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3D structure-basedmolecular generation is a successful application of generative AI in drug discovery. Most

earlier models follow an atom-wise paradigm, generating molecules with good docking scores but poor

molecular properties (like synthesizability and drugability). In contrast, fragment-wise generation offers

a promising alternative by assembling chemically viable fragments. However, the co-design of plausible

chemical and geometrical structures is still challenging, as evidenced by existing models. To address this,

we introduce the Deep Geometry Handling protocol, which decomposes the entire geometry into

multiple sets of geometric variables, looking beyond model architecture design. Drawing from a newly

defined six-category taxonomy, we propose FragGen, a novel hybrid strategy as the first geometry-

reliable, fragment-wise molecular generation method. FragGen significantly enhances both the

geometric quality and synthesizability of the generated molecules, overcoming major limitations of

previous models. Moreover, FragGen has been successfully applied in real-world scenarios, notably in

designing type II kinase inhibitors at the ∼nM level, establishing it as the first validated 3D fragment-

based drug design algorithm. We believe that this concept-algorithm-application cycle will not only

inspire researchers working on other geometry-centric tasks to move beyond architecture designs but

also provide a solid example of how generative AI can be customized for drug design.
Introduction

Despite the emergence of a plethora of novel modalities in the
past decade, designing druggable molecules that target func-
tional proteins remains the most effective treatment option.
Empowered by the rapid advancement of articial intelligence
(AI)-aided drug design (AIDD),1 our ability to discover suitable
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19465
organic-molecule-based drug candidates has been dramatically
enhanced. The ambitious endeavor of computer-aided drug
discovery primarily bifurcates into two streams: virtual
screening, which involves siing through existing molecular
libraries,2 and molecular generation, which entails craing
molecules from scratch.3 The former, essentially a classication
task, has seen signicant development over the past decade in
the AI landscape, exemplied by advancements in scoring
functions.4 On the other hand, the latter has been synergized
with the language and graph generation methods, leading to
SMILES-based5 and graph-based molecular generation models,6

bringing in fresh computational perspectives to drug discovery.
Despite the progress in AIDD, the absence of any AI-designed
drugs passing regulatory approval highlights the formidable
challenge of data-driven drug design. A key issue is data spar-
sity, a domain-specic obstacle that does not severely affect
other elds like image or language processing where extensive
data is available. In drug discovery, limited datasets are
common due to the high costs and complexity of drug devel-
opment, condentiality in pharmaceutical research, and the
vastly complex functioning principles of biological systems.7

Data scarcity restricts the potential and applicability of many
advanced AI models that have previously been proven success-
ful in data-rich environments. Thus, external assistance,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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particularly in the form of physical constraints, becomes crucial
to mitigate this intrinsic challenge by introducing prior
knowledge to restrain the solution space. The rapid develop-
ment and impressive performance of AlphaFold8 and other
structure-related models9 underscore the efficacy of this
approach. Concurrently, there is a growing emphasis on
structure-based methodologies in both virtual screening and
molecular generation, opening up new frontiers and challenges,
such as binding conformation prediction10 and pocket-aware
molecular generation.11

In the realm of 3D pocket-aware molecular generation,
recent years have witnessed the emergence of many promising
models like LiGAN,12 Pkt2Mol,13 DiffBP,14 ResGen,15 etc., which
have manifested varying degrees of success in generating
potentially superior ligands with a lower binding energy (as
estimated by docking scores) than the reference ligands.
However, a closer inspection on the generated ligands, partic-
ularly before any post-processing, reveals two critical limita-
tions of most existing models. Firstly, the generated molecular
conformations oen appear distorted, which is noted in the
outputs of GraphBP16 and DiffBP (Fig. 1). Secondly, there is
a tendency to produce molecules with multi-fused rings to ll
the cavity of protein pockets, which is observed in the outputs of
Pkt2Mol and ResGen (Fig. 1). While these generated structures
may induce stronger interactions with protein pockets, they
either look physically implausible or the complex structure
poses signicant challenges in synthesis and oen results in
toxic properties, thus actually distancing them from ideal drug
candidates. Fragment-wise molecular generation offers a solu-
tion by assembling a molecule from synthesizable fragments as
basic elements, as illustrated in previous Reinforcement-
Learning-based methods such as DeepFMPO.17 However, the
only existing generative implementation of this approach, i.e.,
FLAG,18 encounters signicant challenges with geometry
Fig. 1 Visualized molecules generated by different methods. All models

© 2024 The Author(s). Published by the Royal Society of Chemistry
handling as illustrated in Fig. 1. The error in each fragment
generation step accumulates, ultimately causing the collapse of
the molecular structure. Therefore, there is a pressing need for
a reliable fragment-wise deep generative model in structure-
based drug design (SBDD).

Rendering smooth geometries is a central focus of the
computational study of physical reality, not just for 3D molec-
ular generation but across almost all geometry-centric applica-
tion domains. For instance, in molecular conformation
generation, researchers19 have adopted the distance-then-
geometry protocol rst to generate distance matrices and then
deduce Cartesian coordinates by optimizing randomly initial-
ized conformations under the distance constraint. However, the
non-uniqueness in mapping under-specied distance matrices
to Cartesian coordinates oen introduces additional errors,
leading to geometric distortions. Subsequent research20,21 has
explored force-eld optimization or end-to-end Cartesian coor-
dinate prediction to enhance a deep learning model's capability
to generate accurate geometry. In addition to efforts on the
direct generations of plausible molecular conformations, deep
learning has also concurrently made signicant advancements
on the front of molecular docking. Early models, such as
TANKBind,22 extended the idea of distance-then-geometry
protocol to protein–ligand binding conformation prediction.
However, the incorporation of protein nodes into these models
introduced a formidable challenge: a signicant increase in
redundant degrees of freedom, which led to unsatisfactory
geometries. Then researchers delved into the end-to-end solu-
tions, directly predicting the Cartesian coordinates, as pio-
neered by EquiBind.23 KarmaDock24 further advanced this
protocol by employing a recycling mechanism, emulating the
classical geometry optimization, and nally raising the
successful rate of docking by about 50%. Yet, all these methods
still struggle with the generation of unrealistic local structures,
are performed without force-field optimization.

