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argeting the SARS-CoV-2
programmed ribosomal frameshifting RNA from
a multiplexed phage display library†

Jacob A. Iannuzzelli,‡{a Rachel Bonn,§{bc Andrew S. Hong, {a

Abhijith Saseendran Anitha,ad Jermaine L. Jenkins, bc Joseph E. Wedekind *bc

and Rudi Fasan *ad

RNA provides the genetic blueprint for many pathogenic viruses, including SARS-CoV-2. The propensity of

RNA to fold into specific tertiary structures enables the biomolecular recognition of cavities and crevices

suited for the binding of drug-like molecules. Despite increasing interest in RNA as a target for chemical

biology and therapeutic applications, the development of molecules that recognize RNA with high

affinity and specificity represents a significant challenge. Here, we report a strategy for the discovery and

selection of RNA-targeted macrocyclic peptides derived from combinatorial libraries of peptide

macrocycles displayed by bacteriophages. Specifically, a platform for phage display of macrocyclic

organo-peptide hybrids (MOrPH-PhD) was combined with a diverse set of non-canonical amino acid-

based cyclization modules to produce large libraries of 107 structurally diverse, genetically encoded

peptide macrocycles. These libraries were panned against the −1 programmed ribosomal frameshifting

stimulatory sequence (FSS) RNA pseudoknot of SARS-CoV-2, which revealed specific macrocyclic

peptide sequences that bind this essential motif with high affinity and selectivity. Peptide binding

localizes to the FSS dimerization loop based on chemical modification analysis and binding assays and

the cyclic peptides show specificity toward the target RNA over unrelated RNA pseudoknots. This work

introduces a novel system for the generation and high-throughput screening of topologically diverse

cyclopeptide scaffolds (multiplexed MOrPH-PhD), and it provides a blueprint for the exploration and

evolution of genetically encoded macrocyclic peptides that target specific RNAs.
Introduction

RNA has emerged as a promising therapeutic target because of
its key regulatory roles in numerous biological processes.1–4

Although traditionally viewed as a passive carrier of genetic
information, whole-genome sequencing indicates that many
transcripts comprise noncoding RNAs (ncRNAs)5 that regulate
transcription, RNA processing, translation, and innate
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immunity.6–9 RNA also plays a pivotal role in controlling viral
replication and bacterial homeostasis, providing new targets for
antimicrobial development.10–13 The ability of RNA to adopt
tertiary structures with deep grooves and concave surfaces as
well as motifs for protein binding renders them susceptible to
recognition by drug-like molecules.14–20

Macrocyclic peptides represent an attractive class of bioac-
tive agents capable of inhibiting biomolecular interactions.21–27

Their modest size (800–3000 Da) and conformational rigidity
impart advantages over their linear counterparts, including
increased target affinity,28,29 enhanced proteolytic stability30,31

and cell permeability.32–36 These benecial characteristics make
them ideal candidates for targeting intracellular complexes
such as RNA-protein interactions. For example, representative
work from our groups and others achieved disruption of the
essential HIV Tat–TAR binding interaction through use of
a focused group of cyclic peptides that bind the viral TAR RNA
major-groove bulge with affinity and specicity.37,38 Albeit, cyclic
peptides that target specic RNA molecules have been identi-
ed thus far via low throughput, structure-guided-design
approaches, which are laborious and limited in terms of the
sequence space that can be explored.39,40 Accordingly, high-
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Overview of the −1 programmed ribosomal frameshifting
stimulatory sequence (FSS) of SARS-CoV-2. (a) Genomic organization
of the SARS-CoV-2 open reading frames (ORFs) whose expression is
controlled by the FSS element. (b) Secondary structure of the FSS
pseudoknot (PK) of SARS-CoV-2 with the dimerization loop hairpin
(DL) boxed (orange). The PK sequence used for this study began at
C13476 and ended at U13543. (c) Crystal structure of the FSS PK variant
(PDB 7mky). The GNRA tetra loop in the original structure was replaced
with the actual dimerization loop sequence.
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throughput platforms capable of probing structurally and
functionally diverse libraries of macrocyclic peptides against
specic RNA targets are highly desirable.
Fig. 2 Multiplexed MOrPH-PhD system for the selection of SARS-CoV-
through cyclization of 11-mer (i/i ± 10) and 9-mer (i/i ± 8) peptide seque
eUAA/Cys linkage (X = randomized amino acid position, C = cysteine res
design.

