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high fields and fast MAS with
antenna-sensitized dinitroxides†
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Dynamic Nuclear Polarization (DNP) can significantly enhance the sensitivity of solid-state NMR. In DNP,

microwave irradiation induces polarization transfer from unpaired electron spins to 1H nuclear spins via

hyperfine couplings and spin-diffusion. The structure of the polarizing agents that host the electron

spins is key for DNP efficiency. Currently, only a handful of structures perform well at very high magnetic

fields ($18.8 T), and enhancements are significantly lower than those obtained at lower fields. Here, we

introduce a new series of water-soluble nitroxide biradicals with a scaffold augmented by

dihydroxypropyl antenna chains that perform significantly better than previous dinitroxides at 18.8 T. The

new radical M-TinyPol(OH)4 yields enhancement factors of ∼220 at 18.8 T and 60 kHz MAS, which is

a nearly factor 2 larger than for the previous best performing dinitroxides. The performance is

understood through 2H ESEEM measurements to probe solvent accessibility, supported by Molecular

Dynamics simulations, and by experiments on deuterated samples. We find that the deuterated glycerol

molecules in the matrix are located mainly in the second solvation shell of the NO bond, limiting access

for protonated water molecules, and restricting spin diffusion pathways. This provides a rational

understanding of why the dihydroxypropyl chains present in the best-performing structures are essential

to deliver the polarization to the bulk solution.
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Introduction

Solid-state magic angle spinning (MAS) nuclear magnetic reso-
nance (NMR) spectroscopy is a powerful analytical technique
that can provide atomic-level structural information on a broad
range of solid substrates.1 Despite its high versatility, MAS NMR
inherently lacks sensitivity due to low nuclear spin polarization
at thermal equilibrium. To remediate this limitation signicant
developments have been made with microwave-driven dynamic
nuclear polarization (DNP) in the last decades.2–6 DNP routinely
yields ∼100-fold NMR signal amplication at cryogenic
temperatures, and DNP enhanced solid-state NMR has already
enabled many challenging new applications, overcoming the
limitations of conventional MAS NMR spectroscopy, in research
elds as diverse as nanomaterials, batteries, pharmaceuticals,
polymers, supported catalysts, biomaterials, in vitro and in cell
biomolecules.7–25 This boost in sensitivity is typically achieved
by doping the substrate of interest with a polarizing agent (PA)
containing unpaired electron spins, which transfer their
signicantly larger spin polarization to the surrounding nuclear
spins under microwave irradiation.

Today, a large library of PAs with different molecular scaf-
folds have been introduced, with the objective of both
increasing DNP efficiency and versatility.26–54 These range from
© 2024 The Author(s). Published by the Royal Society of Chemistry
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hybrid molecular structures coupling a narrow electron para-
magnetic resonance (EPR) line radical, such as
tetrathiatriarylmethyl-based trityls or BDPA, with a nitro-
xide,34,40,42,44,47,51 to metal ion complexes,41,43,49 mixed-valence
compounds,37,48 or biradicals based on two tethered
nitroxides.26–33,35,36,38,39,45,46,50,52,54 These latter PAs rely on the
cross-effect (CE) mechanism to transfer polarization.55,56 This
transfer scheme is effective when the so-called CE matching
condition is satised, i.e. when the difference between the
Larmor frequencies of two unpaired electron spins matches the
Larmor frequency of the target nucleus,57–60 which for dinitr-
oxides is achieved as a result of their wide EPR line, that is
inhomogeneously broadened by the anisotropy of the g-tensors.
The efficiency of the CE mechanism depends on the strength of
hyperne coupling between the nucleus and one of the two
electrons as well as dipolar and exchange couplings between the
two electrons. Under MAS conditions, the magnetic eld
dependence of CE DNP becomes quite complex due to the
interplay between adiabatic crossing events.58 The efficiency
decreases following a trend between B0

