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The reaction of 4 equiv. of LiIN=C('Bu)Ph) with Fe'Cl, results in isolation of [Li(Et,O)l,[Fe"(N=C(Bu)Ph),]
(1), in good vyields. The reaction of 1 with 1 equiv. of I, leads to formation of [FeV(N=C(‘Bu)Ph)4] (2). in
moderate yields. 57Fe Mdssbauer spectroscopy confirms the Fe(v) oxidation state of 2, and X-ray
crystallography reveals that 2 has a square planar coordination geometry along with several

intramolecular H---C interactions. Furthermore, SQUID magnetometry indicates a small magnetic
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Accepted 4th September 2024 moment at room temperature, suggestive of an accessible S = 1 state. Both density functional theory

and multiconfigurational calculations were done to elucidate the nature of the ground state. Consistent

DOI: 10.1039/d4sc04880f with the experimental results, the ground state was found to be an S = O state with an S = 1 excited
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Introduction

In comparison to the oxo, nitrido, and imido chemistry of
Fe(v),"® the coordination and organometallic chemistry of this
oxidation state is relatively sparse.’** The paucity of examples
is generally ascribed to the high oxidizing power of Fe**, which
can oxidize sensitive organometallic ligands.'*** As a result,
many of the Fe(wv) coordination complexes isolated thus far
contain additional stabilizing features. For example, London
dispersion forces are thought to play an important role in the
stability of [Fe™(1-norbornyl),] and [Fe™(cyclohexyl),].*>*2
Likewise, the solid-state structure of [Fe™(CsMes),][SbFel,
displays multiple close contacts between the methyl groups of
the cation and fluorine atoms of the anions.** In contrast, the
homoleptic Fe(iv) ketimide complex, [Fe"(N=C'Bu,)],”’
acquires its stability via the exceptionally strong o- and m-donor
properties of the ketimide ligand.**™* In fact, the di-tert-butyl
ketimide ligand can stabilize a large series of homoleptic M(IV)
complexes of the type [M"(N=C'Bu,),] (M = Ti, V, Nb, Ta, Cr,
Mo, W, Mn, Fe, Co).2”*** This ligand also stabilizes the U>" ion
in the homoleptic penta(ketimide) complex, [UY(N=C'Bu,);],*
while the closely related phenyl-tert-butyl ketimide, [N=C(‘Bu)
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Ph]’, can stabilize U(vi) and Ce(iv) - two ions that are also
considered a challenge to isolate.”*** Similarly, the stability of
[Fe"™(mnt);]*” (mnt = maleonitriledithiolate) was thought to be
due to highly covalent m-interaction between the Fe*" centers
and the [mnt]* ligand.?

Given the paucity of Fe(iv) coordination complexes, we have
continued to explore the chemistry of high-valent iron keti-
mides. Herein, we report the synthesis of unusual square
planar, homoleptic Fe(iv) ketimide complex, [Fe"™(N=C(‘Bu)
Ph),], which features a singlet (S = 0) ground state. However,
NMR spectral data, magnetism measurements, and density
functional theory (DFT) and multiconfigurational calculations
support the presence of a low-lying triplet state that is partially
populated at room temperature.

Results and discussion

The reaction of Fe"'Cl, with 4 equiv. of Li(N=C(*Bu)Ph) results
in formation of [Li(Et,0)],[Fe"(N=C(‘Bu)Ph),] (1), which crys-
tallizes from a mixture of pentane and Et,O as large, orange
blocks in 76% yield after work-up (Scheme 1). Complex 1 crys-
tallizes in the monoclinic space group P2,/c and features a dis-
torted tetrahedral environment about the Fe center (Fig. 1).
Additionally, the two Li" cations are bound to two ketimide N
atoms and one Et,O molecule. Similar structural features are
found in the related homoleptic Fe(u) ketimide complexes,
[Li(THF)],[Fe"(N=C'Bu,),] and [Li(THF),],[Fe"(N=
Ci3Hg)4]>** The Fe-N distances in 1 range from 2.043(4) to
2.056(4) A and are comparable to those observed for other Fe()
ketimide complexes.?”** Its 'H NMR spectrum in THF-dg
features a broad, paramagnetically shifted resonance at
16.0 ppm, assignable to the ‘Bu environment, as well as broad
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Fig. 1 Solid-state structure of [Li(Et,O)lo[Fe(N=C(‘Bu)Ph),] (1) with
50% probability ellipsoids. Hydrogen atoms have been omitted for
clarity. Selected bond lengths (A) and angles (°): Fe1-N1 = 2.051(4),
Fel-N2 = 2.056(4), Fe1-N3 = 2.045(4), Fe1-N4 = 2.043(4), N1-Fel-
N3 = 114.00(14), N1-Fel-N2 = 93.21(14), and N1-Fel-N4 =
121.09(14).

