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Mengjie Qiu,a Zhong Chen, a Maili Liubc and Yanqin Lin *a

High quality chemical shift resolved spectra have long been pursued in nuclear magnetic resonance (NMR).

In order to obtain chemical shift information with high resolution and sensitivity, a neural network named

spin echo to obtain chemical shifts network (SE2CSNet) is developed to process the NMR data acquired

by the spin echo pulse sequence. Through detecting the change of phase in the spin echo spectra,

SE2CSNet can accurately detect the chemical shift position of spectral signals. The results show that the

network can discern the chemical shift even when spectral signals overlap, but without strong coupling

and chunking artifacts. In addition, this method can process the sample with low S/N (signal to noise

ratio), and recover weak signals even hidden in noise, leading to ultra-high quality chemical shift resolved

spectra. It is envisioned that the proposed methodology will find wide applications in many fields.
Introduction
1H nuclear magnetic resonance (NMR) is an extensively utilized
analytical technique that can be used for structural analysis of
compounds and even proteins with complex structures.1

However, multiplet splitting caused by scalar coupling (J-
coupling) plus the narrow chemical shi range oen leads to
severe spectral overlapping and low spectral resolution,2

hampering correct identication of chemical shis of spectral
signals. Addressing this defect is crucial for effective spectral
analysis.

Pure shi techniques convert multiplets into singlets by
removing J-coupling, simplifying spectral information and
signicantly improving signal dispersion and thus spectral
resolution. The Pure Shi Yielded by Chirp Excitation
(PSYCHE)3 method based on pseudo 2D sampling and the real-
time Zangger-Sterk (ZS)4 method based on real time sampling
are the representative pure shi techniques, proposed in 2014
and 2013 respectively. Both PSYCHE and real-time ZS methods
suffer from severe sensitivity loss and artifact interference,5

resulting in a signicant decrease in the spectral quality and
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thus limited practical applications. The emergence of ultra-
high-eld NMR spectrometers, such as the 1.2 GHz one,6,7 can
partially overcome the issue, but with a large economic cost.

In recent years, deep learning (DL) methods have gained
widespread adoption across various elds, including NMR non-
uniform sampling reconstruction, denoising, spectral assign-
ment and structural analysis, and improving spectral quality. In
the eld of NMR non-uniform sampling reconstruction, several
innovative approaches have been developed. In 2019, Hansen
et al. introduced a novel network architecture based on Long
Short-Term Memory (LSTM) layers to reconstruct sparsely
sampled NMR spectra in the time domain,8 while Qu et al.
demonstrated the application of deep neural networks for
achieving high-quality and reliable reconstructions in the
frequency domain.9 In 2020, Luo et al. proposed a deep neural
network named EDHRN, designed for the fast reconstruction of
non-uniformly sampled multidimensional NMR spectroscopy.10

More recently, in 2022, Zheng et al. presented a deep learning-
based method to accelerate the acquisition of undersampled
PSYCHE spectra.11 In the eld of NMR denoising, Wu et al.
proposed a deep neural network named DN-Unet in 2020,
specically designed to suppress noise in liquid-state NMR
spectra.12 In the eld of spectral assignment and structural
analysis, several notable advancements have also been made. In
2021, Li et al. introduced DEEP Picker, a deep neural network
(DNN)-based approach for peak picking and spectral deconvo-
lution, which semi-automates the analysis of two-dimensional
NMR spectra.13 In 2022, Klukowski et al. presented ARTINA,
a deep learning-based method that delivers signal positions,
resonance assignments, and structures without human inter-
vention, using only NMR spectra and the protein sequence as
input.14 Building on this, in 2023, they introduced an integrative
Chem. Sci., 2024, 15, 20039–20044 | 20039
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approach combining ARTINA with AlphaFold and UCBShi,
enabling chemical shi assignment with reduced experimental
data and increased accuracy.15 And in the eld of improving
spectral quality, in 2023, Xiao et al. proposed a data post-
processing method, which uses a convolutional neural network
named RH-Unet to restore high quality spectra from distorted
ones that were acquired in inhomogeneous magnetic elds.16

Additionally, Yang et al. developed a neural network named AC-
ResNet and a loss function named SM-CDMANE to obtain high-
quality NMR spectra from low-quality pure shi NMR data
based on real-time ZS.17

In this study, a new neural network named spin echo to
obtain chemical shis network (SE2CSNet) is proposed to
process several spin echo spectra acquired with different echo
times, and obtain ultra-high resolution chemical shi resolved
1H NMR spectra without artifact interference. This method has
the same, or even higher sensitivity compared to conventional
1D pulse sequences, and thus can be used to analyze low
concentration samples, greatly outperforming current popular
pure shi techniques. During the preparation of the paper,
a similar idea18 appears on a preprint server.
Methods and materials