−1 and B0
−3, depending

on the specic parameters of the radical.61 Following the
introduction of the rst generation of dinitroxides,26–28 TEKPol30

and AMUPol32 were introduced based on key design concepts in
the early 2010s. Under standard MAS DNP conditions at 9.4 T
and sample temperatures of 100 K they yield more than 200-fold
proton NMR signal enhancements (3H) in frozen glassy solu-
tions, (and up to a factor 350 with optimized instrumentation62).
In the following years, attention has been dedicated to further
improving the overall sensitivity gain63–65 in MAS DNP experi-
ments through a detailed understanding of the parameters that
drive PA efficiency. In 2016, Kubicki et al. compared a collection
of more than 30 dinitroxides derived from a variety of molecular
scaffolds, including bTurea, PyPol, and bTbk.35 In another
systematic study, Sauvée et al. focused on 18 water-soluble
bTurea derivatives, functionalized with a range of bulky
groups around the N–O moiety or with various substituents on
the linker so as to drive design principles.33 AsymPol radicals
featuring a short tether and a conjugated carbon–carbon double
bond in a ve-membered ring nitroxide, were later introduced.39

These investigations, backed up with numerical studies66–70

established that sizeable electron–electron couplings, near-
orthogonal g-tensors, as well as long electron relaxation times
can constructively add up to improve the DNP performance of
dinitroxides. Lately, the local geometry around the unpaired
electrons has been identied as an additional parameter that
governs the efficiency of the DNP process.45 New AMUPOL-
based radicals with an ‘open’-ring conformation in the
vicinity of the nitroxide groups were proposed, including
HydrOPol that yields enhancements as high as 330 at 9.4 T and
100 K. These principles were then shown to transfer to the
AsymPol family with the introduction of cAsymPol-POK and
cAsymPol-TEK.50,54 Finally, it was recently shown that strong
electron-nuclear hyperne couplings and a proton-dense envi-
ronment provide spin-diffusion pathways to rapidly transport
hyperpolarization away from the biradical molecule into the
bulk of the sample, leading to the development of the high-
performance TEKPol derivative NaphPol.52 Venkatesh et al.
© 2024 The Author(s). Published by the Royal Society of Chemistry
reported a systematic evaluation of the overall sensitivity gains
provided by a series of 18 dinitroxides at 9.4 T, concluding that
a glass ceiling in DNP performance for CE dinitroxide biradicals
might have been reached at this magnetic eld.71 Most of these
studies were carried in a relatively slow MAS regime (typically at
10 kHz) where depolarization losses58,65,72 are modest and the
overall benet in sensitivity for CE DNP73 remains high.

Despite this progress, transposing these developments from
9.4 T to the highest elds and fastest MAS frequencies available
today is still a bottleneck. The electron-to-nucleus polarization
transfer occurs through a series of adiabatic rotation-induced
energy level crossings, the efficiency of which is sensitive to
the magnetic eld and the MAS frequency.58,65 Thus, as the
breadth of the EPR prole of PAs scales with the magnetic eld,
the saturation of electron spin transitions by the microwave
irradiation becomes less effective, and the CE event has a lower
probability. In addition, depolarization losses58,65,72 increase at
fast MAS for dinitroxides having medium-sized intramolecular
magnetic couplings.74

Hybrid biradicals such as TEMtriPols,34,51 HyTEKs,40 NATri-
Pols,44 SNAPols47 or PyrroTriPol51 recently appeared as prom-
ising PAs for DNP at high magnetic elds ($18.8 T) and fast
MAS. The narrow EPR line of one of the two radical units
facilitates the saturation of the corresponding electron. In the
case of HyTEK2, this combines with a strong electron–electron
hyperne coupling, giving a DNP efficiency that increases with
the magnetic eld increase.40,75 In parallel, efforts have also
been devoted to rening the structure of dinitroxides so as to
make them efficient at high-eld and fast spinning, mostly by
tailoring the strength of the intramolecular magnetic couplings.
This led to the recently introduced TinyPol46 families of water-
soluble dinitroxides, designed to have a relatively short linker
and therefore sizeable electron–electron dipolar and J-exchange
interactions. However, these radicals provide DNP efficiencies
at 18.8 T that are still signicantly lower than their analogs at
9.4 T.

Here, capitalizing on key design principles established for
dinitroxides at intermediate magnetic elds, we introduce
a new series of water-soluble dinitroxide biradicals with scaf-
folds augmented by dihydroxypropyl antenna chains that
perform signicantly better than previous dinitroxides at 18.8 T.
We nd that the new radical M-TinyPol(OH)4 yields enhance-
ment factors of∼220 at 18.8 T and 60 kHzMAS. The radicals are
designed to improve the transfer of polarization away from the
molecule and into the bulk, and this is validated by 2H ESEEM
measurements to probe solvent accessibility supported by
Molecular Dynamics simulations and by experiments on
deuterated samples. This provides a rational understanding of
why the dihydroxypropyl chains present in the best-performing
structures are essential to deliver the polarization to the bulk
solution.