Chem. Sci., 2024, 15, 19452–19465 | 19453

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc04620j


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
O

ct
ob

er
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

/1
4/

20
26

 9
:0

0:
12

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
such as non-coplanar aromatic rings and excessively long
chemical bonds, necessitating post-processing steps like
geometry optimization or alignment corrections. DiffDock25

represents a different technical approach, focusing on tuning
constrained variables like overall translation, orientation, and
torsion angles in order to simplify the morphing of molecular
conformations. DiffDock's idea works well as it improves the
state of geometric plausibility of deep-learning-based genera-
tions, though its generated ligands may still encounter clashes
with protein pocket residues.

The challenges in correctly handling geometry with deep
learning models are twofold: the inherent symmetries in
geometric variables (illustrated in Fig. 2A) and in which way the
geometry is constructed. The rst aspect, symmetry consider-
ations, like SE(3)-invariance/equivariance, has been thoroughly
addressed. Many works have concentrated on enhancing the
feature extraction capability of models while enforcing adher-
ence to the necessary equivariance or invariance principles. For
example, the transformation of Cartesian coordinates should
comply with roto-translational equivariance, which is mathe-
matically expressed as Rf(X) + t = f(Rx + t), where R and t
represents the rotation matrix and translation vector, respec-
tively, f denotes the neural network function. However, the
Fig. 2 (A) Illustration of symmetry requirements for various geometric v
(C). Workflow of our proposed combined geometry handling protoc
generation.

19454 | Chem. Sci., 2024, 15, 19452–19465
second aspect, the high-level geometric handling protocol, has
not received as much attention compared to the development of
symmetry-focused architectural designs, as exemplied by
models such as EGNN,26 SchNet,27 and Geodesic-GNN.28 While
computational scientists, (when rst entering into a new eld
such as drug design) would tend to tinkle with model archi-
tectures in order to attain better performance under the existing
practices (for instance, a given geometric protocol), it is crucial
to recognize that the protocol itself should also be re-assessed if
a substantial breakthrough is the goal. The selected protocol
sets the performance boundary of a model and signicantly
dictate the outcome. Therefore, we advocate that a thorough
review and re-thinking of existing geometric handling protocols
are imperative.

In light of these observations, we rst review and summarize
six protocols that could be used in 3D molecular generation,
highlighting their respective challenges and discussing their
usages in other molecular geometry-centric problems, like
molecular conformation generation and docking problems.
Building on this foundation, we propose a hybrid approach that
employs multiple protocols and effectively draws upon the
unique strength of each one to achieve an optimal performance
in 3D molecular generation, as highlighted in Fig. 2C. This
ariables. (B) Structure-aware and fragment-wise molecular generation
ol, which is specifically designed for 3D fragment-wise molecular

© 2024 The Author(s). Published by the Royal Society of Chemistry
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novel strategy led to the development of the rst geometry-
reliable and fragment-wise molecular deep generation, Frag-
Gen as presented in Fig. 2B. It achieves state-of-the-art perfor-
mance in our reported experiments and validates our argument
on the need to re-formulate the geometry handling protocol.
Furthermore, we grounded our algorithmic development into
real-world drug design campaigns, successfully designing
potent type II inhibitors (75.9 nM) targeting the leukocyte
receptor tyrosine kinase. To our best knowledge, this is the rst
successful application of 3D fragment-based molecular gener-
ation methods. This concept-algorithm-application work not
only serves as a SOTA drug design tool but also enriches the
discourse on geometric handling protocols, complementing
symmetric neural network design and offering a blueprint for
model development for other geometry-related elds.
Results and discussions
Analysis of geometry handling protocols

The continuing advancement of structural predictions for
various biomolecules, exemplied by AlphaFold, has drawn the
AI community's attention onto structure-based drug design,
where accurately modeling molecular geometry plays a pivotal
role in estimating drug–target interactions. In this context, we
meticulously examine six universal geometry handling proto-
cols, as depicted in Fig. 3, underscoring the unique challenges
each of them encounters in the context of pocket-aware 3D
molecular design.

The Internal Coordinate protocol, which initially determines
four atomic orders before predicting bond lengths, angles, and
dihedral angles, oen leads to distorted molecular conforma-
tions. This protocol is adopted by the GraphBP method (Fig. 3),
whose errors have been found to predominantly arise from
incorrect determination of the initial topological order, which is
inherently difficult to determine within protein pockets. Unlike
structure-free models like G-SphereNet,29 where topological
orders naturally follow generation trajectories in the ligand-only
scenarios, the application of Internal Coordinate protocol in
pocket-aware context struggles in the more complex environ-
ments, such as the protein pockets. In contrast, the Cartesian
coordinate approach, which involves probabilistic learning
directly on 3D coordinates, lacks local structural constraints.
This oen results in the accumulation of errors at each atomic
position, leading to implausible geometries, such as non-
coplanar rings or benzene rings with unequal bond lengths
(Fig. 3). This challenge is prevalent in diffusion model-based
methods like DiffBP and DiffSBDD,30 which generate mole-
cules in one shot. The Relative Vector protocol, predicting
coordinate vector differences between atoms, appears more
robust. Ensuring that the predicted 3D vector satises SE(3)-
equivariance, this method effectively connes the degrees of
freedom to bond lengths, thereby minimizing the impact of
prediction errors on overall geometry. Methods like Pocket2Mol
and ResGen, which employ this protocol, have achieved more
rational generation of conformations. However, they still face
challenges, particularly in generating multi-fused ring
© 2024 The Author(s). Published by the Royal Society of Chemistry
molecules that, while favoring stronger protein pocket interac-
tions, are complex and difficult to synthesize.

