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of Chemistry We propose excess Gibbs free energy graph neural networks (GE-GNNSs) for predicting composition-

dependent activity coefficients of binary mixtures. The GE-GNN architecture ensures thermodynamic
consistency by predicting the molar excess Gibbs free energy and using thermodynamic relations to
obtain activity coefficients. As these are differential, automatic differentiation is applied to learn the

activity coefficients in an end-to-end manner. Since the architecture is based on fundamental
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1 Introduction

Machine learning (ML) has shown great potential for predicting
activity coefficients of binary mixtures which are highly relevant
for modeling the nonideal behavior of molecules in mixtures,
e.g., in separation processes. Various ML models such as
transformers,* graph neural networks (GNNs),>” and matrix
completion methods (MCMs)*® have been used to predict
activity coefficients, exploring different representations of
mixtures as strings, graphs, or matrices. These ML models have
reached high prediction accuracy beyond well-established
thermodynamic models, c¢f. ref. 1,3,8,9, but typically lack ther-
modynamic consistency.

To include thermodynamic insights, ML has been combined
with thermodynamic models in a hybrid fashion, e.g., in ref.
10-14. Hybrid ML models promise higher predictive quality and
model interpretability with less required training data. For
activity coefficients, ML has been joined with thermodynamic
models such as NRTL" and UNIFAC,"* c¢f ref. 3,9,17. Since
thermodynamic models are associated with theoretical
assumptions and corresponding limitations, the resulting
hybrid models, however, also exhibit predictive limitations.

We thus recently proposed a physics-informed approach by
using thermodynamic consistency equations in model
training." Physics-informed ML uses algebraic and differential
relations to the prediction targets in the model architecture and
training, and has already been utilized in molecular and
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materials property prediction, c¢f. ref. 19-22. Specifically for
activity coefficients, we added the differential relationship with
respect to the composition of the Gibbs-Duhem equation to the
loss function of neural network training - in addition to the
prediction loss. Due to the high similarities to physics-informed
neural networks,**** we referred to this type of models as Gibbs—
Duhem-informed neural networks. The Gibbs-Duhem-
informed GNNs and MCMs achieved high prediction accuracy
and significantly increased the Gibbs-Duhem consistency of
the predictions, compared to models trained on the prediction
loss only. However, this approach learns thermodynamic
consistency in the form of a regularization term (also referred to
as soft constraint) during training. It therefore requires tuning
an additional parameter, i.e., weighting factor for the regulari-
zation, and does not ensure consistency.

Herein, we propose to instead use thermodynamic differ-
ential relationships directly in the activity coefficient prediction
step. That is, the output of the ML model is the excess Gibbs free
energy, a fundamental thermodynamic property. We then
utilize its relationship to the activity coefficients in binary
mixtures for making predictions, thereby imposing thermody-
namic consistency. Using differential relations to the Gibbs or
Helmbholtz free energy has already been used in previous studies
to develop equations of states with ANNs. For example, Rose-
nberger et al.*® and Chaparro & Miiller* trained ANNS to predict
the Helmholtz free energy with first- and second-order deriva-
tives related to thermophysical properties, such as intensive
entropies and heat capacities, by applying automatic differen-
tiation. They could thereby provide thermodynamics-consistent
property predictions. However, so far only properties of
Lennard-Jones fluids and Mie particles have been considered by
using corresponding descriptors, e.g., well depth and attractive/
repulsive potentials, as input parameters to an ANN.?*?* To
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cover a diverse set of molecules, we propose to combine ther-
modynamic differential relations with GNNs. We also extend
previous approaches to mixture properties. As a prime example,
we combine differential relations of the excess Gibbs free energy
with GNNs to predict activity coefficients of a wide spectrum of
binary mixtures. During the review process of the current
article, Specht et al*® proposed a similar approach; more
precisely, they utilize the excess Gibbs free energy for activity
coefficient prediction with transformer models based on
molecular SMILES. Here, we focus on graph-based molecular
ML. We call our models excess Gibbs free energy (GE)-GNNs.