The architecture of SE2CSNet is shown in Fig. 1. The network is
based on the convolutional neural network and uses the
residual block structure of widely used ResNet.19 8 Spin echo
phase-changed spectra with different echo times are input into
SE2CSNet to obtain the chemical shi matrix. SE2CSNet
features down-sampling in the indirect dimension (H in Fig. 1)
and dimension-merging in the channel dimension (C in Fig. 1).
Through the down-sampling module, the input data with the
size of H in the indirect dimension are fused to correlate the
input eight spectra with each other, obtaining the data with the
size of one in the indirect dimension, and channels are
Fig. 1 The architecture of SE2CSNet. The data size is represented by C
× W × H, where W is the size in the direct dimension or the width of
the feature matrix, H is the size in the indirect dimension or the height
of the feature matrix, and C is the number of channels.

20040 | Chem. Sci., 2024, 15, 20039–20044
expanded from one to C to better preserve feature information.
Through the dimension-merging module, the feature vector
with the size of C is merged together into one in the channel
dimension to extract effective information, getting the desired
one-dimensional chemical shi resolved spectrum. In this
module, merging is performed in a step-by-step manner (Fig.-
S1b†) to reduce the channel size, which alleviates the problem
of misidentifying signal chemical shis and thus improves the
accuracy of the network model, and a SoMax activation func-
tion for making the feature sparser is employed in each step, as
shown in Fig. S1b.† This approach produces better results
compared with that from typical network design with merging
in one step and employing only one SoMax activation func-
tion, as shown in Fig. S3.†

The dataset of spin echo phase-changed spectra was simu-
lated to train SE2CSNet, consisting of 40 000 samples. The input
dataset can be obtained based on the spin evolution of the spin
echo pulse sequence, which is shown in Fig. S4.† In the spin
echo pulse sequence, the spin evolution formula of one signal
can be expressed as:

FIDðt1; t2Þ ¼ Aeðj2pft1Þeð�t1=T2Þ
Ynum

n¼1
cosðpJnt2Þpown (1)

where A, j, f, T2, num, J, and pow respectively represent ampli-
tude, imaginary unit, frequency, transverse relaxation time, the
number of 1H groups, J-coupling constant and the number of
coupled spins. The ranges of these parameters are shown in
Table S1.† t1 is the evolution time of chemical shi, and t2 is the
evolution time of transverse relaxation and J-coupling. The
range of t1 is 0∼ (np− 1)/SW, and the range of t2 is 2s∼ 2s + (np
− 1)/SW, where SW is spectral width, np is the number of
sampling points (xed at 4096), and 2s is the echo time.

The signals of different spins in a spin echo spectrum are
modulated by different J-couplings, resulting in different pha-
ses. Additionally, the same signals in different spin echo spectra
are inuenced by different echo times, leading to distinct
phases as well. Therefore, SE2CSNet can distinguish and detect
the signals of different spins based on the features of the
changed phases.

The label data is a one-dimensional signal matrix with 4096
points (the same length of the spin echo spectrum). In the
signal matrix, the central positions of the signals are set to 1
with their values as chemical shi, and other positions are set to
0. The labels not only provide a condence score but also
indicate the presence of a signal. A condence score of 1
suggests that there is a 100% certainty of a signal with this
specic chemical shi, while a score of 0 indicates that there is
a 0% certainty signal.

Mean Absolute Error (MAE) was used as the loss function
during the training process, and it is denoted as:

MAE ¼ 1=n
Xn

i¼1

jy� ŷj; (2)

where y and ŷ are the output of the model and the label,
respectively. The network outputs the condence of each point
aer training, and a decision threshold is applied to discard
low-condence predictions, resulting in the nal binary
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 1D NMR spectra of 50 mM estradiol dissolved in (methyl sulf-
oxide)-d6 (DMSO-d6) with a scan number of one. (a) The spin echo
spectrumwith an echo time of 0 s. (b) The confidence result produced
by SE2CSNet. (c) The output chemical shift spectra produced by
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spectrum (0 or 1). In this study, a decision threshold of 0.5 (the
F1 score is relatively high at this value) is used with how to
determine the threshold shown in the ESI,† meaning that
a condence score of 0.5 or higher indicates that the prediction
of the signal at that point is considered reliable, while a score
below 0.5 indicates that the prediction is not.