© 2024 The Author(s). Published by the Royal Society of Chemistry
Recently, some of us introduced an innovative platform to
discover bioactive cyclic peptides that combines the production
of genetically encoded macrocyclic organo-peptide hybrids
(MOrPHs) using non-canonical amino acids with M13 bacte-
riophage display (i.e., MOrPH-PhD).41 This system allows for the
exploration of large libraries up to 109 macrocyclic peptides
against various target proteins and protein–protein interactions
(PPIs). In this system, cyclization of a ribosomally derived
peptide is achieved via a spontaneous, post-translational cross-
linking reaction between a genetically encoded electrophilic
unnatural amino acid (eUAA) and a proximal cysteine residue,
leading to a side-chain-to-side-chain linked macrocyclic
peptide.42,43 The eUAA cyclization module is incorporated into
the precursor polypeptide via amber stop codon (UAG)
suppression using an engineered aminoacyl tRNA synthetase/
tRNACUA pair derived from Methanococcus jannaschii. In the
MOrPH-PhD system, the cyclic peptide is fused to the N-
terminus of the pIII phage coat protein. Via helper phage-
assisted assembly, mature M13 phage particles display the
MOrPH library on their surface, establishing a physical linkage
between genotype and phenotype.41

Building upon this work, we were interested in exploring the
utility of this platform for the discovery of cyclic peptides
capable of targeting a RNAmolecule, using the−1 programmed
ribosomal frameshiing (−1 PRF) RNA of SARS-CoV-2 as
a model target (Fig. 1). This RNA element plays a key role in the
viral replication of SARS-CoV-2,44 which folds as a conserved
three-stem H-type pseudoknot (PK) that functions as part of
a ‘frameshi-stimulating sequence’ (FSS).45 We chose to target
the FSS PK because it interacts with the host ribosome, leading
2 FSS-targeting cyclic peptides. MOrPH-PhD libraries were diversified
nces using four different eUAAs and two different orientations for the
idue, Y* = eUAA). See Fig. S1† for further information about the library

Chem. Sci., 2024, 15, 19520–19533 | 19521
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to a −1 frameshi46 and the translation of two distinct viral
polyproteins (encoded by ORF1a and ORF1ab) essential for the
SARS-CoV-2 lifecycle.47 The −1 PRF FSS system is structurally
and functionally conserved within the betacoronavirus genus,
and mutations to this sequence are detrimental to viral propa-
gation.10 Therefore, the FSS is an attractive target for antiviral
therapy, as evident in recent studies showing that chemical
targeting of this motif can interfere with the FSS-mediated fra-
meshiing mechanism48,49 and reduce SARS-CoV-2 replication
in cells.11,48 Despite progress in the development of platforms
for high-throughput screening of genetically-encoded41,50–55 or
phage-encoded56–60 macrocyclic peptide libraries, there are no
reports of their successful application to target RNA to our
knowledge. While the use of a phage-encoded library led to the
discovery of a bicyclic peptide with sub-micromolar affinity for
a DNA G-quadruplex,61 the application of a phage-display library
of cyclic peptides constrained by a disulde linkage against BIV
TAR RNA resulted in compounds with no specicity against the
target RNA.62

Here, we report the discovery and characterization of RNA
targeting cyclic peptides using a “multiplexed MOrPH-PhD”
system, in which phage-displayed MOrPH libraries are diversi-
ed by means of different eUAA cyclization modules (Fig. 2).
This method led to the selection of multiple macrocyclic
peptides that specically and selectively target the −1 PRF RNA
of SARS-CoV-2 (Fig. 2). Details of our multiplexed MOrPH-PhD
approach are presented along with binding analysis to the FSS
PK and localization using chemical mapping. These ndings
have broader implications for the identication and develop-
ment of new antiviral and antibacterial molecules.