The GeomGNN approach, utilized in KarmaDock, leverages
equivariant graph neural networks to learn atomic forces, fol-
lowed by a coarse coordinate update (xi = xi−1 + Fi). This
protocol benets from straightforward training and inference,
as it avoids complex transitions between different coordinate
descriptions. Our implementation in the 3D molecular gener-
ation problem, resulting in FragGen-GNN, demonstrates this
advantage. However, it also exhibits limitations in achieving
precise atom localization. GeomOPT, a classical method for
determining next atom or fragment coordinates, theoretically
avoids local structure implausibility through force-eld inter-
actions involving bond angles and dihedrals. Despite its
potential, this protocol faces signicant limitations, including
lengthy optimization times and a tendency for structures to
become trapped in local minima, leading to twisted molecular
structures, as shown in Fig. 3. Distance Geometry, another
recognized approach used by models in conformation genera-
tion, such as ConfGF31 and SDEGen,20 circumvents equivariance
demands in neural network design by modeling interatomic
distances. This reduces model construction complexity but
suffers from an overabundance of degrees of freedom, making
it impossible to uniquely determine 3D coordinates from
a distance matrix. Consequently, even with a perfectly predicted
distance matrix, accurate reconstruction of original Cartesian
coordinates remains elusive, oen resulting in distorted
conformations, as seen with the FLAG method (Fig. 3).

While ongoing advancements in model architecture design
strive for improved performance, they do not directly address
the inherent challenges of each geometry protocol summarized
above. Recognizing this lack of algorithmic development on an
equally important issue that contributes to the overall quality of
generated conformations, this work sets out to improve the
existing protocol and propose a combined strategy which inte-
grates insights emerged from our systematic investigation on
the pros and cons of each existing protocol.

More specically, the combined strategy works as follows.
We rst utilize the Relative Vector protocol for sub-pocket
detection, determining suitable locations for subsequent frag-
ment assembly. Upon predicting the next fragment type, its
geometry is decomposed into local conformation, rotation
around a point (connected atom), and rotation around an axis
(connected bond). Traditional methods and deep learning
approaches generally perform well for local fragment geome-
tries. For rotations around a point, we apply hybrid orbital
theory constraints,32 such as the consistent bond angles in
standard SP3 hybridization (e.g., 109.5° in methane), to guide
the molecular assembly with chemical initialization founded on
rigorous theoretical insights. Finally, for rotation around an
axis, we directly predict dihedral angles using von Mises loss,
more details can be found in method part. This decoupling of
complex fragment-wise generation geometry has led to an
effective solution, with subsequent experiments providing
strong validation of our approach.
Chem. Sci., 2024, 15, 19452–19465 | 19455
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Fig. 3 This figure presents a comparative illustration of workflows, challenges, objectives, and implementations across different geometry
handling protocols. The ‘example’ column focuses on applications within the field of 3D molecular generation, while the ‘other models' column
spans a broader range of geometry-centric topics. Key abbreviations include MG: Molecular Generation (without structures), S-MG: Structure-
based Molecular Generation, CG: Conformation Generation (without structures), and S-CG: Structure-based Conformation Generation (also
known as Docking).
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Performance of FragGen on the CrossDock benchmark

Leveraging our novel geometry handling protocol, we developed
FragGen, a structure-based, fragment-wise molecular genera-
tion method. Its efficacy was rigorously tested using the widely
recognized CrossDock dataset,33 a benchmark in previous atom-
wise molecular generation research.12–16 The evaluation
involved calculating the Vina Score with AutoDock Vina34 to
gauge the ligand's binding affinity to its target protein. The Hit
19456 | Chem. Sci., 2024, 15, 19452–19465
Pocket refers to the ratio of binding pockets where a molecular
generation method produces molecules that bind tighter than
a reference molecule. Additionally, other critical metrics are
also included, such as the Quantitative Estimation of Drug-
likeness (QED),35 Synthetic Accessibility (SA),36 Lipinski's Rule
of Five,37 and the octanol–water partition coefficient (Log P), to
characterize the properties of the molecules generated. Notably,
SA emerged as a crucial metric in contrasting atom-wise and
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 The mean binding energies and drug-like properties for Top1/5 molecules

Test set GraphBP DiffBP Pocket2Mol ResGen FLAG FragGen

Top1
Vina score (Y) −7.158 −9.332 −9.237 −9.247 −9.622 −8.954 −9.926
Hit pocket — 87.07% 9.42% 92.10% 93.15% 87.14% 96.15%
QED ([) 0.531 0.560 0.479 0.562 0.536 0.552 0.541
SA ([) 0.730 0.464 0.411 0.341 0.307 0.565 0.740
Lipinski ([) 4.684 4.821 4.734 4.921 4.958 4.955 4.871
Log P 0.947 1.552 0.452 0.8249 1.891 0.746 0.154

Top5
Vina score (Y) −7.158 −8.515 −8.723 −8.924 −9.343 −8.188 −9.654
QED ([) 0.531 0.563 0.492 0.571 0.546 0.522 0.573
SA ([) 0.730 0.478 0.433 0.346 0.316 0.582 0.717
Lipinski ([) 4.684 4.776 4.788 4.931 4.953 4.975 4.859
Log P 0.947 1.430 0.457 0.758 1.646 0.451 1.273
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fragment-wise methodologies, with the latter typically yielding
higher SA due to the assembly of existing commercial frag-
ments. Our baseline models included four atom-wise molecular
generation approaches (GraphBP, DiffBP, Pkt2Mol, and Res-
Gen) and one fragment-wise model FLAG, the only open-source
model of its kind. The performance metrics for each model are
detailed in Table 1.

From the results in Table 1, FragGen outperforms other
methods in Vina Score, ranking as follows: FragGen > ResGen >
Pkt2Mol > GraphBP > DiffBP > FLAG. FragGen leads with a Vina
Score 2.5 kcal mol−1 higher than the test set average, translating
to over 100-fold increase in binding affinity based on the ther-
modynamic principles.15 This signicant boost in binding
potency is almost enough to elevate a ligand from mM IC50

to nM IC50. Furthermore, FragGen excels in generating high-
quality ligands with superior chemical and geometric struc-
tures. As illustrated in Fig. 1, atom-wise methods like GraphBP
and DiffBP oen yield distorted molecular geometries, with
some GraphBP-generated molecules even straying out of the
target pockets. These awed geometries stem from the limita-
tions of the Internal coordinate and Cartesian coordinate
protocols, where the latter necessitates predened topological
atomic orders, and the former lacks local structural constraints
to guide the generative process. In contrast, ResGen and
Pkt2Mol, employing the Relative Vector protocol, achieve more
accurate and visually rational molecular geometries. FLAG and
FragGen, both fragment-wise approaches, turn out to give
outputs that sits on opposite ends of the Vina Score spectrum
(FLAG: ∼−8.9 vs. FragGen: ∼−9.9), a testament to their geom-
etry handling capabilities. FLAG, based on Distance Geometry,
oen struggles with ill-structured molecules due to the chal-
lenges in mapping an extensive number of pairwise distances to
Cartesian coordinates. Conversely, FragGen employs a sophis-
ticated geometry handling approach, decomposed into four
geometric variables and effectively managed through a blend of
chemical knowledge and end-to-end learning. To be more
specic, the four geometric components in FragGen are Cavity
detection, Bond linking, Chemical initialization, and Dihedral
© 2024 The Author(s). Published by the Royal Society of Chemistry
handling, which are comprehensively explained in the Method
section.