The structural details and training details of SE2CSNet
and more details of the simulated dataset are provided in the
ESI.†

To evaluate the performance of the trained SE2CSNet on
signal identication, 10 000 sets of simulated data were gener-
ated to compute the precision and recall. Precision is the ratio
of the number of true positives predicted by the network to the
total number of positives predicted by the network, as shown by
P of eqn (3). P, TP and FP are precision, the number of true
positives and the number of false positives, respectively.

P = TP/(TP + FP), (3)

Recall is the ratio of the number of true positives predicted
by the network to the total number of actual positives, as shown
by R of eqn (4). R, TP and FN are recall, the number of true
positives and the number of false negatives, respectively.

R = TP/(TP + FN), (4)

The F1 score is the harmonic mean of precision and recall
and offers a more comprehensive performance evaluation, as
shown by F1 of eqn (5). F1, P and R are the F1 score, precision
and recall, respectively.

F1 = 2 × (P × R)/(P + R), (5)

In the 10 000 simulated datasets, there are a total of 295 607
signals, including 2225 false positives and 278 094 true posi-
tives. The calculated precision is 99.21%, while the recall is
94.08%, resulting in an F1 score of 0.93. The high precision
indicates that SE2CSNet is highly reliable in predicting positive
signals, with very few false positives. However, although the
recall is slightly lower than the precision, it still demonstrates
that most signals are correctly identied, with only a few being
missed. This discrepancy could be attributed to the variability
or complexity of signal features in the simulated data. None-
theless, the high F1 score demonstrates that SE2CSNet achieves
a good balance between precision and recall, thereby showing
overall effective performance in signal detection.

In order to demonstrate the performance of SE2CSNet on
actual samples, samples of 50 mM estradiol, 1 mM a-asarone
(C12H16O3), the mixture of 3 mM ibuprofen (C13H18O2) and
2 mM inosine (C10H12N4O5), and 20 mM azithromycin
(C38H72N2O12) are used, and the results are shown in Fig. 2–5
respectively. All experimental data were acquired on a 500 MHz
Varian NMR spectrometer at 298 K. The FID undergoes manual
baseline correction and phase correction in VnmrJ soware. To
match the input dimensions for the network, the FID is zero-
lled to 4096 points or an integer multiple of 4096 (see the
ESI† for a detailed description of zero-lling).
© 2024 The Author(s). Published by the Royal Society of Chemistry
Results and discussion

SE2CSNet can accurately identify the chemical shi positions of
signals. 8 spin echo spectra of 50 mM estradiol (C18H24O2) are
shown in Fig. S5† and the processed results are shown in Fig. 2,
and chemical shis of all the signals are marked in the corre-
sponding spectra (Fig. 2b and c). By comparing chemical shi
values in the processed spectrum with those in the PSYCHE
spectrum as a reference, it can be found that the difference in
chemical shi values is always less than 0.005 ppm (it is noted
that the difference is very small and thus three signicant
gures are used). This shows that SE2CSNet can correctly
identify chemical shi positions with very high precision.

SE2CSNet can discern signals from strong noise, thus
enabling analysis of spectra from low concentration samples.
The processed results of 1 mM a-asarone (C12H16O3) are shown
in Fig. 3. It is worth noting that the signals in the 2 to 7 ppm
range are relatively weak. To better display these signals in the
spectrum, both the signal and noise were amplied to a greater
extent during the plotting process compared to other samples,
which results in a visually enhanced perception of noise. With
the PSYCHE spectrum of 30 mM a-asarone as a reference
(Fig. 3d), in the PSYCHE spectrum of 1 mM a-asarone (Fig. 3b),
weak signals are completely hidden in the noise (see the
expanded region), and their spectral information is lost. Even in
the spin echo spectrum with the echo time of 0 s (Fig. 3a),
equivalent to the spectrum acquired by a conventional 1D single
pulse, the signal in the expanded region is heavily disturbed by
noise. SE2CSNet can discern these weak signals from strong
noise and obtain correct chemical shi values of all signals.
Moreover, as shown in Fig. S6,† aer adding additional random
noise into the original spin echo spectrum, these weak signals
are completely overwhelmed in the noise, but SE2CSNet can still
correctly discern them. This shows that SE2CSNet has better
sensitivity than the conventional 1D pulse sequence, and thus
can deal with samples with low concentrations.
SE2CSNet. (d) The PSYCHE spectrum as a reference.