2 Methods & modeling

The general architecture of our GE-GNNGs is illustrated in Fig. 1.
The architecture is inspired by the SoOlvGNN model proposed by
Qin et al.,* which we also used for our Gibbs-Duhem-informed
GNNs.'®

2.1 Excess Gibbs free energy graph neural networks

The GE-GNN takes molecular graphs as input and first learns
molecular vector representations, i.e., molecular fingerprints, in
graph convolutions and a pooling step; for details see overviews
in ref. 26-31. Then, a mixture graph is constructed with the
components being nodes (here two nodes) that have the
molecular fingerprints as node feature vectors.**** An addi-
tional graph convolutional layer is applied on the mixture graph
to capture molecular interactions, resulting in updated molec-
ular fingerprints. We concatenate the compositions to these
fingerprints and apply single layer perceptron (SLP) with
a subsequent pooling step, yielding a vector representation of
the mixture, referred to as mixture fingerprint. Lastly, an MLP
takes the mixture fingerprint as input and predicts the molar
excess Gibbs free energy.

To obtain activity coefficient predictions, we utilize differ-
ential thermodynamic relationships. Specifically, we use the

Molecular graph Molecule embedding

:

~ 3
[=>
I~ 7

[o}
| —
N

A
-T2

Mixture embedding

View Article Online

Chemical Science

relationship of the activity coefficient in binary mixtures to the
molar excess Gibbs free energy (for details see Appendix):

E d(g®/RT
g (g°/RT)

RT dn (12)

In(y,) =

g° d(g"/RT)

In(y,) = 2= +x v (1b)

RT

Given eqn (1a) and (1b), we use g*/RT as the prediction target,
corresponding to the output node of the GNN, from which we
then calculate the binary activity coefficients. The first term of
the equations corresponds to the output node, while the second
part, ie., the differential term, can be calculated by using
automatic differentiation of the GNN with respect to the
compositions. Then, the deviations between the predictions
and the (experimental/simulated) activity coefficient data are
used in the loss function. Note that since we only consider the
activity coefficients at constant temperature (298.15 K), Rand T
have constant values and are not considered as additional
inputs. So the model is not sensitive to R and T, and predicting
2%/RT translates to predicting g%. As the Gibbs free energy is
a fundamental property, the derived eqn (1a) and (1b) for the
activity coefficients are thermodynamically consistent. It is
trivial to check that they satisfy for instance the Gibbs-Duhem
equation.

To obtain a continuously differentiable prediction curve of
the activity coefficient over the composition, which is necessary
for thermodynamic consistency, we apply the smooth activation
function softplus for the SLP and the MLP. We use softplus as it
has been shown to be effective for molecular modeling by
Schiitt et al** and in our previous work." Other smooth acti-
vation functions could also be used, such as SiLU, for which we
found similar performance to softplus. In contrast, using ReLU
in the SLP/MLP can cause the model to stop learning in early
epochs, resulting in very inaccurate predictions, which is
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Fig. 1 Model structure and loss function of our excess Gibbs free energy graph neural network (GE-GNN) for predicting composition-

dependent activity coefficients.
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presumably due to the non-smoothness of ReLU. For more
details on the effect of the activation function, we refer the
interested reader to our previous work."®

2.2 Mixture permutation invariance

To ensure permutation invariance with respect to the molecular
inputs, we express all equations in terms of x; (i.e., X, =1 — x;
and dx; = —dx,) and apply a mean pooling step, in contrast to
simply concatenating the two molecular fingerprints, for
obtaining the mixture fingerprint. Changing the input order,
e.g., ethanol/water vs. water/ethanol, thus results in the same
activity coefficient predictions for the respective components.
We note that the compositions could also be concatenated to
the molecular fingerprints before entering the mixture GNN
model for modeling molecular interactions, without using an
additional SLP to capture the composition dependency. This
requires using smooth activation functions (e.g., softplus) in the
GNN part to obtain a continuously differentiable activity coef-
ficient curve (c¢f ref. 18). However, we found this alternative
architecture to result in lower prediction performance and
higher computational cost, as we have to compute the gradients
with respect to the compositions through graph convolution
layers, ¢f. our previous work."®

2.3 Training and evaluation

For training and evaluation, we use the composition-dependent
activity coefficient data generated with COSMO-RS**** by Qin
et al.* The data set contains 280 000 activity coefficients that
correspond to 40 000 binary mixtures based on the combination
of 700 different compounds at seven different compositions,
specifically {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1}, with 0 and 1 denoting
infinite dilution. Analogously to our previous work,' we use
different data split types:

In the comp-inter split, activity coefficients at random
compositions are excluded for some but not all mixtures, thus
testing whether the model learns the composition-dependency
of the activity coefficients.