Regarding molecular properties, FragGen achieves the
highest scores in QED and SA on the Top-5 results, under-
scoring the chemical viability of its generated molecules. These
impressive results stem from two key factors: the inherent
nature of the fragment-wise protocol and the advantages of
a robust geometry handling approach. The fragment-wise
protocol inherently guarantees better synthesizability, as it
typically decomposes molecules into a set of existing fragments,
also explaining FLAG's relatively high SA score. In contrast,
atom-wise methods like Pkt2Mol and ResGen oen generate
molecules that completely ll the cavity of protein pockets,
resulting in lower QED and SA scores. This tendency has
contributed to the hesitancy among medicinal chemists to
integrate previous molecular generation methods into their
workows. In summary, the advancements of FragGen in terms
of Vina Score, QED, and SA indicate that geometric accuracy
plays a crucial role in enhancing chemical plausibility, as the
geometry of the current molecular state inuences the structure
of the subsequent fragment. For real-world applications, Frag-
Gen also establishes it as a valuable tool in drug discovery,
particularly for generating easily synthesizable samples.
Performance of FragGen on well-studied pharmaceutical
targets

To demonstrate FragGen's applicability in real-world scenarios,
we evaluated its performance on several well-studied pharma-
ceutical targets. These targets, with well-characterized active
sites and numerous experimentally discovered inhibitors,
provide a suitable testing ground. Unlike the CrossDock
benchmark, this experiment included two additional molecule
sets: active (experimentally validated molecules serving as
positive controls) and random (randomly selected chemical
moieties from the GEOM-Drug set,38 serving as negative
controls). The Vina Score and molecular properties, akin to
those used in the CrossDock experiment, are detailed in Table
S1.† Fig. 4A illustrates the binding potency distribution of
Chem. Sci., 2024, 15, 19452–19465 | 19457
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Fig. 4 (A) Distribution of binding potency (Vina Score) for FragGen and its counterpart across three well-studied targets. (B) Comparative
visualization of the top 5 molecules in terms of binding potency, highlighting differences between the atom-wise (ResGen) and fragment-wise
(FragGen) approaches.
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FragGen-generated molecules (in orange) in comparison to the
fragment-based counterpart, FLAG (in green). Notably, Frag-
Gen's distribution aligns more closely with the Active mole-
cules, while FLAG aligns with the random set. This result again
highlights the advantage of a rational geometry protocol in
fragment-wise molecular generation, where accurate geome-
tries lead to a better energy match with the binding protein.

From Table S1,† it is evident that ResGen, a state-of-the-art
(SOTA) atom-wise molecular generation method, scores highly
in terms of binding potency on targets like AKT1 and CDK2,
with FragGen closely following. Despite this, we assert Frag-
Gen's superiority, as illustrated in Fig. 4B. While ResGen's top-
generated molecules exhibit strong binding potency, they
compromise on synthesizability and drugability. In contrast,
FragGen's molecules not only achieve comparable binding
potency to the top-Active molecules (with a marginal ∼0.4 kcal-
mol−1 difference) but also maintain the highest chemical
accessibility, making them more favorable for chemists. This is
19458 | Chem. Sci., 2024, 15, 19452–19465
further supported by the SA comparison in Table S1,† where
FragGen outperforms other models.
Applying FragGen to design type II inhibitors of LTK with wet-
lab validations

Kinases, essential enzymes in cellular signaling, play a critical
role in various physiological processes, including cell growth,
differentiation, and metabolism. As a result, numerous kinase
inhibitors have been developed and approved for the treatment
of diseases such as cancer, cardiovascular disorders, and
inammation.39 Traditional kinase inhibitors, known as type I
inhibitors, target the ATP-binding sites in the active confor-
mations of kinases, offering therapeutic benets but facing
limitations in selectivity and resistance issues. In contrast, type
II inhibitors, like sorafenib, target an additional allosteric site,
the DFG-out pocket, potentially enablingmore selective and less
toxic treatments.40 Despite the advantages of type II inhibitors,
existing computational tools, such as quantitative structure–
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 (A) Structures of the three synthesized compounds designed by FragGen and their inhibitory activity (IC50) against Ba/F3-CLIP1-LTK cells.
(B) The binding conformation of Darma-1 in LTK DFG-out model. (C) 3D protein–ligand interactions analyzed by PLIP.47 (D) 2D visualization of
protein–ligand interactions, where the green represents hydrophobic interaction and the blue denotes hydrogen bond interaction.
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activity relationship (QSAR) and docking screening,41,42 fall
short in designing potent molecules beyond the known chem-
ical space, limiting the scope of discovering novel therapeutic
agents. Therefore, the current molecular generation methods
are ideal for lling this gap.