resonances at 12.7 and 7.87 ppm, assignable to the o/m phenyl
environments (Fig. S2t). Additionally, its "Li{"H} NMR spec-
trum consists of an extremely broad, paramagnetically shifted
resonance at 391 ppm (Fig. S37), suggesting the presence of
a contact-ion pair in solution. Similar behavior is observed in
other [LiJ,[M"(ketimide),]-type complexes.?”*447:52

The reaction of 1 with 1 equiv. of I, results in formation of
[Fe"™(N=C(‘Bu)Ph),] (2), which can be isolated as black crystals
in 32% yield after work-up (Scheme 1). Interestingly, we also
observe formation of the previously reported Fe(m) complex,
[Fe™,(N=C(‘Bu)Ph)] (3),®> during the oxidation of 1 to 2
(Fig. S10t), which is presumably formed by over-oxidation of 1
and which helps account for the low isolated yields of 2.
Complex 2 can also be generated via oxidation of 1 with 1.7
equiv. of AgPFy or 1.7 equiv. of [Cp,Fe][BF,]; however, neither
reaction is synthetically useful. In the case of AgPFs, several
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byproducts are formed, including 3, despite the use of sub-
stoichiometric quantities of AgPFs. The oxidation of 1 with
[Cp.Fe][BF,] is relatively clean, but complex 2 proved too diffi-
cult to separate from the [Cp,Fe] by-product, due to their similar
solubilities.

Complex 2 crystallizes from Et,O and hexanes in the
monoclinic space group C2/c (Fig. 2). In the solid state, 2
exhibits a distorted square planar geometry (z, = 0.19),%
wherein all four phenyl rings point up and all four ‘Bu groups
point down. Complex 2 features a nearly linear N1-Fe1-N1*
angle (172.96(10)°). However, the N2-Fe1-N2* angle is notably
smaller (159.70(10)°) and the Fe-N-C angle of these two keti-
mide ligands also deviates from linearity (Fe-N2-C12 =
149.24(14)°). This distortion is attributable to the presence of
short inter-ligand H---C contacts. In particular, H22 is in close
proximity to both C6 and C11 (H22+-C6 = 2.726 A and H22--

Fig. 2 Two views of the solid-state molecular structure of [Fe(N=
C(‘Bu)Ph),4] (2) measured at 100 K, shown with 50% probability ellip-
soids. Hydrogen atoms (except H22) have been omitted for clarity.
Selected bond lengths (A) and angles (°): Fe1-N1 = 1.7571(17), Fe1-N2
= 1.7859(15), N1-Fel-N2 = 90.26(7), N1-Fe—N2* = 90.99(7), N1-
Fel-N1* = 172.96(10), N2-Fel-N2* = 159.70(10), Fel-N1-Cl1 =
177.62(16), and Fel-N2-C12 = 149.24(14).

© 2024 The Author(s). Published by the Royal Society of Chemistry
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C11 = 2.900 A, Fig. 2), distances that are within the sum of their
van der Waals radii (ryrc = 2.9 A).*** These interactions may
contribute to the overall stability of the complex, as has been
noted for other Fe(v) coordination and organometallic
complexes,*** as well as the observed syn arrangement of the
phenyl groups. Finally, the Fe-N distances in 2 are 1.7571(17)
and 1.7859(15) A. These values are similar to those previously
reported for [Fe™ (N=C'Bu,),] (1.771(3) and 1.775(3) A) and are
somewhat shorter than Fe-N distances in [Fe"(TAML)(CN),]
[PPh,], (1.807(9)-1.950(9) A),** [(N;N)Fe"(CN)] (av. 1.82 A),"®
and [Fe(MesNCH,CH,NMes),] (av. 1.89 A).** The latter complex
also exhibits a distorted square planar geometry (z, = 0.22).
Finally, the metrical parameters of a crystal of 2, collected at
287(2) K, are nearly identical to those collected at 100(2) K
(Table S2t), demonstrating that the square planar geometry is
maintained at room temperature in the solid state.