For the comp-extra split, we exclude activity coefficients at
specific compositions for all binary mixtures from training and
use those for testing, e.g., {0.1, 0.9}. This allows us to assess the
generalization capabilities to unseen compositions.

In the mixt-extra split, some binary mixtures are completely
excluded from training and the corresponding molecules only
occur in other combinations. The excluded mixtures are then
used for testing, thereby allowing to evaluate the generalization
capabilities to new combinations of molecules.

For comp-inter and mixt-extra, we use a 5-fold stratified split
based on polarity features to ensure that all polarity combina-
tions are present in both the training and test sets, analogous to
previous studies,**® whereas for comp-extra all compositions
are excluded from training in the respective split. The respective
test sets are then used to assess the prediction quality and
thermodynamic consistency.

For the predictive quality, we use the root mean squared
error (RMSE), the mean absolute error (MAE), and coefficient of
determination (R®) of the predictions and the data. For the
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thermodynamic consistency, we consider the deviation from
the Gibbs-Duhem (GD) differential equation (¢f Appendix) in
the form of the RMSE, ie., referred to as GD-RMSE.*® The GD-
RMSE is evaluated at the compositions of the test data set,
i.e., GD-RMSE., and at external compositions for which
activity coefficient data are not readily available and are thus not
used in training, referred to as GD-RMSE{x,. Specifically, the
external compositions are based on 0.05 steps outside the test
set, i.e., Xfest € {0.05, 0.15, 0.2, 0.25, 0.35, 0.4, 0.45, 0.55, 0.6,
0.65, 0.75, 0.8, 0.85, 0.95}. In figures, we further consider the
MAE for the Gibbs-Duhem differential equation and the molar
excess Gibbs free energy.

We provide the code for the model and data splitting as
open-source in ref. 35. To ensure comparability to previous
models, we use the same model and training hyperparameters
as in our previous work."®

3 Results & discussion

Table 1 shows the prediction accuracy and Gibbs-Duhem
consistency for different ML models evaluated on the comp-
inter and mixt-extra splits. The SolvGNN by Qin et al.* directly
predicts activity coefficients; the model is trained on the
prediction loss only, i.e., the deviation between predictions and
activity coefficient data, without using thermodynamic rela-
tions. The GDI-GNN, GDI-GNN .p, and GDI-MCM models are
different ML models from our previous work® that also directly
predict the activity coefficients and use the Gibbs-Duhem
equation as a regularization term in the loss function during
training, thereby learning but not imposing thermodynamic
consistency. The GDI model training is additionally enhanced
by using a data augmentation strategy, that is, the deviation
from the Gibbs-Duhem differential relationships at random
compositions (not only at the compositions for which activity
coefficients are available for training) is also considered in
training, so that the models can learn thermodynamic consis-
tency over the whole composition range. We compare these
models to the GE-GNN proposed in this work.

The results show that the GE-GNN model outperforms the
other models by achieving a higher prediction accuracy based
on the RMSE of 0.068 on the comp-inter test set. The GE-GNN
further imposes Gibbs-Duhem consistency, i.e., exhibits a GD-
RMSE.. and a GD-RMSE(Y, of 0. For the mixt-extra sets, the
GDI-GNN shows the highest prediction accuracy in terms of the
RMSE of 0.105, whereas the GE-GNN exhibits a slightly worse
RMSE of 0.114, but thermodynamic
consistency.