We chose the LTK as the validation system, a promising
kinase target for treating non-small cell lung cancer according
to the recent study.43 This choice differs from previous retro-
spective studies, not only because it was validated through wet
experiments rather than a controversial docking metric, but
also because it is a novel target with few inhibitors designed for
it. Inspired by the historical drug development of PDGFRb
target, which designs type II inhibitors based on the type I
framework,44 we developed an AI-powered structure-based
workow using FragGen. Specically, we rst built the LTK
DFG-out homology model based on the anaplastic lymphoma
kinase (ALK)45 protein, owing to their high sequence similarity.
Then we docked a previously reported type I inhibitor46 of ALK
into the LTK model, aiming to anchor the molecule at the
pocket I region by retaining the head hinge-binding moiety.
Starting with the anchored structure, FragGen was utilized to
explore the chemical space targeting type II pocket. Within 10
minutes, FragGen proposed 97 chemical candidates. Subse-
quently, four ltering criteria were applied to narrow down the
candidates: (1) number of hydrogen donors <5; (2) number of
© 2024 The Author(s). Published by the Royal Society of Chemistry
hydrogen acceptors <10; (3) 2 < Log P < 5; (4) and number of
rotatable bonds <10. Out of this group, 10 molecules satised
these conditions. Among them, three were chosen for further
investigation based on synthesis feasibility as recommended by
organic chemists (Fig. 5A). Details on the synthetic routes and
molecular characterization are provided in the ESI.† Bioassays
demonstrated high affinities for LTK, with Darma-1 exhibiting
notable potency at 75.4 nM. The other two candidates showed
affinities of 52.4 mM and 2.56 mM, respectively, highlighting
FragGen's ligand design capability within protein pockets. The
successful design of potent type II inhibitors may be attributed
to FragGen's sophisticated handling of geometries. To illustrate
this point, we analyzed the binding mode of the directly
generated Darma-1 compound in Fig. 5B–D. It is evident that
the generated compound forms comprehensive physical inter-
action with the type II pocket, like three hydrogen bonds with
the ASP-155, LYS-35, and GLU-52 residues. Molecular genera-
tion models would lose practical utility if the generated geom-
etries are not as reasonable as those proposed by FragGen no
matter how promising the docking metric/ADMET metric they
score: improper conformations will disrupt the interaction
between proteins and ligands, diminishing the credibility of the
generated samples.
Chem. Sci., 2024, 15, 19452–19465 | 19459
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Fig. 6 (A). Visualization depicting the positions of generated and optimized geometries within the energy landscape. (B–D). Three case studies
showcasing Relax E and OptRMSD metrics, each illustrating distinct scenarios encountered in FLAG, FragGen, and ResGen.

Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
O

ct
ob

er
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

/1
4/

20
26

 9
:0

0:
12

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Geometric plausibility of generated molecules

In the realm of 3D molecular generation, many models rely on
resort to geometry optimization to rectify distortions in gener-
ated molecules, essentially obscuring the limitations of deep
learning methods in co-designing molecules with accurate
geometries. Recognizing that previous experiments have only
been able to indirectly and qualitatively address these geometric
challenges, we introduce two novel metrics to gain a more
detailed and quantitative assessment: relaxation energy (Relax
E) and optimized root mean square deviation (OptRMSD).
Specically, the generated molecules undergo force eld opti-
mization, then the energy released and RMSD between the
directly generated and optimized molecules are calculated, as
shown in Fig. 6A.

Table 2 presents the results for Relax E and OptRMSD.
Notably, in the realm of OptRMSD, certain models exhibit
superior performance. However, it is crucial to acknowledge
that OptRMSD inherently exhibits a preference for multi-ring
structures. This is due to the fact that larger aromatic
systems, with their more rigid frameworks, are less prone to
conformational alterations, a phenomenon illustrated in
Fig. 6D. Consequently, the lower OptRMSD scores observed in
models like ResGen and Pkt2Mol, which are predisposed to
Table 2 The results of OptRMSD and Relax E across different methods

Case GraphBP DiffBP Pkt2

OptRMSD 1.359 1.158 0.49
�0.722 �2.378 �0.

Relax E −83.22 −100.9 −46
�288.5 �235.1 �40

19460 | Chem. Sci., 2024, 15, 19452–19465
generating multi-ring molecules, align with expectations. In
contrast, FragGen distinguishes itself by achieving an OptRMSD
score below 1 Å, underscoring its prociency in creating struc-
turally coherent molecules. When considering Relax E, a metric
less biased towards multi-ring structures, a different picture
emerges. Multi-ring structures, as shown in Fig. 6C and D, tend
to release more energy following force-eld optimization, even
when they exhibit similar OptRMSD values to simpler mole-
cules. In this context, FragGen again demonstrates superior
performance, effectively aligning with our earlier assessments
of its geometric accuracy. Conversely, the fragment-wise
method FLAG, along with models like DiffBP and GraphBP
that are prone to generating distorted conformations, give less
favorable results in this metric.

OptRMSD is RMSD(Ri,Re), and Relax E is Ee − Ei, where Ri,-
Re,Ei,Ee denote the initial and ending conformations and
energy, respectively.

Ablation study of geometry handling protocols in FragGen

In the 3D molecular generation task, four of the six protocols
in Fig. 3, Internal Coordinate, Cartesian Coordinate, Relative
Vector, and Distance Geometry, have been instantiated by
works like GraphBP, DiffBP, ResGen, and FLAG, respectively.
Mol ResGen FLAG FragGen

9 0.465 1.379 0.878
404 �0.319 �0.855 �1.010
.76 −54.33 −387.1 −40.26
.05 �45.21 �481.9 �71.45

© 2024 The Author(s). Published by the Royal Society of Chemistry
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In addition to these, we have integrated the GeomGNN and
GeomOPT protocols into FragGen, creating two more versions
of FragGen thereby providing a comprehensive analysis of
each protocol within the context of 3D molecular generation.
The results of this ablation within FragGen are detailed in
Table S2.†

Table S2† reveals that molecules generated using the
GeomGNN protocol exhibit the highest binding propensity.
However, this favorable binding tendency comes at a cost to
their synthesizability, which is approximately 24% lower
compared to the other protocols. This reduction in synthesiz-
ability can be attributed to the compromise in local structural
rationality while the model attempts to ll the protein pocket
cavity (as depicted in Fig. S1A†) without explicitly considering
the overall synthetic feasibility of the molecules. On the other
hand, the GeomOPT approach shows a marked improvement in
synthesizability, but the molecules generated under this
protocol demonstrate a reduced binding tendency. This is
primarily due to the geometric conformations becoming trap-
ped in local minima within the protein structure during the
generation process, leading to suboptimal molecule–protein
interactions, as illustrated in Fig. S1A.† The Combined Strategy,
which synergizes the physical constraints and the strengths of
both Relative Vector and Internal Coordinates, emerges as
a robust approach. It not only facilitates realistic molecule
generation but also ensures a potent binding affinity to target
proteins. The molecules produced under this strategy not only
exhibit a higher binding tendency, outperforming all baseline
methods (both atom-level and fragment-level) as shown in
Table 1, but also demonstrate the highest level of synthesiz-
ability among all the protocols. This underscores the effective-
ness and rationality of the molecular structures generated
through this comprehensive protocol.

