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Introduction

2-Pyrazolines are valuable structural motifs, exhibiting a range
of biological activities including anticancer, anti-inflammatory,
antimicrobial, antiviral, and antidiabetic." While 2-pyrazolines
are most commonly prepared as racemates,” several mecha-
nistically distinct catalytic enantioselective approaches have
emerged. Kanemasa and Kanai reported the first catalytic
enantioselective synthesis of 2-pyrazolines: a chiral Lewis acid
catalysed 1,3-dipolar cycloaddition of trimethylsilyldiazo-
methane with chelating dipolarophiles such as 3-crotonoyl-2-
oxazolidinone (Scheme 1a(a)).* Subsequent reports disclosed
related catalytic enantioselective 1,3-dipolar cycloadditions of
various diazo compounds and dipolarophiles.*® Sibi et al
utilized hydrazonyl bromides as precursors to nitrile imines in
asymmetric Lewis acid catalysed cycloadditions with 3-
crotonoyl-2-oxazolidinone and related substrates (Scheme
1a(b)).® Briere and coworkers reported an asymmetric phase
transfer approach to the synthesis of 2-pyrazolines, involving
the conjugate addition of N-Boc hydrazine to o,B-unsaturated
ketones, followed by condensation (Scheme 1a(c)).” Employing
related substrates, an iminium catalysis strategy was reported
by Deng and coworkers where the initial conjugate addition is
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hydrazines and a,B-unsaturated ketones under mild conditions. Structurally diverse N-aryl 2-pyrazolines
in good vyields and enantioselectivities. The superior performance of 3,5-bis(SFs)
phenylthioureas over the widely used 3,5-bis(CFz)phenylthioureas is further demonstrated in the Michael
addition of dimethyl malonate to nitrostyrene, using a new Takemoto-type catalyst.

facilitated by a 9-epi-amino cinchona alkaloid catalyst (Scheme
1a(d)).* Dixon et al. used monoalkyl-substituted hydrazine-
derived hydrazones, which, in the presence of a cinchona
alkaloid derived bifunctional organocatalyst, undergo enantio-
selective conjugate addition to a,B-unsaturated ketones
(Scheme 1a(e)).>*® Subsequent hydrolysis followed by intra-
molecular condensation provides the corresponding 2-pyrazo-
lines. N-Sulfonyl hydrazones with pendent alkenes have been
shown to undergo enantioselective formation of 2-pyrazolines
via organocatalytic iodoaminocyclization* or via palladium-
catalysed aza-Wacker-type cyclization (Scheme 1a(f)).** Hu and
coworkers reported a method for the synthesis of 2-pyrazolines
from propargylic acetates and hydrazines, involving a (3 + 2)
cycloaddition facilitated by a chiral copper catalyst (Scheme
1a(g)).” A unique approach to the catalytic enantioselective
synthesis of medicinally relevant N-aryl 2-pyrazolines was re-
ported by List and coworkers (Scheme 1b)." In this trans-
formation, which was first described in its racemic form by
Fischer and Knoevenagel,” hydrazones derived from o,f-
unsaturated ketones undergo cyclization in the presence of
a BINOL-derived phosphoric acid catalyst to provide N-aryl 2-
pyrazolines in good to high enantioselectivity. This represents
the first catalytic enantioselective 6m-electrocyclization, a chal-
lenging type of reaction for which there are still only a limited
number of examples.'®'” Here we report a one-pot condensa-
tion/6m-electrocyclization approach to access highly enan-
tioenriched N-aryl 2-pyrazolines directly from hydrazines and
ao,B-unsaturated ketones (Scheme 1c).*® Reactions are catalysed
by a new conjugate-base-stabilized carboxylic acid (CBSCA)
containing a 3,5-bis(pentafluorosulfanyl)-phenylthiourea func-
tionality which has not yet been successfully utilized in

© 2024 The Author(s). Published by the Royal Society of Chemistry
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a) Overview of catalytic enantioselective approaches toward 2-pyrazolines
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b) Access to enantioenriched 2-pyrazolines via 61r-electrocyclization (List)
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c) One-pot condensation/61r-electrocyclization approach to 2-pyrazolines (this work)