To further analyze the prediction accuracy, we show the
distribution of the absolute prediction errors on the comp-inter
(a) and mixt-extra (b) splits, respectively, for the two best per-
forming models according to the average prediction RMSE,
namely the GDI-GNN and the GE-GNN, in Fig. 2. The error
distribution for all models is provided in the Appendix. For the
comp-inter split, shown in Fig. 2(a), we find the GE-GNN to have
a higher fraction of low prediction errors, that is, 91.0% of the
errors are below 0.05 (vs. 85.2% by the GDI-GNN). This is also
reflected in a lower MAE of 0.020 and higher R* of 0.993

indeed preserves

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table1 Comparison of prediction accuracy and Gibbs—Duhem consistency for comp-inter and mixt-extra data splits using different machine

learning models. Bold print indicates the best performance

Comp-inter Mixt-extra
Model RMSE; s GD-RMSE; ¢ GD-RMSESS, RMSE; ¢ GD-RMSE, GD-RMSES,
“SolvGNN* 0.088 0.212 0.298 0.114 0.206 0.311
GDI-GNN*® 0.081 0.032 0.038 0.105 0.040 0.038
GDI-GNN 1 p'° 0.083 0.028 0.025 0.113 0.035 0.030
GDI-MCM*® 0.088 0.034 0.035 0.120 0.039 0.036
GE-GNN (this work) 0.068 0.000 0.000 0.114 0.000 0.000

“ Model was reevaluated in ref. 18.

compared to a MAE of 0.028 and an R” of 0.990 by the GDI-GNN,
highlighting the superior prediction accuracy of the GE-GNN for
the comp-inter split. For the error distribution of the mixt-extra
split, illustrated in Fig. 2(b), we observe that the GE-GNN has
a slightly higher fraction of low prediction errors compared to
the GDI-GNN, i.e., 84.2% vs. 82.9% of the errors are below 0.05.
The MAEs for both models are on par, whereas the lower RMSE
of the GDI-GNN is also reflected in a slightly higher R?, which
originates from a slightly lower fraction of outliers compared to
the GE-GNN; 1% vs. 1.15% of the predictions have errors greater
than 0.34, respectively. For the mixt-extra split, we thus overall
find similar prediction accuracy.

Imposing thermodynamic consistency with respect to the
composition therefore seems to have a positive effect on the
prediction accuracy for predicting activity coefficients at new
compositions, as tested with the comp-inter split. When
generalizing to new mixtures (mixt-extra), the structural char-
acteristics of the molecules learned by the GNNs are presumably
more important, so that the exact Gibbs-Duhem consistency of
the GE-GNN does not result in a significant advantage over the
learned consistency by the GDI-GNN in terms of the prediction
accuracy. Here, the GE-GNN preserves the high level of accuracy
and additionally guarantees thermodynamic consistency.

We further show the GE-GNN's activity coefficient predic-
tions, the corresponding gradients with respect to the compo-
sition, the molar excess Gibbs free energy, and the vapor-liquid-

40.0% 1 GDI-GNN:

MAE = 0.028, RMSE = 0.081, R? = 0.990
GE-GNN:
MAE = 0.020, RMSE = 0.068, R? = 0.993

35.0% 1

30.0% 1

*last bar indicates values > 0.25
25.0%
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20.0% 1

Fracti

15.0%

10.0% -
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0.0%- . : , -
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Absolute prediction error

(a) comp-inter

equilibrium (VLE) plots at 298 K for some exemplary mixtures in
Fig. 3. We took the same exemplary mixtures as in our previous
work on GDI-GNNs (¢f ref. 18) to ensure comparability and
reflect different nonideal behaviors in binary mixtures, hence
different activity coefficient curves. The VLEs are obtained using
Raoult's law and the Antoine equation with parameters from the
National Institute of Standards and Technology (NIST) Chem-
istry webbook36 based on the work by Qin et al and
Contreras.**

We observe accurate predictions of the activity coefficients
that are consistent with the Gibbs-Duhem equation for all
mixtures. In particular, for systems (1)—-(3) and (6), the predicted
activity coefficients match the COSMO-RS data very accurately,
which is also reflected in an accurate fit of the molar excess
Gibbs free energy. For systems (4) and (5), i.e., chloroform/
acetone and ethanol/water, the infinite dilution activity coeffi-
cients for the second component (x; — 1) show some devia-
tions. For these systems, we also find slight deviations in the
activity coefficient predictions at intermediate compositions,
which leads to an underestimation of the molar excess Gibbs
free energies in both cases. Yet, the general trend in the activity
coefficient and corresponding molar excess Gibbs free energies
curves is well captured. Furthermore, we observe thermody-
namically consistent and smooth VLE plots for all systems,
which we have shown to be problematic when ML models are

trained only on activity coefficients without using
. GDI-GNN:
40.0% 1 MAE = 0.034, RMSE = 0.105, R? = 0.984
GE-GNN:
o |
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Fig. 2 Absolute prediction errors of the GDI-GNN and GE-GNN are illustrated in histograms for the comp-inter (a) and mixt-extra (b) splits.