Results and discussion
TinyPol structures

We recently introduced TinyPol and M-TinyPol, for DNP at 18.8
T.46 The good performance (3H ∼80–90) observed for these
Chem. Sci., 2024, 15, 16582–16593 | 16583
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Table 1 Radicals investigated in this work, their DNP performance, and results of EPR measurements. Columns 1 and 2 show the names and the
molecular structures respectively, columns 3 and 4 report respectively the proton MAS DNP enhancements and polarization build-up times. All
the DNP data were measured in d8-glycerol/D2O/H2O 60/30/10 (v/v/v) at 18.8 T in 1.3 mm rotors, 105 ± 5 K and 40 kHz MAS, with a radical
concentration of 10 mM. The sample temperature was carefully monitored with KBr and equilibrated for the microwave on and off measure-
ments. Columns 6 and 7 show the electron spin relaxation parameters, Tir and Tm. The relaxation parameters were measured at W band at 105 K
using 100 mM solutions in d8-glycerol/D2O/H2O 60/30/10 (v/v/v). Column 8 reports the solvent accessibility parameter extracted from EPR
ESEEM experiments at 50 K using 200 mM solutions in d8-glycerol/D2O/H2O 60/30/10 (v/v/v) as detailed in the ESI.† Column 9 shows the
weighted average of the exchange coupling rJr, measured with room-temperature X-band EPR from a fitting procedure using EasySpin76 as
detailed in the ESI†

Radical Structure

DNP performance, 18.8 T, 40 kHz MAS EPR parameters

3H

TB,ON
(s) 3H=

ffiffiffiffiffiffiffiffiffiffiffiffi
TB;ON

p
3DEPO

Tir
(ms)

Tm
(ms) P(D2O) hrJri (MHz)

TinyPol-NH 71 � 4 25.4 � 1 14.1 n.d. 306 � 14 6.8 � 0.4 0.37 � 0.04 14.1

O-TinyPol 110 � 5 9.3 � 0.5 36.1 n.d. 284 � 14 3.3 � 0.4 0.37 � 0.04 27.7

TinyPol(OH)4 130 � 6 8.9 � 0.5 43.0 n.d. 250 � 13 6.9 � 0.4 0.34 � 0.03 29.2

O-TinyPol(OH)4 159 � 6 8.3 � 0.5 55.0 0.68 258 � 13 2.8 � 0.1 0.35 � 0.03 27.1

M-TinyPol 124 � 6 16.8 � 1 30.2 0.86 256 � 14 1.9 � 0.2 0.3 � 0.04 25.3

M-TinyPol(OH)4,
(M-TinyPol(OH)4)-d10)

138 � 7,
(103 � 5)

7.5 � 0.5,
(8.6 � 0.4)

50.4,
(35.1)

0.68 251 � 13 2.9 � 0.1 0.32 � 0.03 27.5

AsymPol-POK 75 � 7 4.4 � 0.2 37.6 0.66 199 � 10 <2.00 0.43 � 0.04 80.5a

a This value is from ref. 39.
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radicals was accounted for by an increase in the magnetic
interactions between the two unpaired electrons. In this work,
ve new tailored TinyPol structures were prepared following
updated design principles. Their structures, as well that of M-
TinyPol46 and AsymPol-POK,39 are shown in Table 1. Details
regarding the synthesis of the molecules are provided in the
ESI.† The structure of TinyPol is presented in the ESI (Scheme
1†) as a reminder.
16584 | Chem. Sci., 2024, 15, 16582–16593
TinyPol-NH, O-TinyPol, TinyPol(OH)4 and O-TinyPol(OH)4
are based on the TinyPol scaffold while M-TinyPol(OH)4 is
derived from M-TinyPol. The functionalization of the spi-
rocyclohexyl rings with aliphatic chains bearing hydroxyl
groups increases the molecular weight of TinyPol(OH)4, O-
TinyPol(OH)4 and M-TinyPol(OH)4 structures as well as the
hydrogen bonding interactions with the frozen matrix. This is
rst expected to lengthen the electron spin relaxation times,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (a) and (b) Angle and distance distribution between the two
unpaired electrons obtained from MD simulations. The distance was
calculated by setting the position of the electron at the middle of the
NO bond. The angle is between the two nitroxide planes. For each
TinyPol structure, the results of 5 MD runs are reported separately in
the ESI (Fig. S17 and S18†).
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which is benecial for their DNP performance. This design
principle is well established since the development of bCTbK31