Chem. Sci., 2024, 15, 20039–20044 | 20041
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Fig. 4 1D NMR spectra of the mixture of ibuprofen and inosine dis-
solved in (methyl sulfoxide)-d6 (DMSO-d6) with a scan number of one.
(a) The spin echo spectrum of 3 mM ibuprofen and 2 mM inosine with
an echo time of 0 s. (b) The PSYCHE spectrumwith the same sample as
(a). (c) The confidence result produced by SE2CSNet. (d) The output
chemical shift spectra produced by SE2CSNet. (e) The PSYCHE
spectrum of the mixture with 9 mM ibuprofen and 6 mM inosine.
Representative regions are expanded. Blue arrows indicate represen-
tative signals and ‘*’ indicates strong coupling artifacts.

Fig. 3 1D NMR spectra of 1 mM (a, b, and d) and 30 mM a-asarone (e)
dissolved in chloroform-d (CDCl3) with a scan number of one. (a) The
spin echo spectrum with an echo time of 0 s. (b) The PSYCHE spec-
trum. (c) The confidence result produced by SE2CSNet. (d) The output
chemical shift spectra produced by SE2CSNet. (e) The PSYCHE
spectrum as a reference. Representative regions are expanded.
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SE2CSNet can discern overlapped signals, and thus
processes the spectra of relatively complex samples. The pro-
cessed results of the mixture of 3 mM ibuprofen (C13H18O2) and
2 mM inosine (C10H12N4O5) are shown in Fig. 4. In both
PSYCHE spectra of the low (Fig. 4b) and high (Fig. 4d)
concentration samples, there are strong coupling artifacts (a
strong coupling artifact in NMR refers to an incorrect or
misleading spectral feature that arises due to strong coupling
interactions between nuclear spins, which occurs when the J-
coupling between two or more nuclear spin systems is compa-
rable to or greater than their chemical shi differences. This
phenomenon can complicate the interpretation of NMR
spectra, especially in systems where multiple nuclei are closely
coupled) indicated by *, causing potential signal misidenti-
cation. SE2CSNet is free from the interference of the strong
coupling artifacts and correctly identies the real signal.20,21 In
the expanded region of the spin echo spectrum in Fig. 4a, two
multiplets (signal-i110 and signal-b9) are partially overlapped.
SE2CSNet still has the ability of correct identication of over-
lapped multiplets.

Azithromycin (C38H72N2O12) was used to test the capability of
SE2CSNet to process complex samples, as shown in Fig. 5. The
spectrum of azithromycin (Fig. 5a) has many signals, and severe
signal overlapping prevents correct identication of signals (see
expanded regions in Fig. 5a). Even in the PSYCHE spectrum of
the same sample (Fig. 5b), signals are still overlapped (see
expanded regions in Fig. 5b, signal-900, signal-400 and signal-23,
20042 | Chem. Sci., 2024, 15, 20039–20044
signal-25), leading to misidentication. SE2CSNet can distin-
guish these signals by comparing the difference of signal
related-phases in the spin echo phase-changed spectrum.
Therefore, the network model can correctly identify the chem-
ical shi position of these signals, despite coinciding almost
completely. It is noted that the chemical shis of signal-900 and
signal-25 vary with concentration (Fig. S7†), and the two over-
laps (see the two expanded regions) occur at the concentration
of 20 mM.

For multiplets with scalar coupling splitting, their phases do
vary with echo time. In contrast, singlets exhibit no apparent
phase change. However, this absence of phase change is also
recognized by SE2CSNet as a special case, allowing it to identify
singlets correctly.

One of the most important tasks in NMR spectral processing
is to discern weak signals from strong noise. In order to test the
limit of SE2CSNet to discern weak signals from noise, the
weakest signal-to-noise ratio (wS/N) is introduced, which is
dened as the height of the weakest signal in the spectrum
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 1D NMR spectra of 20mM (a, b, and d) and 40mM azithromycin
(e) dissolved in chloroform-d (CDCl3) with a scan number of one. (a)
The spin echo spectrum with an echo time of 0 s. (b) The PSYCHE
spectrum. (c) The confidence result produced by SE2CSNet. (d) The
output chemical shift spectra produced by SE2CSNet. (e) The PSYCHE
spectrum as a reference. Representative regions are expanded. Blue
arrows indicate representative signals.
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divided by the standard deviation of the noise region with no
signal. The testing result is shown in Fig. S8.† The result shows
that when wS/N is greater than 4, the network can stably discern
weak signals from noise.