Outlier thresholds are based on the top 1% of the highest errors.
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Fig. 3 Activity coefficient predictions, their corresponding gradients with respect to the composition with the associated Gibbs—Duhem
deviations, the molar excess Gibbs free energy, and vapor—-liquid equilibria for exemplary mixtures by the GE-GNN. The predictions are averaged

from the five model runs of the comp-inter split, i.e., an ensemble.

thermodynamic insights, cf. ref. 18. The GE-GNNs are therefore
able to capture various nonideal behaviors in the exemplary
mixtures with thermodynamic consistency and provide overall
highly accurate predictions.

In addition, we report the prediction accuracy and thermo-
dynamic consistency for the comp-extra set in Table 2, where we
exclude specific compositions for all mixtures from the training
set and use them for testing (¢f. Section 2). We note that this

18508 | Chem. Sci, 2024, 15, 18504-18512

scenario is rather artificial and aims to test the generalization
capabilities in an extreme case. In practice, experimental data
for these compositions are readily available. We compare the
GE-GNN with the same models as for the comp-inter and mixt-
extra splits.

We observe again that the GE-GNN, being thermodynami-
cally consistent, outperforms the other models in terms of the
GD-RMSE.. For the accuracy of the predictions, RMSE g, we

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Comparison of prediction accuracy and Gibbs—Duhem consistency for the comp-extra split, i.e., specific compositions excluded from
training and used for testing (first row), using different machine learning models. Bold print indicates the best performance®

Excl. x; € {0.5} Excl. x; € {0.3, 0.7} Excl. x; € {0.1, 0.9} Excl. x; € {0, 1}
Model RMSE;.st  GD-RMSE.s  RMSE.q  GD-RMSEws  RMSEwst  GD-RMSEst  RMSEws  GD-RMSEs
SolvGNN* 0.067 0.453 0.180 1.532 0.302 0.715 0.514 0.101
GDI-GNN'® 0.040 0.030 0.064 0.034 0.075 0.044 0.374 0.026
GDI-GNN 1 p'® 0.039 0.021 0.065 0.028 0.087 0.032 0.332 0.044
GDI-MCM*® 0.043 0.039 0.067 0.042 0.094 0.036 0.342 0.051
GE-GNN (this work) 0.026 0.000 0.054 0.000 0.085 0.000 0.504 0.000

“ Model was reevaluated in ref. 18.
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Fig. 4 Activity coefficient predictions, their corresponding gradients with respect to the composition with the associated Gibbs—Duhem
deviations, the molar excess Gibbs free energy, and vapor-liquid equilibria for the exemplary mixture of (a) 1-propanol/formic acid and (b)
ethanol/benzene by the GDI-GNN,u_p (top) and GE-GNN (bottom).
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see competitive performance of the GE-GNN for intermediate
compositions. For x; = 0.5 and x; € {0.3, 0.7}, the GE-GNN shows
superior accuracy; for x; € {0.1, 0.9}, the GDI-GNN performs
slightly better. In the case of infinite dilution activity coeffi-
cients (x; € {0, 1}), the GE-GNN is outperformed by the GDI
models.