Conclusion

In this study, we aimed to address the frequently encountered
issues of implausible chemical and geometric structures
generated by many 3D molecular generative models. This
journey began with a meticulous identication and analysis of
six geometry handling protocols, each with its unique
strengths and shortcomings. Aer acquiring the insights on
the problems associated with existing approaches, we
proposed developed FragGen, a hybrid strategy tailored for
structure-based fragment-wise molecular generation. Experi-
ments across the recognized benchmark and pharmaceuti-
cally relevant targets demonstrate that FragGen-generated
molecules exhibit the highest binding potency (as estimated
with docking scores) and synthesizability, meeting the prac-
tical demands of real-world drug discovery efforts. Our
detailed geometric analysis and ablation study demonstrate
that FragGen effectively coordinates the intricate interplay
between molecular geometry and protein pocket structure,
highlighting the crucial role of our proposed hybrid strategy in
combining various geometry handling techniques to achieve
FragGen's remarkable success. Finally, we successfully
employed FragGen to design potent LTK type II inhibitors,
© 2024 The Author(s). Published by the Royal Society of Chemistry
showcasing its practical utility and completing the nal step
in the concept-algorithm-application chain. In summary, by
integrating insights from different geometry handling proto-
cols and tailoring them to the specic needs of fragment-wise
molecular generation, FragGen has proven to be a robust tool
for structure-based drug design. We believe the next step to
advance FragGen is to realize objective optimization func-
tionality. Specically, utilizing a Reinforcement Learning
approach could steer FragGen towards generating molecules
that are more efficacious according to predened objective
functions.

Methods
Protein–ligand interaction learning module

To fully perceive the protein–ligand interaction, we rst
construct the protein–ligand graph and then apply the
geometric message passing framework to them. This framework
is described in the following formula:�

n
0
pi
;~n

0
pi

�
¼ Emb

�
npi;~npi

�
;�

n
0
l;~nli

0
�
¼ Emb

�
nli;~npi

�
;�

hi; hi
!� ¼ GeomEncoder

�
nli; npi;~nli;~npi; eij;~eij

�
:

where np and nl denote the node features of proteins and
ligands; ! signies the vector features; eij is the edge features
between nodes i and j; hi refers to the hidden features of the
protein–ligand graph. Emb is the embedding layer, which maps
the raw features of protein and ligand to the corresponding
spaces with the same dimension. GeomEncoder is composed of
several interaction layers based on geometric equivariant
networks. The detailed architectures of Emb and GeomEncoder
can be found in Part 1, ESI.†

Frontier prediction

To autoregressively generate the subsequent fragment, it is
crucial to predict the frontier atom within the existing ligands.
Notably, at the initial stage, there are no ligand atoms present,
so the frontier is chosen from among the protein atoms. The
probability of selecting the frontier from either ligand atoms or
protein atoms can be simplied and represented as follows:�

nf i; nf i
�!� ¼ f

�
SLf1ðhiÞ;VLf1

�
hi
!��

;

pf i ¼ s
�
SLf3

�
k nfi
�!k

2
þ f
�
SLf2

�
nf i
����

:

where pfi is the focal probability of node i; s is the sigmoid
function; SL and VL denote scalar layers and vector layers,48

respectively. nfi; nfi
�! are intermediate scalar and vector features.

Cavity detection

Once the frontier has been established, the next step is to
predict the cavity where the subsequent fragment can be opti-
mally positioned. This prediction of the next cavity is
Chem. Sci., 2024, 15, 19452–19465 | 19461
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accomplished using a mixture density network, which is
implemented as follows:�

ri; ri
!� ¼ GVPr

�
SLx1ðhiÞ;VLx1

�
hi
!��

;�
wi;wi

!� ¼ GVPw

�
SLx2ðhiÞ;VLx2

�
hi
!��

;�
Si;Si

!� ¼ GVPS

�
SLx3ðhiÞ;VLx3

�
hi
!��

;

xi
!¼ xai

�!þ
XK
k¼1

wi
k ri
!k

:

where ri
! is the predicted relative vector, wi and Si are the factor

and variance of the i-th component of the mixture Gaussian
density, respectively, xai

�! is the coordinate of the focal atom,
and xi

! is the detected cavity coordinate. GVP is the geometric
vector perceptron,49 which can be found in Part 1, ESI.†

Fragment query

Once the next cavity is identied, we can begin to search for
suitable fragments that can be placed within it. It is important
that the placement adheres to the principles of geometry and
energy matching, which requires a thorough understanding of
the local cavity environment. To achieve this, we gather detailed
information about the cavity. This data is then integrated with
the frontier features to facilitate an informed query for the
appropriate fragment placement:

ymij
;~ymij

¼ GeomMessage

�
hi; hi

!
; eij; eij

!
�
;

yhi;~yhi ¼
Xj

k¼1

�
ymik

;~ymik

�
;

pyi ¼ s
�
SLt2

�
k~yhik2 þ f

�
SLt1

�
yhi
����

:

where ymij;~ymij
are the message between i, cavity node, and j, the

K nearest neighborhoods of node i. yhi;~yhi are clustered type
hidden features on the cavity node i, and pyi is the probability of
the next fragment type. GeomMessage is the message block that
makes cavity node i blended with its pocket environment.