Ph. .NH,

N catalyst (10 mol%) Ph Q & S SFs
PhMe (0.1 M) N=N Br. 0 HvHX
& - - \ HN
/\)‘J)\ 4AMS, 1,28 h P e Br COOH
PR e SFs
96%, 92% ee Br Br

* Modular conjugate-base-stabilized carboxylic acid (CBSCA) catalyst

« First organocatalyst containing a 3,5-bis(p orosulfanyl)phenylthiourea

Scheme 1 Relevant precedent on the catalytic enantioselective synthesis of 2-pyrazolines and current work.

asymmetric organocatalysis. We further demonstrate the
significant potential of 3,5-bis(pentafluorosulfanyl)phenylthio-
ureas in the context of bifunctional catalysis.

Results and discussion

Asymmetric Brensted acid catalysis continues to be dominated
by BINOL-derived phosphoric acids and structurally related
species.” With few exceptions, simple carboxylic acids typically
lack sufficient acidity to promote a diverse array of reac-
tions.***?° Driven in large part by the desire to enhance the
structural diversity of chiral Brensted acid catalysts and the
reactions they facilitate, our group previously introduced
CBSCAs.*' These catalysts contain both a (thio)urea and
a carboxylic acid functionality and efficiently facilitate reactions
involving iminium and oxocarbenium ions.** The acidity of
CBSCAs, which can exceed that of typical BINOL-derived phos-
phoric acids,*¥#?? is largely derived from conjugate base stabi-
lization via anion binding.”® In an effort to further expand the
utility of these versatile catalysts, we decided to evaluate
CBSCAs in the challenging asymmetric 67-electrocyclization
first reported by List and coworkers.*** Preformed hydrazone
1a was selected as the model substrate (Table 1). In the presence
of 20 mol% of (1R,2R)-cyclohexane-1,2-diamine-derived
carboxylic acid 3a, la underwent transformation into the
desired 2-pyrazoline 2a at room temperature (Table 1, entry 1).
Product 2a was obtained with an encouraging level of enantio-
selectivity. Remarkably, the closely related (1R,2R)-2-
aminocyclohexan-1-ol-derived carboxylic acid catalyst 3b
provided a significant boost to both reactivity and enantiose-
lectivity (Table 1, entry 2). Further modifications to the catalyst
backbone and aryl substituents on the thiourea functionality
did not result in any further improvements (Table 1, entries 3-
8).

We next sought to develop a one-pot approach to 2-pyrazo-
lines starting from arylhydrazines and a,B-unsaturated ketones,
with the additional goals of lowering the catalyst loading and
further increasing catalyst efficiency. While the List group also
reported a streamlined synthesis of enantioenriched N-aryl

© 2024 The Author(s). Published by the Royal Society of Chemistry

pyrazolines from arylhydrazines and «,B-unsaturated ketones,
their protocol required initial heating of these starting mate-
rials at 50 °C in the presence of molecular sieves but, impor-
tantly, in the absence of catalyst. For reasons that remain
unclear, the hydrazone formation step (a commonly acid-
catalysed process) was found to be incompatible with the
phosphoric acid catalyst, and the spent dehydrating agent had

Table 1 Reaction development with preformed hydrazone®

Ph
|

HN catalyst (20 mol%) Ph

N o N-N
A\
PN PhMe (0.05 M), rt et e
Ph Me
1a 2a
Q s R
o\ s A= R, Br o HNA .
Br NH HN—{ HN R
W-Ar 3 Br COOH

Br COOH CFs

CF, Br Br

3b (R = CFy, R'=H)
3d (R = CF,, R'=Br)
3e (R = CF5, R'=CN)

<:> Ph Ph
0 s )

3f(R=H, R =H)

—/ 0 /s Q S
Br o HNH Br o HNH Br o HNH
HN-Ar HN-Ar HN-Ar
Br COOH Br COOH Br COOH
Br Br 3c Br Br 39 Br Br 3h
Entry Catalyst Time [h] Yield (%) ee (%)
1 3a 96 68 75
2 3b 24 91 90
3 3c 24 69 5
4 3d 24 78 87
5 3e 24 44 39
6 3f 96 94 84
7 3g 24 90 61°
8 3h 48 53 31