The 'H NMR spectrum of 2 in toluene-ds exhibits four
paramagnetically shifted resonances at 8.92, 7.70, 5.33, and
2.68 ppmina 2:2:1:9 ratio, which are assignable to the m-Ar,
0-Ar, p-Ar, and ‘Bu protons, respectively. The 0-Ar resonance is
notably broad, likely because of the aforementioned H---C
contacts, demonstrating that these interactions are probably
maintained in solution. These resonances shift upon cooling.
For example, at —60 °C in toluene-ds, the m-Ar resonance at
8.92 ppm shifts upfield to 7.37 ppm, whereas the p-Ar resonance
at 5.33 ppm shifts downfield to 6.42 ppm (Fig. S6 and S77). The
shift of the "H resonances upon cooling is not consistent with
temperature-independent paramagnetism (TIP),** but is instead
the result of a thermally populated low-lying electronic excited
state (see below).>>” In contrast, [Fe"(N=C'Bu,),] is diamag-
netic at room temperature, indicating the difference in the
electronic structure imparted by the stronger donating bis(tert-
butyl) ketimide ligand. For further comparison, the recently
reported [Fe(MesNCH,CH,NMes),| exhibits an § = 1 ground
state at room temperature, suggesting that the bis(amide)
ligand is a weaker donor than [N=C(‘Bu)Ph].*

Complex 2 is soluble in hexanes, benzene, Et,0, and THF. It
is stable as a solid for two weeks under an inert atmosphere at
—25 °C; however, at longer storage times, it begins to decom-
pose into the previously reported Fe(um) complex, 3.>> Complex 2
is also unstable in solution. Thermolysis of 2 for 3 h at 50 °C in
CeDs, results in complete conversion to 3, according to 'H and
3C NMR spectroscopy (Scheme 1, Fig. S13 and S147).5> Also
present in these spectra are signals attributable to PhCN,
isobutylene, and HN=C(‘Bu)Ph, which are present in an
approximately 1:1:1 ratio. These products are apparently
derived from the one-electron oxidation of the ketimide ligand
by the Fe(wv) center.*”** For comparison, [Fe"(N=C'Bu,),] also
decomposes upon heating in C¢D, forming [Fe,(N=C'Bu,)s],
tert-butyl cyanide, isobutane, and isobutylene;*® however, its
complete conversion required 8 h at 50 °C, suggesting that the
[N=C(‘Bu)Ph]  ligand is more easily oxidized. Finally, the
reaction of 2 with HN=CPh, in an attempt to form [Fe"'(N=
CPh,),] results in the formation of [Fe™,(N=CPh,)s],?> along
with isobutylene, PhCN, and HN=C'‘BuPh (Scheme S1 and
Fig. S15%). This observation indicates that the diphenyl keti-
mide ligand is likely unable to support the Fe(IV) state.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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The cyclic voltammogram of 2 in THF reveals two reversible
redox events, with E;/, values of —1.40 and —0.36 V (vs. Fc/Fc")
(Fig. S20t). The former is attributed to the Fe(u)/Fe(u) redox
couple, and the latter is attributed to the Fe(ur)/Fe(v) redox
couple. For comparison, [Fe"™(N=C'Bu,),] features an Fe()/
Fe(m) redox couple at —1.63 V and an Fe(u)/Fe(v) redox couple
at —0.53 V (vs. Fc/Fc').?” The ca. 0.2 V shift in potential for 2 is
unsurprising, given that phenyl ligands are less electron-
donating than tert-butyl groups.

The zero-field >’Fe Méssbauer spectrum for 2 at 90 K displays
a doublet with 6 = —0.162(2) mm s~ ' and |AEy| = 1.837(3) mm
s~' (Fig. 3 and Table 1). The isomer shift is very similar to those
reported for [Fe™(N=C'Bu,),] (6 = —0.15 mm s ') and
[Fe(MesNCH,CH,NMes),] (6 = —0.15 mm s~ "),*** as well as
other Fe(iv) complexes,>”#** corroborating the proposed +4
oxidation state assignment. For further comparison, the Mdss-
bauer spectrum of 1 exhibits a much larger isomer shift (6 =
0.924(2) mm s~ '; Fig. S197), consistent with its lower oxidation
state. Interestingly, the zero-field >’Fe Méssbauer spectrum for
2, collected at 298 K, displays a similar isomer shift (—0.096(4)
mm s )® but much smaller quadrupolar splitting (|AEq| =
1.172(7) mm s~ ') (Fig. 3), suggesting a decrease in the electric
field gradient with increasing temperature.®*