and TEKPol30 derivatives and is now embedded in most
contemporary dinitroxide PAs.50,52,54,71 The local density of
protons around the unpaired electron was also suggested to be
a key parameter that modulates the DNP performance of
dinitroxides at 9.4 T. Using a series of deuterated compounds,
Venkatesh et al. recently demonstrated that the PA protons
located beyond the cyclohexyl groups in TEKPoL play a key role
in the DNP process,52 relaying the hyperpolarization outside of
the spin diffusion barrier,77 as postulated by Perras et al. from
simulations.78 Here, the chains decorating the cyclohexyl rings
are potentially expected to play a similar role.

The local structure around the nitroxide, with open (O-) or
closed (C-) conformations for the tetrahydropyran groups was
also shown to signicantly affect the efficiency of the DNP
process in AMUPol, PyPol and PyTol derivatives,45 and this was
tentatively correlated to the accessibility of solvent molecules to
unpaired electrons. Fully open conformers were shown to
outperform nitroxides with closed conformations. Locking the
conformation of the tetrahydropyran rings in the O-form was
achieved by introducing stereo-controlled cis-2,6 dimethyl
groups.

This effect was then exploited in cAsymPolTEK where the
“open” forms were again found to be signicantly more effi-
cient.54 Here, M-TinyPol and M-TinyPol(OH)4 have fully open
conformations on one side of the molecule, as is the case for O-
TinyPol(OH)4 which is the open (O-) conformer of TinyPol(OH)4.

In unsubstituted tetrahydropyran rings, various conforma-
tions including the O- and C- conformations co-exist. This is the
case for the le side of TinyPol-NH and TinyPol(OH)4 molecules
in Table 1. The functionalization of the cyclohexanol rings with
the dihydroxylpropyl chains has no impact on the stereo-
chemical constraints, and thus half-open and half-closed
conformations are maintained.

We nd such conformations in TinyPol(OH)4, O-
TinyPol(OH)4, M-TinyPol and M-TinyPol(OH)4 in the right side
of the structures according to schemes of Table 1. The DFT
optimized structures of the six structures in the series are re-
ported in Fig. S16.†

Molecular dynamics (MD) simulations were carried out to
probe the conformational space of the PAs investigated here.
Fig. 1(a) and (b) report respectively the distribution of angles
between the two nitroxide planes and electron–electron
distances. All TinyPols show one main e–e distance, between
10.4 and 10.8 Å, corresponding to an e–e dipolar coupling of
∼45 MHz. These dipolar couplings D, together with the
exchange J-couplings drive the DNP cross-effect mechanism.
MD trajectories highlight two main angles with broad distri-
butions, at around 20° and 110–130° for O-TinyPol,
TinyPol(OH)4 and O-TinyPol(OH)4, and three angles at around
50–60°, 80–100° and 120–160° for TinyPol-NH, M-TinyPol and
M-TinyPol(OH)4. Individual plots are displayed in Fig. S17 and
S18† for 5 MD runs.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Electron relaxation properties

Fig. 2 reports the measured electron relaxation times. The Tir
were found to be quite similar across the series, ranging
between 250 and 306 ms, while the Tm vary between around 2
and 7 ms. The latter are shortened in biradicals presenting an
open conformation on one side of the molecule, most likely due
to the presence of the methyl groups.30 Due to the disparity in
Tm, the saturation factors (dened as the product of Tir and Tm)
in turn range across an order of magnitude, from ca. 220 ms2 for
M-TinyPol to ca. 2080 ms2 for TinyPol-NH as displayed in
Fig. S15.†

Electron relaxation times were also measured for AsymPol-
POK.39 Values signicantly shorter than those of TinyPols were
obtained as reported in Table 1, in line with expectations.31
Fig. 2 (a) Electron inversion recovery time (Tir) and (b) electron phase
memory time (Tm), for the six radicals investigated here. The electron
relaxation parameters weremeasured at W band at 105 K using 100 mM
solutions in d8-glycerol/D2O/H2O 60/30/10 (v/v/v).