¢ Reactions were performed with 0.1 mmol of 1a. Yields correspond to
isolated yields of chromatographically purified products. The ee
values were determined by supercritical fluid chromatography
analysis. ” The opposite enantiomer was obtained.
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to be removed by filtration prior to the addition of the chiral
Brensted acid.**** We were pleased to observe that CBSCA 3b
efficiently promotes the condensation/6m-electrocyclization of
phenylhydrazine with 4-phenyl-3-buten-2-one at room temper-
ature in the presence of 4 A molecular sieves, providing 2a in
excellent yield and enantioselectivity (Table 2, entry 1). Not
surprisingly, considering the reduced catalyst loading, the
reaction time required doubled compared to the synthesis of 2a
from the preformed hydrazone (¢f. Table 1, entry 2). Consistent
with the results shown in Table 1, catalysts 3d and 3f proved less
effective than 3b.

To potentially generate more active catalysts, we explored the
replacement of trifluoromethyl substituents with penta-
fluorosulfanyl (SFs) groups. Compared to a CF; substituent, the
SFs group offers several potential advantages, including
increased bulk, electronegativity, and lipophilicity, properties
which may lead to favourable characteristics of the corre-
sponding catalysts.** While CF; groups are ubiquitous substit-
uents in chiral organocatalysts, and the 3,5-bis(CF;)phenyl

Table 2 Development of the one-pot approach®

P L _cmeiom o Py
H P X" Me PhMe (0.1 M), 4 A MS, rt .
1.05 equiv 2a
0, S S R 3 s R
Br. o AN Br o HNH
HN R’ HN R
Br COOH Br cooH
CF3 SFs
Br Br Br Br
3b (R=CF3 R =H) 3i(R=H R =H)

3d (R = CF, R'=Br)
3f(R=H,R'=H)

3j (R =SFs R'=H)

Q Q s Q Q
Br o HNA Br o HvA
HNOSF5 HNOTf
Br COOH Br COOH

Br Br 3k Br Br 3
o & S CF. Q s SF
Br o HNA ’ Br o HNA °
HN HN
Br COOH Br COOH
CFs SFs
Br Br 3m Br Br 3n
Entry Catalyst Time [h] Yield (%) ee (%)
1 3b 48 90 89
2 3d 48 82 87
3 3f 96 74 83
4 3i 40 90 85
5 3j 28 93 90
6 3k 48 92 63
7 31 48 89 71
8 3m 48 93 91
9 3n 28 96 92

“ Reactions were performed with 0.1 mmol of phenylhydrazine. Yields
correspond to isolated yields of chromatographically purified
products. The ee values were determined by supercritical fluid
chromatography analysis.
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substituent in particular is well-recognized as a privileged
group,” the occurrence of SF5 groups in chiral organocatalysts
remains rare.”*>* For example, successful applications were
reported in the context of asymmetric Bronsted acid catalysis
with BINOL-derived catalysts in which 3,5-bis(SFs)phenyl
substituents are placed in the 3,3’ positions of the BINOL
backbone.”® In the reported cases, these catalysts generally
outperform the corresponding catalysts containing 3,5-bis(CF3)
phenyl groups. A 3,5-bis(SFs)phenyl group was also incorpo-
rated into an axially chiral bifunctional catalyst containing both
phosphite and 3,5-bis(CF;)phenylurea functionalities.>” We are
aware of only one catalyst containing a 3,5-bis(SFs)phenylthio-
urea group.*® However, in this case, this substituent offered no
advantages over the most effective aryl group. In our case,
catalyst 3i containing one SF; group in the 3-position signifi-
cantly outperformed the corresponding catalyst 3f containing
a single CF; group (Table 2, entry 4). The performance improved
even more dramatically with catalyst 3j containing a 3,5-bis(SFs)
phenyl substituent (Table 2, entry 5). Catalysts 3k and 31 con-
taining a SF; or a triflyl (Tf) group in the 4-position offered no
advantages over 3j (Table 2, entries 6 and 7). Finally, a change of
the (1R,2R)-2-aminocyclohexan-1-ol backbone to (1R,2R)-2-
aminocyclopentan-1-ol provided a boost in enantioselectivity.
While this improvement was seen for both 3,5-bis(CF;)phenyl-
thiourea catalyst 3m and 3,5-bis(SFs)phenylthiourea catalyst 3n,
the latter outperformed the former in regard to both reactivity
and enantioselectivity (Table 2, entries 8 and 9).