Attachment selection

The key difference between atom-wise and fragment-wise
generation lies in the uncertainty associated with selecting
the appropriate atom within a predicted fragment for
connection and determining its subsequent geometry.
Methods like FLAG addresses this challenge by pre-storing
fragments with annotated connection points. While effective,
this approach signicantly increases the size of the fragment
database and lacks elegance. In contrast, FragGen directly
addresses this challenge using a Graph Attention Network
(GAT),50 a two-dimensional approach, to extract chemical
information from the upcoming fragment. Additionally,
a geometric network is applied to the frontier node to gather
geometric information, such as the inuence of existing
19462 | Chem. Sci., 2024, 15, 19452–19465
molecular states and their interaction with protein pockets on
the selection of the attachment point. This innovative
approach is operationalized as follows:

hai;
~hai ¼ GVPatta

�
hi; hi

!�
;

h
0
f j
¼ GAT

�
hfj; efj

�
;

yemb
cr ; yemb

nx ¼ Embedðycr; ynxÞ;

h
0
aj
¼
�
h
0
f j
kyemb

cr kyemb
nx khai

�
;

paj ¼ s
�
MLP

�
h
0
aj

��
:

where hai;~hai are the hidden features of i-th node's connected
atom, i.e., focal atom; and h

0
fj are the hidden feature of next

fragment's atom j; hfj,efj are atom and edge features within the
next fragment, respectively; ycr,ynx are the current and next
fragment types, respectively, and yemb

cr , yemb
nx are their corre-

sponding embeddings; h
0
aj is the concatenated feature of j-th

atom in next fragment, and ‖ is the concatenate operation;
and paj is the probability of the attachment of j-th node in the
next fragment.
Bond linking

Aer identifying the next attachment atom, the subsequent
variable to predict is the covalent bond. While many molecular
generation methods, such as DiffSBDD, determine bonding
relationships using empirical rules, FragGen takes a direct
prediction approach that is both valence- and geometry-aware.
The reason for incorporating geometric considerations is that
the local pocket environment may favor certain types of inter-
actions, such as the formation of p–p stacking interactions. At
the same time, valence constraints guide bond prediction,
ensuring that the cumulative valence from forming bonds does
not exceed the valence capacity determined by the valence states
of the two connected atoms. These principles are operational-
ized as follows:

hbi;
~hbi ¼ GVPbond

�
hi; hi

!�
;

hdij; hnx ¼ MLP
�
dij; nnx

�
;

yemb
cr ; yemb

nx ¼ Embedðycr; ynxÞ;
hvalen ¼ MLPðvalencrkvalennxÞ;
pbij ¼ s

�
MLP

�
hbihdijkyemb

cr kyemb
nx khvalen

��
:

where hbi;~hbi are the features of bonded atom, i.e., focal atom;
dij is the distance between focal node i and cavity node j; nnx is
the bonded atom of next fragment; valencr and valennx are
valence of current and next bonded atoms, respectively; hvalen is
the concatenated feature of valence information; and the pbij

is
the probability of bond type between the current and next
bonded atoms i and j.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Chemical initialization

As mentioned earlier, the geometry of the next fragment can be
divided into four components. For the local geometries and
rotation around the point, the former can be effectively ach-
ieved by the DL approach or a classical approach, as exemplied
in the SDEGen,20 and the latter benets from an end-to-end
approach. In our novel approach, we integrate knowledge
from hybrid orbital theory, which has been instrumental in
elucidating molecular conformations, into our prediction
process. To illustrate this, consider a methane fragment; it
naturally adopts a tetrahedral structure, thereby xing the
& doublehyphen; 230pt

�
htori ; htori

�!� ¼ GeomEncoder
�
nl; np;~nl;~np; ell;pp;pl~ell;pp;pl

�
;

& doublehyphen; 335pthmol ¼
XN
i¼1

htori ;

& doublehyphen; 282ptq ¼ MLPðhakhbkhmolÞ;

Rðu; qÞ ¼

2
6664

cosðqÞ þ ux
2ð1� cosðqÞÞ uxuyð1� cosðqÞÞ � uzsinðqÞ uxuzð1� cosðqÞÞ þ uysinðqÞ

uyuxð1� cosðqÞÞ þ uzsinðqÞ cosðqÞ þ uy
2ð1� cosðqÞÞ uyuzð1� cosðqÞÞ � uxsinðqÞ

uzuzð1� cosðqÞÞ � uysinðqÞ uzuyð1� cosðqÞÞ þ uxsinðqÞ cosðqÞ þ uz
2ð1� cosðqÞÞ

3
7775;

& doublehyphen; 324ptr
00
f ¼ Rðu; qÞr0f :
rotation around the point. When predicting the conformation
of such a fragment, we rst identify its connection to the
existing molecule via a predicted bond. This involves dening
a vector from the focal atom to the next attachment point (the
to-be-aligned vector) and another from the focal atom to
a designated pocket node (the target vector). We then compute
a rotation matrix that aligns these vectors. This matrix is
applied to rotate the fragment's conformation, initially set in
a vacuum, to establish the initial geometry of the next fragment.
The computation of this matrix proceeds as follows:

anorm ¼ a

jjajj

bnorm ¼ b

jjbjj
v ¼ anorm � bnorm

c ¼ anorm$bnorm

½v�x ¼

2
66664

0 �vz vy

vz 0 �vx
�vy vx 0

3
77775

Rab ¼ I þ ½v�x þ ½v�x2
1

1þ c

r
0
f ¼ Rabrf

where a and b are to-be-aligned and the target vectors, respec-
tively, Rab is the rotation matrix from vector a to b, rf is the
© 2024 The Author(s). Published by the Royal Society of Chemistry
fragment conformation generated in vacuum, and r
0
f is the

initialized fragment conformation.
Dihedral handling

For the next geometric variable, rotation around an axis, we
employ a direct prediction method. This approach leverages
both the geometric information of the connected atoms and the
global characteristics of the ligands. The primary objective is to
minimize the overall energy while simultaneously avoiding
spatial clashes. The process of handling dihedral angles is
executed as follows:
where nl; np;~nl;~np; ell;pp;pl;~ell;pp;pl are the node and edge features
of ligand and protein, ll,pp,pl denotes edge within ligands,
within proteins, and between them, respectively; hmol is the
summation of ligand features; ha and hb are the features of
current and next bonded atom, respectively, i.e., focal atom and
the next attachment atom; q is the predicted dihedral angle;
R(u,q) is the rotation around the predicted bond vector (ra − rb);
r
0
f is the initialized fragment conformation; and r

00
f is the nal

predicted fragment conformation.