In addition, it is also very important to accurately identify the
signal in the spectral region with severe signal overlapping for
NMR spectral processing. SE2CSNet can correctly distinguish
the chemical shis of overlapping signals by detecting the
phase variation even if overlaps are severe, as shown in Fig. S9†
(one case is two doublets with slightly different chemical shis
and the other is a singlet having the same chemical shi as that
of the splitting signals of a doublet). These results show that the
network has an excellent ability to identify overlapping signals
with very high accuracy.
© 2024 The Author(s). Published by the Royal Society of Chemistry
SE2CSNet was trained on spectra with only weak couplings.
However, the phase distortions were introduced in the simu-
lated spectra of the training dataset, making spectra resemble
those with strong couplings, and thus the network has a certain
ability to process spectra with strong coupling. To verify this,
simulated strong coupling signals with different a were gener-
ated, where a is the factor that accounts for roong effects
(referred to as the strong coupling factor, used to control the
degree of strong coupling). The evaluation results reveal that
when a is not larger than 0.74, SE2CSNet can correctly identify
the signals, as shown in Fig. S11.†

Besides, the network was also tested under other adverse
conditions including large one-bond J-coupling constants,
phase distortion, large line widths, and strong solvent signals.
For large one-bond J-coupling constants, the network can
accommodate J-coupling constants up to 24 Hz (Fig. S10†). As
for phase distortion, the critical values of r (the parameter that
determines the degree of phase distortion) are −1.59 radians
and 1.4 radians (Fig. S12†). Regarding large line widths, the
maximum line width that the network can accommodate is
22 Hz (Fig. S13†). For strong solvent signals (Fig. S14†), the
network can identify the signal when the ratio of the lowest
signal to the highest peak is not smaller than 0.1%.

Experimental data was used to evaluate the network's
performance under poor shimming and pulse miscalibrations.
As for poor shimming, the network was tested on the spectrum
of ibuprofen aer increasing the value of Z1 shimming coil by 80
and spectrum aer increasing the value of shimming coil Z2 by
150 compared to optimal shimming. As shown in Fig. S15,†
under the two conditions, SE2CSNet still retains the ability to
correctly identify the signal. For pulse miscalibrations, the
network was tested on the spectrum of ibuprofen which was
acquired using 80° and 160° pulses (Fig. S16a†), and using 140°
pulses and 280° pulses (Fig. S16b†) replacing 90° and 180°
pulses. As shown in Fig. S16,† SE2CSNet still retains the ability
to correctly identify the signal under non-optimal pulse ip
angles.

It is also one of the objectives of the NMR spectral processing
task to obtain spectra free from artifact interference, have
a smooth baseline and small line width. The network is free
from the interference of strong coupling artifacts, and obtains
the chemical shi information of real signals rather than arti-
facts. The chemical shi resolved spectra formed by these
correctly recognized signals are based on vertical lines with no
width. Therefore, although there is no signal intensity infor-
mation, the chemical shi information is of ultrahigh resolu-
tion, even higher than PSYCHE.

Saving time and cost is an important pursuit of NMR
methods. In this paper, it takes about 1 minute and 40 seconds
to obtain the PSYCHE spectrum with one average. It takes about
20 seconds to obtain spin echo spectra with one average, and
about 2 seconds to process the spectra. The total time of the
proposed method is much shorter than that of the PSYCHE
method.

The network outputs condence values that are mostly close
to 1 or close to 0. This is because the network is designed to
learn the signicant differences between signals and non-
Chem. Sci., 2024, 15, 20039–20044 | 20043

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sc04742g


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
N

ov
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 1

1/
22

/2
02

5 
1:

42
:4

1 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
signals in the spectra. Specically, the characteristics such as
phase in spin echo phase-changed spectra make it easy to
distinguish between signals and non-signals, allowing the
network to learn these features and make strong classication
decisions. The label design aligns with this goal (the central
positions of the signals are set to 1 with their values as chemical
shis, while other positions are set to 0). And thus the network
tends to generate “extreme” condence outputs, with values
close to 0 or 1, indicating precise judgments of signals or non-
signals.

Conclusions

In summary, we propose a neural network called SE2CSNet in
this study, designed for effectively extracting the positions of
spectral signals by leveraging crucial features in the spin echo
spectra, i.e. phase change. Notably, the acquisition of spin echo
phase-changed spectra is straightforward and time-efficient.
Aer passing through the network, the output spectra provide
accurate pure chemical shi information. Additionally, even
outside the parameter range of the training set, the network still
exhibits a certain level of signal identication ability, suggesting
the network's good generalization. The versatility of this
method allows it to handle diverse sample types, demonstrating
immense potential across various elds.

Code availability

The trained model and code for SE2CSNet are available at
https://github.com/LinYanqin/SE2CSNet.

Data availability

The experimental data of four samples that support the ndings
of this study are available at https://github.com/LinYanqin/
SE2CSNet.
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