Chem. Sci., 2024, 15, 16582–16593 | 16585
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DNP performance

The DNP performance (enhancement 3H and build-up times
TB,ON) at 18.8 T and 40 kHz MAS of the TinyPol derivatives
investigated here is summarized in Table 1 for 10 mM radical in
d8-glycerol/D2O/H2O 60/30/10 (v/v/v). As a reference, experi-
mental data are also reported for AsymPol-POK.

We also report in Table 1 the sensitivity factor 3H=
ffiffiffiffiffiffiffiffiffiffiffi
TB;ON

p
;

which is a more relevant reporter of the overall DNP efficiency
than 3H alone,63,65,73 as short polarization build-up times can
compensate for lower enhancements, and vice versa. Depolar-
ization values are reported in Table S7† for some of the struc-
tures. We rst observe that TinyPol-NH yields a relatively
modest enhancement of ∼70, despite its large saturation factor
as well as long polarization build-up time (>25 s). O-TinyPol,
which is the open form of TinyPol, yields to a sizeable 110-
fold enhancement factor. A further increase of 3H is observed
upon addition of dihydroxypropyl chains to the spirocyclohexyl
groups, on one side of the radical, in place of the NH or OH
groups for TinyPol(OH)4 and its open version O-TinyPol(OH)4.
The build-up times for these three polarizing agents are
signicantly shorter than those of TinyPol-NH, reecting
amuch faster polarization transfer rate to the bulk solution.77 In
particular O-TinyPol(OH)4 has a relatively short DNP build-up
time, which combined with 3H ∼160 maximizes 3H=

ffiffiffiffiffiffiffiffiffiffiffi
TB;ON

p
:

Similarly, the addition of the dihydroxypropyl chains to the M-
TinyPol scaffold leads to a higher enhancement factor. Thus, M-
TinyPol(OH)4 reaches almost 140-fold enhancement factors at
40 kHz MAS. M-TinyPol(OH)4 also displays a signicantly
shorter TB,ON than M-TinyPol. Both effects combine to yield
a high 3H=

ffiffiffiffiffiffiffiffiffiffiffi
TB;ON

p
value.

In Fig. 3, overall sensitivity gains are calculated for O- and M-
TinyPol(OH)4, and compared with the values measured for the
Fig. 3 Overall sensitivity factors of 10 mM M-TinyPol, AsymPol-POK,
M-TinyPol(OH)4 and O-TinyPol(OH)4 solutions in d8-glycerol/D2O/
H2O 60/30/10 (v/v/v) acquired at 18.8 T in 1.3 mm zirconia rotors at 10
or 40 kHz MAS frequencies. The sample temperature was ∼110 K. The
overall sensitivity factor is calculated as the product of 3H, the depo-
larization factor, and the square root of the ratio between the pure
solvent T1 and the polarization build-up time TB,ON, as described in the
ESI.† Notably, in this calculation, the paramagnetic quenching factor
was not considered, while signal losses due to depolarization, as well
as the value of TB,ON, were taken into account. Enhancement factors 3H
are indicated in italic.

16586 | Chem. Sci., 2024, 15, 16582–16593
reference M-TinyPol and AsymPol-POK radicals under similar
experimental conditions. They were calculated from the proton
enhancement 3H, scaled by the depolarization factor, and
considering the gain of a shorter build-up time TB,ON with
respect to the pure solvent T1 (see ESI† for the detailed calcu-
lation of S0). M-TinyPol(OH)4 yields a gain of ca. 75% at 10 kHz
MAS and 40% at 40 kHz MAS with respect to M-TinyPol. O-
TinyPol(OH)4 also yields excellent performance at fast spinning
frequencies.

While the superior performance of M-TinyPol(OH)4 over M-
TinyPol could be tentatively ascribed to a higher saturation
factor (or in other words to a better saturation of the electron
spin transition due to a signicantly longer Tm, as shown in
Fig. 2), such an argument does not explain the higher DNP
efficiency of O-TinyPol(OH)4 with respect to TinyPol(OH)4. This
suggests that the DNP performance of these dinitroxides is not
only governed by their electron spin relaxation behavior, and
that other parameters must be considered.