To further investigate the lower accuracy of the GE-GNN for
infinite dilution activity coefficients, we show two examples of
ethanol/benzene and 1-propanol/formic acid of the comp-extra
set for both the GDI-GNN,ypp and the GE-GNN in Fig. 4.
Notably, the slopes of activity coefficients curves predicted by
GDI-GNN i p continue for x; — {0, 1}. In contrast, the GE-GNN
exhibits rather drastic changes in the gradients with respect to
compositions in these regions, hence not continuing the slope.
We explain this by the fact that the GE-GNN is not trained for
these compositions at all and thus cannot interpolate as for
intermediate compositions, hence is not sensitive in these
regions of extrapolation. The GDI-GNN,; p is trained on Gibbs—
Duhem consistency for the whole composition range, i.e., [0, 1],
without using any additional activity coefficient data. Thereby,
the model seems to learn that having less abrupt variations in
the gradients is a way to promote consistency. For binary
mixtures, where the infinite dilution activity coefficients can be
approximated by a continuation of the nonideal behavior, as for
ethanol/benzene, the GDI models yield more accurate predic-
tions. But when binary mixtures exhibit changes in the non-
ideal behavior for x; — {0, 1}, as here 1-propanol/formic acid,
both approaches fail to capture these changes, which is ex-
pected since they are not trained for these compositions.
Therefore, the higher predictive accuracy of the GDI models is
presumably due to the fraction of binary mixtures for which the
infinite dilution activity coefficients can be approximated by the
continuation of the nonideal behavior. As in practice infinite
dilution activity coefficients would indeed be utilized for
training and it is also possible to include additional data for x; =
1 with v; = 1, i.e., In(y;) = 0, the GNNs can learn this non-ideal
behavior. Here, it would rather be interesting to extend neural
network architectures, including GNNs, to impose this defini-
tion of the activity coefficient at x; = 1, as was recently proposed
by Specht et al.*®

4 Conclusion

We propose to combine GNNs with thermodynamic differential
relationships between properties for binary activity coefficient
prediction to ensure thermodynamic consistency. That is, our
GE-GNN predicts the excess Gibbs free energy and utilizes the
relationship to activity coefficients via automatic differentiation
during model training, enabling end-to-end learning of activity
coefficients. By using a fundamental property as the model
output, we do not impose any thermodynamic modeling limi-
tations or assumptions, as opposed to previously proposed ML
methods. We further do not need to learn thermodynamic
consistency during training, as in physics-informed neural
network approaches, which require tuning weighting factors for
regularization and do not ensure consistency. Our results show
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that the GE-GNNs achieve high prediction accuracy and by
design exhibit Gibbs-Duhem consistency.

Incorporating additional thermodynamic insights by means
of constraining the neural network architecture, e.g., v; = 1 for
x; =1 as in ref. 25, should be addressed in future work. It would
also be interesting to capture the temperature-dependency of
activity coefficients, e.g., by combining the Gibbs-Helmholtz®
with GE-GNNs or directly using the temperature relation in the
excess Gibbs free energy.” In general, utilizing further funda-
mental thermodynamic algebraic/differential relationships is
highly promising for future work on combining ML with
thermodynamics.

Furthermore, the use of experimental data to train GE-GNNs
would be of great practical interest. Here additional challenges
will arise, such as experimental noise and uneven distribution
of data over compositions and components. Making well-
curated experimental activity coefficient data available as open
source will remain critical to advancing the field of predictive
molecular ML models.
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Appendices
Relationship of Gibbs free energy and activity coefficients
The relationship between the molar excess Gibbs free energy
and the activity coefficients we utilize can be derived from:
E

% =x; In(y,) + x; In(y,) (2)

Differentiating eqn (2) with respect to x; gives

d(¢®/RT) _  dlIn(y,)
dx1 N 6x1 +1n(71) Tt

dx
+1n(y,) a_x? .

d In(y,)
6x1

Further inserting the Gibbs-Duhem equation for binary
mixtures, ie.,

xi- (6 ln(Yl)) T X (6 ln(Vz)) —0
le Tp 6X1 Tp

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Absolute prediction errors of all models are illustrated in histograms for the comp-inter (a) and mixt-extra (b) splits. Outlier thresholds are

based on the top 1% of the highest errors.

and using dx; = —dx, yields
d(¢"/RT) 71
—————=In—. 3
dx; 72 G)

Combining eqn (2) and (3) gives expressions for the binary
activity coefficients:

g" d(g"/RT)

In(y1) = 2+ dx,

E E

g d(g®/RT
In(v2) = g7+ (dfq :

Additional prediction results

Fig. 5 shows the prediction error distributions for the comp-
inter and mixt-extra splits for all considered prediction
models: SOlvGNN, GDI-GNN, GDI-GNN,1.p, GDI-MCM, and GE-
GNN.
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