Loss function

The total loss function is:

L ¼ �1

n

 Xn
i¼1

fi$log pf i þ ð1� fiÞ$log
�
1� pf

�!

� 1

m

 Xm
i¼1

aj$log paj þ
�
1� aj

�
$log

�
1� paj

�!

�log
XK
k¼1

wi
ðkÞN

�
xi

ðkÞ þ rai;Si
ðkÞ�

�
Xn
i¼1

yilog pyi �
Xn
j¼1

bij log pbij

�log
�
ek cosðq�mÞ

2pI0ðkÞ
�
:

where fi and pfi are the frontier atom label and prediction,
respectively, and n is the total number of the existing ligand/
protein atoms; aj and paj are the attachment atom label and
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preiction, respectively, and m is the number of the next frag-
ment atoms; xi

(k), wi
(k), Si

(k) are the k-th component of the
relative vector, coefficient, and variance in the cavity detection
module, respectively, and K is the number of components; yi
and pyi are predicted fragment label and prediction, respec-
tively; bij and pbij

are predicted bond label and prediction,
respectively. The nal term is the von-mises loss, aiming to
evaluate how close are two angles. In this loss, m and q are
dihedral angle label and prediction, respectively, k is the
concentration parameter, a higher value means a more peaked
distribution, and the I0 is the modied Bessel function of
order 0.
Cell culture

Ba/F3 cells (ACC 300) were purchased from DSMZ, and 293T
cells (SCSP-502) were purchased from National Collection of
Authenticated Cell Cultures. Ba/F3 cells are cultured in
RPMI M Medium 1640 (U21-279b, YOBIBIO) with 10% FBS
(F8318, Sigma-Aldrich) and 10 ng ml−1 IL-3(90143ES10, Yea-
sen). 293T cells are cultured in DMEM (U21-265B, YOBIBIO)
with 10% FBS. All growth media are supplemented with 1%
Penicillin–Streptomycin–Glutamine (10378016, Gibco). Cell
cultures are maintained in culture asks in 5% CO2 atmo-
sphere at 37 °C.
Transformation of Ba/F3-CLIP1-LTK cell line

pMD2.G (DB00002) and pCMVR 8.74 (P4872) were purchased
from Miaoling Biology. CLIP1-LTK fusion genes are generated
based on cDNAs of human-derived CLIP1 and LTK genes using
pLV vector. The full-length plv-CLIP1-LTK plasmids were con-
structed and packaged by VectorBuilder. 293T cells are co-
transfected with pLV-CLIP1-LTK, pMD2.G and pCMVR 8.74 to
produce retrovirus particles. The viral supernatants are
collected and concentrated following the instructions of Lenti-X
Concentrator (631231, Takara). Ba/F3 cells are subsequently
transfected with the virus and selected with 2 mg ml−1 puro-
mycin to obtain Ba/F3-CLIP1-LTK cell line.
Ba/F3-CLIP1-LTK activity assay

1 × 104 Ba/F3-CLIP1-LTK cells are seeded in 96-well plates with
RPMI-1640 and treated with gradient concentrations of interest
compounds for 48 h. Aerward, 10 mL of 5 mg ml−1 MTT
solution is added into each well and the cells are further incu-
bated for another 4 h. Then, 100 mL of triplex 10% SDS-0.1%
HCl-PBS solution is added to dissolve the formazan deposited
on the bottom of the plates, and the plates are then further
retained in an incubator overnight. The absorbance at 570 nm is
measured with the reference wavelength at 650 nm using
a Synergy H1 microplate reader (BioTek).
Data availability

The data and source code of this study is freely available at
GitHub (https://github.com/HaotianZhangAI4Science/FragGen)
to allow replication of the results.
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17 N. Ståhl, G. Falkman, A. Karlsson, G. Mathiason and
J. Boström, J. Chem. Inf. Model., 2019, 59, 3166–3176.

18 Z. Zhang, Y. Min, S. Zheng and Q. Liu, presented in part at
the, The Eleventh International Conference on Learning
Representations, 2022.

19 G. N. Simm and J. M. Hernández-Lobato, arXiv, 2019,
preprint, arXiv:1909.11459, DOI: 10.48550/arXiv.1909.11459.

20 H. Zhang, S. Li, J. Zhang, Z. Wang, J. Wang, D. Jiang, Z. Bian,
Y. Zhang, Y. Deng and J. Song, Chem. Sci., 2023, 14, 1557–
1568.

21 J. Zhu, Y. Xia, C. Liu, L. Wu, S. Xie, T. Wang, Y. Wang,
W. Zhou, T. Qin and H. Li, arXiv, 2022, preprint,
arXiv:2202.01356, DOI: 10.48550/arXiv.2202.01356.

22 W. Lu, Q. Wu, J. Zhang, J. Rao, C. Li and S. Zheng, Adv.
Neural Inf. Process. Syst., 2022, 35, 7236–7249.

23 H. Stärk, O. Ganea, L. Pattanaik, R. Barzilay and T. Jaakkola,
presented in part at the, International Conference on Machine
Learning, 2022.

24 X. Zhang, O. Zhang, C. Shen, W. Qu, S. Chen, H. Cao,
Y. Kang, Z. Wang, E. Wang and J. Zhang, Nat. Comput. Sci.,
2023, 3, 789–804.

25 G. Corso, B. Jing, R. Barzilay and T. Jaakkola, presented in
part at the, International Conference on Learning
Representations (ICLR 2023), 2023.

26 V. G. Satorras, E. Hoogeboom and M. Welling, presented in
part at the, International Conference on Machine Learning,
2021.

27 K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko
and K.-R. Müller, J. Chem. Phys., 2018, 148, 241722.

28 O. Zhang, T. Wang, G. Weng, D. Jiang, N. Wang, X. Wang,
H. Zhao, J. Wu, E. Wang and G. Chen, Nat. Comput. Sci.,
2023, 3, 849–859.

29 Y. Luo and S. Ji, presented in part at the, International
Conference on Learning Representations, 2021.
© 2024 The Author(s). Published by the Royal Society of Chemistry
30 A. Schneuing, Y. Du, C. Harris, A. Jamasb, I. Igashov, W. Du,
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