The relative orientation of the electron g-tensors could be
one of these factors. Due to the exibility of the linker, all
TinyPol radicals investigated here display 2 to 3 main confor-
mations, with distributions in the relative orientations of the
nitroxide planes as reported by the MD simulations (Fig. 1(a)).
Notably, only a small fraction of those distributions displays an
optimal orientation with the two g-tensors in orthogonal
planes.28,66,79 However, no correlation could be established
between the distribution of conformations probed by MD at
ambient temperature and the DNP performance. In contrast, we
observe that M- and O-TinyPol(OH)4 have different distribution
of g-tensor orientations but similar sensitivity factors
3H=

ffiffiffiffiffiffiffiffiffiffiffi
TB;ON

p
: Thus, while at cryogenic temperatures the distri-

butions of conformations might be different, disparities in the
relative orientation of the g-tensors does not appear to explain
the differences observed in DNP performance within the Tiny-
Pol series.

The 3H and TB,ON values reported in Table 1 were measured
in non-degassed solutions. However, paramagnetic oxygen (O2)
dissolved within the DNP matrix, even at low concentration, is
expected to act as effective relaxation sinks that will decrease
the 1H polarization build-up time constant and in turn lead to
a less efficient propagation of the hyperpolarization from the
dinitroxides. Griffin and co-workers have recently showed that
solid-effect enhancement of the water-soluble NMe3-BDPA
radical in DNP juice, where build-up times were on the order of
60 s, could be improved by almost a factor 2 by degassing the
sample.80 To evaluate if this effect is still observable for shorter
build-up times, measurements were carried out for 10 mM O-
TinyPol(OH)4 in both degassed and non-degassed solutions.
The results (Fig. S21†) show only a moderated increase in the
enhancement factors and polarization build-up times, leading
to an increase in overall sensitivity of between 5 and 15%.
Local proton density around the unpaired electron

To better understand the origin of the observed improved
performances, we rst turn our attention to the solvation of
nitroxide moieties in the DNP matrix. The solvent accessibility
© 2024 The Author(s). Published by the Royal Society of Chemistry
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was tentatively suggested to be a key parameter that modulates
the density of protons around the unpaired electrons and in
turn the DNP performance of dinitroxides at 9.4 T.45 This was
based on the observation of a difference in solvent accessibility
between fully open and fully closed conformations of the same
radicals. To assess this effect, three pulse ESEEM experiments
were conducted to probe proximities between the unpaired
electron and the deuterated molecules in the matrix. The
calculated solvent modulation depth kD and solvent accessi-
bility parameterP (solvent) can be interpreted as an estimation
of the number of deuterons present on a length scale in the
range of 3 to 6 Å from the unpaired electrons, as the contribu-
tion of directly bonded nuclear spins is suppressed.81 All data
are reported in Table S3† (and Fig. S11†), as well as details of the
calculations of the kD and P parameters. Table 1 shows the
extracted solvent accessibilityP parameters. All the TinyPol-like
radicals here have similar accessibility to solvent molecules.
This result is not surprising, considering the similar polarity
around the unpaired electron and the available space nearby
(the open or free conformations of the tetrahydropyran rings do
not signicantly reduce the access of solvent molecules, see DFT
optimized structures of Fig. S16†).

In the light of recent work done by Griffin and co-workers,82

Bennati and co-workers83 as well as Stoll and co-workers,84
Fig. 4 (a) Solvent accessibility parameters measured by X-band
ESEEM experiments in 200 mM solutions of M-TinyPol and M-
TinyPol(OH)4 in differently deuterated glycerol/water mixtures at 50 K.
(b) Radial proton density distribution in a spherical range of 0 to 15 Å
from the oxygen atom of the nitroxide group, calculated from MD
simulations run in a glycerol/water 60/40 (v/v) mixture at 293 K as
detailed in the ESI:† water protons (blue), glycerol protons (green),
protons belonging to the biradical itself (grey).

© 2024 The Author(s). Published by the Royal Society of Chemistry
ESEEM experiments were conducted on solutions of M-TinyPol
and TinyPol(OH)4, in either h8-glycerol/D2O 60/40 (v/v) or d5-
glycerol/H2O 60/40 (v/v). Both of these solutions have ca. 40% 2H
content, but with a different distribution, as almost all the
deuterium atoms are on the water molecules in the rst case
while sitting on the non-exchangeable positions of glycerol in
the second case. The results of these experiments are summa-
rized in Fig. 4(a) and Table S4.†