Temperature-dependent dc magnetization data were
collected for a crystalline sample of 2 at H = 1000 Oe, revealing
a linear increase in T from 0.00 cm® K mol ™" (ucg = 0.08 pip)
at T =2 K to 0.17 em® K mol ™ (uegr = 1.17 pg) at T = 300 K
(Fig. 4). These results indicate that, at very low temperatures, 2
has a singlet spin ground state (S = 0). However, at room
temperature, the moment is still well below that expected for an
S = 1 system (1.00 cm® K mol™"). To explain this data, we
hypothesize that a low-lying excited state is partially populated
as the temperature increases.
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Fig. 3 Zero-field ®'Fe Mdssbauer spectra of 2 collected at T = 90 K
(top) and T =298 K (bottom). The blue traces correspond to the overall
fits, which are described in the main text.
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Table 1 Mossbauer parameters for complexes 1, 2, 3, [Fe(N=C'Bu,)a], and [Fe(MesNCH,CH,NMes),]. O. S. = Formal Oxidation State

Complex 6 (mm s |AEg| (mm s™7) 0. S. Ref.

1 0.924(2) 3.537(4) 2 This work
2 (90 K) —0.162(2) 1.837(3) 4 This work
2 (298 K) —0.096(4) 1.172(7) 4 This work
3 0.256(2) 0.864(4) 3 52
[Fe(N=C'Bu,),] —0.15 1.62 4 48
[Fe(MesNCH,CH,NMes),] —-0.15 3.00 4 33
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Fig. 4 Magnetic susceptibility plot for complex 2 using TPSSh-D3BJ/
def2-TZV optimized structures. Experimental data are shown in blue
circles, CASPT2-SO (4, 10) yellow pentagons, and tPBEO-SO (4, 10)
green triangles. Experimental data were collected under an applied
magnetic field of H = 1k Oe from T =2 to T = 300 K.

In an effort to explain the spectroscopic and magnetic
properties of complex 2, we performed an extensive computa-
tional investigation of its electronic structure using DFT and ab
initio methods. Computational modeling was performed on the
structure extracted from the crystal packing. Geometry optimi-
zation considering the singlet (S = 0), triplet (S = 1), and quintet
(S = 2) spin states was performed with Kohn-Sham DFT using
the functionals TPSSh-D3BJ,*** B3LYP-D3BJ,*** and MO06°
together with def2-TZVP®* as the basis set for all the atoms. The
Gaussian 16 rev. A03 software package’™ was used for all DFT
calculations (see the ESIt for full details). The functional TPSSh-
D3BJ, which well describes the first-row transition metals
including Fe-complexes,” in agreement with the previous
literature’>”® and with experiments, was chosen to carry out
further DFT calculations (more details in the ESI{).

Structural optimization provides similar singlet and triplet
geometries, which suggests that the structures have similar
energy. For all the functionals tested here, the root means
square deviation (RMSD) between the crystal structure and both
the singlet and the triplet optimized geometries is minimal. The
RMSD values are between 0.05 A and 0.32 A, and the RMDS
between the singlet and triplet optimized structures is about
0.25 A (see the ESI{ for additional details).

16562 | Chem. Sci., 2024, 15, 16559-16566

Energetically, a singlet ground state was obtained using the
selected functional TPSSh-D3B]J. The singlet-triplet gap is small
with a value of 0.03 eV, which agrees with a low-lying triplet
state as suggested experimentally. In contrast, the non-
optimized geometry extracted from the crystal structure
provides a singlet-triplet gap of about 0.5 eV, which cannot be
referred to as a low-lying in character. Therefore, this structure
is unsuitable for computing the net singlet or triplet state
properties.

To better understand the variable temperature magnetism
behavior of complex 2, complete active space self-consistent
field (CASSCF)™ followed by perturbation theory (CASPT2)”
and pair-density functional theory (MC-PDFT with the tPBE and
tPBEO functionals)’®”” calculations were performed. These
multireference calculations employed both the 100 K X-ray
structure, in which only the hydrogen positions were opti-
mized at the DFT level (discussed in the ESIT) and the TPSSh-
D3BJ fully optimized structures previously discussed.

The CASSCF calculations were performed using the state
average formalism (SA-CASSCF). From the optimized CASSCF
wavefunction, CASPT2 and tPBEO calculations were performed
to obtain the singlet-triplet energy gap and the magnetic
susceptibility in three selected active spaces (see the ESIt for
computational details). Multireference calculations were also
shown to be effective in rationalizing the electronic structure of
the Fe(v) nitride, [Cp'Fe(u-N)], (Cp' = 1,2,4-“BusCsH,), which
was not well described by DFT methods.”®

