored using
UV-vis spectra. A peak at 743 nm was observed (Fig. 6C), sug-
gesting that TCNQ accepted one electron from the nanozyme to
form the radical anion product TCNQ' .***' However, this
TCNQ'~ peak in the ATT-Cu system was much weaker than that
in the TT-Cu system (Fig. 6C), indicating that the ATT-Cu
nanozyme found it harder to donate an electron to TCNQ
compared with TT-Cu. In other words, the capability of ATT-Cu
to accept an electron was stronger than that of TT-Cu, which
agreed well with the lower potential of ATT-Cu for the oxidation
of 3,5-DTBC (Fig. 5A). Consequently, the better capability to
accept and transfer electrons as well as the stronger adsorption
for O,, H,0O, and 3,5-DTBC physically enabled ATT-Cu with
a low-coordinated CuN,S; moiety to accelerate CO-like catalysis.

To disclose the possible biomimetic catalytic mechanism of
ATT-Cu, we further used electron paramagnetic resonance
(EPR) to trap other reactive oxygen species (i.e. "OH and 'O,)
apart from the detected O,"~ and H,0,. 2,2,6,6-Tetramethylpi-
peridine (TEMP) and 5,5-dimethyl-1-pyrroline N-oxide (DMPO)
were used as trapping reagents for 'O, and "OH, respectively. As
shown in Fig. 6D, an obvious TEMPO signal was observed while
the DMPO-OH signal was inconspicuous, suggesting that 'O,
was involved in the oxygen activation process and ‘OH was
possibly not formed. On the basis of these detected reactive
oxygen species, a possible catalytic mechanism was proposed
(Fig. 6E). During catalysis, ATT-Cu preferentially adsorbed and
activated O, to form '0O,, which would be transformed into O, .
The formed O, would be transformed into H,O, by accepting
electrons and hydrogen atoms from 3,5-DTBC, thus generating
the oxidation product (i.e., 3,5-DTBQ). The produced H,0, was
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further transformed into H,O by obtaining electrons and
hydrogen atoms from 3,5-DTBC to produce H,O and 3,5-DTBQ.
Subsequently, the Cu site of ATT-Cu experienced a regeneration
process by desorbing the resulting H,O.

Conclusions

In summary, we constructed CO-like nanozymes with CuN,S,
and CuN;S; moieties by steering the N/S coordination number
around Cu centers. We found that the d-band center of ATT-Cu
with the low-coordinated CuN,S; configuration was upshifted
toward the Fermi level compared with that of TT-Cu with the
CuN;S; moiety, leading to stronger adsorption of O, and H,0,
intermediates as well as better affinity for catechol. Meanwhile,
this unsaturated CuN,S; configuration provided ATT-Cu with
better capabilities for donating electrons to O, and accepting
electrons from catechol. These advantages accelerated the
initial ORR process, which in turn promoted the oxidation of
catechol, thus endowing ATT-Cu with enhanced CO-like
activity.
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