We observed that the modulation depth and accessibility
parameter are similar for M-TinyPol and TinyPol(OH)4 for all
the three deuteratedmatrices tested, i.e. are independent on the
biradical structure. However, both biradicals yield signicantly
different accessibility parameters using solvent mixtures with
different deuterium distribution. More specically, the 2H
accessibility value almost doubles in d5-glycerol/H2O 60/40
compared to h8-glycerol/D2O 60/40 (v/v) (Fig. 4(a)). The
enhanced modulation of the echo decay of the electrons, driven
by distance-dependent hyperne couplings, in d5-glycerol/H2O
60/40 (v/v) implies that there are more deuterons at a distance of
3 to 6 Å from the unpaired electrons in this solvent mixture.
Similar observations were made for O-TinyPol(OH)4 (Fig. S12†).
As deuterons are located only on glycerol (at non-exchangeable
sites), this result points towards the predominance of glycerol
deuterons at this 3 to 6 Å range, which matches roughly the size
of the spin diffusion barrier.77,82,85,86 As expected, the solvent
accessibility parameter is even higher when the d8-glycerol/D2O/
H2O 60/30/10 (v/v/v) composition, the so-called “DNP juice”, is
used, where glycerol molecules are fully deuterated, although
susceptible to exchange with the 10% protonated water mole-
cules. Overall, these data suggest that the shell volume
surrounding the unpaired electrons, between 3 and 6 Å, is
mostly occupied by deuterons from glycerol molecules, and this
distribution is substantially similar for all TinyPol-like radicals.

To further interpret these results, the radial proton density
in a sphere of 15 Å from the oxygen atom of the nitroxide group
was calculated from 8001 snapshots from MD trajectories
carried out in a glycerol/water 60/40 (v/v) mixture at 293 K.
Calculations were done on both sides of the PA and average
values were computed (as detailed in the ESI†). Fig. 4(b) shows
the result of these calculations for M-TinyPol and TinyPol(OH)4.
The plots for the other TinyPols in the series are presented in
Fig. S20.† In both cases, these calculations indicate that, while
the rst solvation shell around the NO bond is mostly occupied
by hydrogen-bonded water molecules with protons at about 2 Å
distance from the oxygen atom, glycerol protons are predomi-
nant beyond this distance. Notably the glycerol molecules
around the nitroxide yield a signicant 1H density from 3 to 6 Å.
This corroborates the ESEEM data.

Other recent investigations pointed out the key role of
protons in the vicinity of the unpaired electrons, not only to
allow an efficient CE DNP transfer through strong hyperne
couplings, but also to carry the hyperpolarization across the
spin diffusion barrier away from the PA.

Notably, it was postulated78 and then demonstrated in
TEKPoL that phenyl protons located in a 6 to 9.5 Å range from
the unpaired electrons, are essential to transport the polariza-
tion into the bulk.52 Here, the ESEEM EPR data and the MD
Chem. Sci., 2024, 15, 16582–16593 | 16587
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Fig. 6 Enhancement factors and polarization build-up times of 10mM
M-TinyPol(OH)4 in a bulk solution of d8-glycerol/D2O/H2O 60/30/10
(v/v/v), as a function of MAS frequency. Enhancements values were
measured at 18.8 T from proton NMR spectra, in a 0.7 mm zirconia
rotor at a sample temperature of 110 ± 5 K. The inset shows the
microwave distribution within the rotor predicted by finite-element
simulations.
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simulations show that deuterons from glycerol molecules,
which unlike protons, cannot convey the 1H hyperpolarization
across the spin diffusion barrier, are predominant in the second
solvation shell of the nitroxide at a 2 to 4 Å range distance from
the unpaired electron. Their presence may partly hinder the
propagation of the hyperpolarization. In this regard, we
hypothesize here that the hydroxypropyl chains in
TinyPol(OH)4, O-TinyPol(OH)4 and M-TinyPol(OH)4 create
pathways to relay the polarization to the bulk sample by proton
spin-diffusion, in analogy to the aromatic antenna groups in
NaphPol.52 Note that it was recently shown by simulations that
in AsymPol series, radical protons in the vicinity of the unpaired
electrons may not be necessary to relay the polarization.87