The active spaces were chosen based on the occupation of
the 3d frontier orbitals of the Fe(iv) center and the four N atoms
surrounding it. Indeed, the Fe(wv) center of complex 2 has a 3d*
electron configuration; thus, the minimal active space consid-
ered is 4 electrons in 5 3d-orbitals (4, 5). To provide a more
accurate electronic and chemical description, a second d-shell
(4d) has been added to allow the correlation of the 4 electrons
in 10 orbitals, active space (4, 10). This expansion of the active
space is necessary to allow further delocalization of the 3d
electrons into the 4d-shell. Furthermore, a (12, 9) active space
was also chosen by including four Fe-N bonding orbitals to
describe the high degree of covalency of metal-ketimide bonds
(see ESIT for more details). Indeed, the Fe-N 3d-sp> hybrid
bonding orbitals allow a further expansion in the direction of
the ketimide ligands.***>”® Therefore, such extended active
spaces should suffice to explore the physical properties of the
system in subsequent calculations. Consistent with the DFT
results, CASPT2 predicts a singlet ground state followed by the
triplet state, while tPBEO almost agrees, with a singlet-triplet

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Calculated relative electronic energies, in eV, between the
singlet, triplet, and quintet states. Single point calculations with
CASPT2 and tPBEO with the (4, 10) active space at the TPSSh-D3BJ
optimized geometries for 2

TPSSh-D3B]J CASPT2 tPBEO
Singlet 0.00 0.00 0.02
Triplet 0.03 0.11 0.00
Quintet 0.27 2.26 1.84

gap slightly negative; the quintet state lies significantly higher
in all methods and is likely not populated to any meaningful
extent at the temperatures studied. The singlet-triplet gaps at
CASPT2 and tPBEO are 0.11 eV and —0.02 eV respectively
consistent with both states being thermally accessible (Table 2
and the ESIY).

After assessing the different spin states of complex 2,
calculations of its magnetic susceptibility were performed.
Spin-orbit coupling (SOC) was computed with the restricted
active space state interaction method (RASSI-SO)**** on top of
the previously described spin states at both CASPT2-SO and
tPBE-SO levels. The spin-orbit energies are reported and dis-
cussed in the ESIf (see Tables S12-S147%). The effective spin
Hamiltonian for the zero-field parameters and magnetic
susceptibility were computed with the SINGLE_ANISO module
using OpenMolcas.®* CASPT2-SO and tPBE0-SO with the (4, 10)
active space magnetic susceptibility values are reported in
Fig. 4. A total of 5 quintets, 35 triplets, and 22 singlets roots were
calculated for all active spaces. These states were chosen based
on an energy cut-off of 40000 cm '. We observe a linear
behavior of xT over the temperature range. The linear plot
confirms a singlet ground state with a low-lying triplet excited
state. A pure singlet state (diamagnetic) would have resulted in
a horizontal line at xT = 0, whereas a pure triplet state (para-
magnetic) would have resulted in a plateauing curve. The mix of
such states provides a straight line with a slope (see the ESI} for
more details). The computed xT vs. T using tPBE0-SO and
CASPT2-SO agree with each other (Fig. 4). However, the
computed X.aic values only account for the spin-orbit coupling
without thermal contributions; thus they are still below the
experimental data but within an acceptable deviation, with
a difference of about 0.0004 cm® mol ™. The error in Xcac is
a consequence of performing the geometry optimization
calculations at a temperature of 0 K rather than in the 2-300 K
range, thus in the absence of any phonon or thermal bath where
a deformation of the geometrical structure and subsequent
spin-phonon coupling may take place.

Conclusions

In summary, we report the synthesis of [Fe"(N=C(‘Bu)Ph),],
a rare example of a nearly square planar, Fe(iv) coordination
complex. Its +4 oxidation state was confirmed via °’Fe Moss-
bauer spectroscopy. In addition, SQUID magnetometry and VT-
NMR spectroscopic studies indicate that this complex features
a low-lying excited state. The calculated magnetic susceptibility
data also show that a low-lying triplet excited state contributes

© 2024 The Author(s). Published by the Royal Society of Chemistry
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to the paramagnetic behavior observed for 2. These properties
set 2 apart from its di-tert-butyl analogue, [Fe"™ (N=C'Bu,),]. The
latter complex is diamagnetic at all temperatures studied, likely
due to the better electron donating ability of the di-tert-butyl
ketimide ligand, which results in a stronger ligand field and
better separated ground state. The better donating ability of di-
tert-butyl ketimide is also supported by the cyclic voltammetry
data of both complexes. Overall, this work expands our under-
standing of Fe(iv) coordination chemistry and better defines the
conditions under which ketimides can be used to stabilize high
oxidation states.
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