With the optimal reaction conditions in hand, the scope of
the transformation was evaluated with regard to arylhydrazines
and o,B-unsaturated ketones (Scheme 2). Various electronically
diverse substituents on the aromatic ring of the enones were
well tolerated (products 2a-2i). A furan substituent was also
successfully accommodated (product 2j). Similarly, electron-
rich and electron-poor hydrazines engaged in the title reac-
tion, providing the corresponding N-aryl 2-pyrazolines in good
to high yields and enantioselectivities (products 2l-2n).
Addressing a previous limitation,**“* hydrazones formed in situ
from arylhydrazines and enones bearing alkyl groups other than
methyl also engaged in enantioselective 6m-electrocyclization
reactions. Good enantioselectivities were obtained for non-
branched aliphatic substituents (products 20 and 2p) while
the introduction of an isopropyl substituent led to a small drop
in ee (product 2q). A further drop in enantioselectivity was
noted in N-aryl 2-pyrazolines containing a tert-butyl group
(products 2r-2t). The synthesis of these materials in enan-
tioenriched form is nevertheless significant. For example, 2-
pyrazoline 2t has been identified as a potent and selective
allosteric inhibitor of PKCE, a therapeutic target in pulmonary
and hepatic inflammatory diseases.*

To further explore the potential of 3,5-bis(SFs)phenylthio-
ureas as hydrogen bond donor motifs in asymmetric catalysis,
we decided to prepare an analogue of the eponymous Takemoto
catalyst, replacing the 3,5-bis(CF;)phenylthiourea (Scheme 3).
The Takemoto catalyst (5a) and related bifunctional catalysts
have been shown to catalyse a broad range of transformations.
Catalyst 5a was first utilized in a catalytic enantioselective
Michael addition of 1,3-dicarbonyl compounds to

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Scheme 2 Reaction scope.
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Scheme 3 Enantioselective Michael addition with a new Takemoto-
type catalyst.

nitroalkenes.***' In our hands, using catalyst 5a, the reaction of
dimethyl malonate to nitrostyrene provided product 4 in 91%
yield and 90% ee, following a reaction time of 10 h. The new 3,5-
bis(SFs)phenylthiourea containing catalyst 5b furnished 4 in
95% yield and 94% ee within 6 h. The superior performance of
5b in regard to both reactivity and enantioselectivity suggests
that the further exploration of bis(SFs)phenylthioureas in
asymmetric organocatalysis is warranted.

Conclusions

In summary, we have achieved a practical and efficient one-step
asymmetric synthesis of 1,3,5-trisubstituted 2-pyrazolines. This
method allows for the incorporation of diverse substitution
patterns into the 2-pyrazoline scaffold, thereby providing

© 2024 The Author(s). Published by the Royal Society of Chemistry
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a valuable platform for the synthesis of enantioenriched N-aryl
2-pyrazolines exhibiting promising biological activities. As part
of this investigation, we have introduced a new conjugate-base-
stabilized carboxylic acid (CBSCA) containing a 3,5-bis(penta-
fluorosulfanyl)phenylthiourea functionality, a catalyst that was
shown to significantly outperform the corresponding catalyst
containing a 3,5-bis(trifluoromethyl)phenylthiourea group. The
superiority of the 3,5-bis(pentafluorosulfanyl)-phenylthiourea
as a hydrogen bond donor was further demonstrated in the
context of a catalytic enantioselective Michael addition of
dimethyl malonate to nitrostyrene, using a new Takemoto-type
catalyst.
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