To validate this hypothesis, a deuterated version of M-
TinyPol(OH)4 was prepared, in which the protons of the
hydroxypropyl chains were replaced by deuterons. Fig. 5
compares the enhancement and build-up times in protonated
and deuterated M-TinyPol(OH)4 as a function of the spinning
frequency. Deuteration of the side chains leads to lower
enhancement factors and longer build-up times. This observa-
tion is in line with what was observed for a series of deuterated
TEKPoL PAs, where 1H DNP enhancements were shown to
decrease with higher biradical deuteration levels while the DNP
build-up times concomitantly increased, almost all the deuter-
ated forms having lower 3H and longer TB,ON than the proton-
ated radical.52 This also conrms that the protons in the chains
provide new channels to propagate the hyperpolarization to the
bulk, resulting in superior overall DNP performance, i.e. shorter
polarization build-up time or higher polarization transfer
coefficient at the spin diffusion barrier interface kDNP, according
to the model of Prisco and co-workers.77

We note that the 3H=
ffiffiffiffiffiffiffiffiffiffiffi
TB;ON

p
factor drops from 50 to 35 upon

deuteration, i.e. the overall sensitivity of deuterated M-
TinyPol(OH)4 almost returns to that of M-TinyPol (Table 1),
which differs from M-TinyPol(OH)4 only by the absence of the
hydroxypropyl chains.
Fig. 5 (a) Enhancement factors and (b) polarization build-up times of
protonated and deuterated M-TinyPol(OH)4 at a 10 mM concentration
in bulk solutions of d8-glycerol/D2O/H2O 60/30/10 (v/v/v), as a func-
tion of MAS frequency. Enhancements values were measured at 18.8 T
from proton NMR spectra in 1.3 mm zirconia rotors at a sample
temperature of 110 ± 5 K. Experimental details are given in the ESI.†
The position of the deuterons are indicated by pale red circles in the
molecular structure of M-TinyPol(OH)4.

16588 | Chem. Sci., 2024, 15, 16582–16593
Performance of M-TinyPol(OH)4 at very fast MAS

The performance of M-TinyPol(OH)4 at MAS rates up to 60 kHz
measured in a 0.7 mm DNP probe is shown in Fig. 6. The pre-
dicted m-wave distribution within the rotor was calculated from
nite-element simulations and is displayed as an inset in Fig. 6.
The average microwave eld is calculated to be slightly higher
than in 1.3 mm rotors 1.76 versus 1.07 MHz//W−1/2). Here, we
note that there are several reasons for the superior m-wave
performance of the 0.7 mm probe. First, the portion of the
sample volume that is irradiated by the beam is about 10%
larger compared to that of a 1.3 mm rotor (Fig. S23†). Further-
more, the beam transmitted through the probe's waveguide is
focused to a smaller diameter thereby increasing the intensity
of the microwave B1 eld. While the thicker zirconia wall of the
1.3 mm rotor also introduces more losses, its impact on the B1

eld strongly depends on the wall thickness-to-wavelength ratio
due constructive versus destructive interference, as detailed in
the ESI.† Enhancement factors of between 204 and 214 were
measured over the whole spinning frequency range, with build-
up times ranging from 8.5 to 11 s. These values are the highest
reported so far for dinitroxides at high elds and fast MAS
frequencies, highlighting the importance of the instrumenta-
tion and of efficient microwave penetration to obtain high
signal amplication.88,89
Conclusion

In summary, a series of new TinyPol radicals were synthesized
and their DNP performance was examined at 18.8 T, 100 K and
40 kHz MAS. We nd that the introduction of protonated
hydroxypropyl chains decorating the spirocyclohexyl groups
around the nitroxide rings signicantly improves the DNP effi-
ciency of TinyPol radicals, both in terms of enhancement
factors, 1H DNP build-up times and overall sensitivity gain.
Combining this novel structural element with a nitroxide
© 2024 The Author(s). Published by the Royal Society of Chemistry
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having an open conformation of the tetrahydropyran rings
results in O-TinyPol(OH)4 and M-TinyPol(OH)4 that provide
a sensitivity gain almost twice that of previously reported
dinitroxides.

We nd that deuteration of the hydroxypropyl chains
decreases enhancement factors while increasing build-up
times, suggesting that protons located in the chains (i.e. close
to but not in the immediate vicinity of the electrons) are key to
transporting polarization across the spin diffusion barrier into
the bulk.52,77 This analysis is supported with 2H ESEEM
measurements and MD simulations that suggest that the
deuterated glycerol molecules of the DNP matrix are located
mainly in the second solvation shell of the NO bond, limiting
access to protonated water molecules. Overall, this provides
a rational framework for why protons in the chains are impor-
tant to delivering the polarization to the bulk solution, and
provides a clear guideline for the future developments of new
polarizing agents but also of optimized formulations.
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