Results
Multiplexing of the MOrPH-PhD library enhances diversity
yielding a library of >50 million unique peptides

We rst sought to design a set of MOrPH-PhD libraries capable
of targeting the FSS pseudoknot (PK) of SARS-CoV-2. To this
end, for randomization of the peptide sequence we chose to use
restricted amino acid alphabets that comprise amino acid
residues found to be statistically more prevalent at protein-RNA
interfaces (i.e., Lys, Arg, His, Phe, Tyr, Leu, Asn, Gln).63–65

Accordingly, the macrocycle peptide sequences were random-
ized using different patterns of the following degenerate
codons: (MRW = R, N, Q, K, H, S), (YWT = H, L, F, Y) and (HWS
= N, Q, H, I, L, K, M, F, Y) (Fig. S1†). Peptide libraries were
further diversied by varying the ring size (9-mer vs. 11-mer)
and orientation of the eUAA/Cys linkage (e.g., i/i + 8 vs. i/i − 8,
where the ith position indicates the eUAA relative to the
invariant cysteine nucleophile). Previous studies demonstrated
that the orientation of the thioether linkage can drastically
impact the target binding properties of these peptides.43,66

Because of these structural variations, the overall library
comprises ∼13.6 million unique peptide sequences (Fig. 2).

While O-2-bromoethyl tyrosine (O2beY) was the initial eUAA
for cyclization, this choice was extended subsequently to
a broader suite of eUAAs based on recent work demonstrating
additional methodologies to establish thioether crosslinks.43
19522 | Chem. Sci., 2024, 15, 19520–19533
Variation of the thioether crosslink was shown to impact the
functional properties of bioactive cyclic peptides. Accordingly,
an additional element of structural diversication was incor-
porated into our libraries through the multiplexed integration
of our MOrPH-PhD libraries with different eUAAs as cyclization
modules, namely O2beY, O-4-bromobutyl tyrosine (O4bbY), p-
acrylamido phenylalanine (pAaF) and p-chloroacetamido
phenylalanine (pCaaF). Altogether, the resulting library
comprises 54.5 million unique macrocyclic peptides.
Panning against the target RNA reveals consensus peptides

Our initial experiments determined that phage particles —

produced in bacterial cell cultures — contain signicant
amounts of RNase, which led to rapid degradation of the target
RNA (Fig. S2†). This phenomenon highlights a fundamental
challenge when applying high-throughput techniques to RNA
targets. We found the addition of a protein-based RNase
inhibitor resulted in signicant reduction in RNA degradation
with the majority of the full-length FSS PK remaining intact
aer overnight incubation with the phage solution (Fig. S2†).
Based on these results, we included RNase inhibitor in the
phage solution prior to panning against the target RNA.
Furthermore, we also envisioned that the full-length FSS PK,
which comprises 68 nucleotides, may be susceptible to chem-
ical degradation, particularly within less structured joining
regions. In this context, the dimerization loop (DL) hairpin,
which comprises 26 conserved nucleotides that play a key role
in the−1 PRFmechanism of action, is a shorter structural motif
contained within the FSS and would be less susceptible to
degradation than the full-length FSS PK (Fig. 2).67 Accordingly,
in addition to the full-length FSS PK, MOrPH-PhD libraries were
screened in parallel against a more compact motif corre-
sponding to the DL hairpin of the FSS.

Based on these considerations, selection experiments were
carried out by panning the four MOrPH-PhD libraries, each
constructed using a different eUAA, against both the DL and the
full-length FSS biotinylated RNA immobilized on streptavidin-
coated magnetic beads. All libraries were subjected to three
rounds of affinity-based selection and amplication (Fig. 3A
and B). Notably, the MOrPH-PhD libraries show differential
levels of post-selection recovery depending on the nature of the
eUAA module (Fig. 3A and B), likely reecting the differential
ability of these cyclization modules to generate cyclic peptides
capable of interacting with the target RNA. In particular,
MOrPH libraries cyclized via O4bbY or pCaaF showed
substantially higher levels of phage recovery during the second
and third rounds of affinity selection, relative to the MOrPH
libraries cyclized via O2beY or pAaF (Fig. 3A and B). Based on
these results, the library members recovered aer the second
and third round of selection from O4bbY- and pCaaF-based
libraries against the DL and FSS PK targets were analyzed via
next-generation sequencing (NGS). In addition, libraries recov-
ered from the second round and third round of selection
against the DL for pAaF- and O2beY-containing libraries were
similarly subjected to NGS.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Phage recovery after each round of panning. Percent phage
recovery of individual eUAA-containing libraries through three rounds
of affinity selection and amplification against the (a) DL and (b) FSS.
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Consistent with the trend observed from phage recovery
analyses, NGS showed enrichment of peptide sequences
primarily in the O4bbY- and pCaaF-based libraries. By contrast,
sequencing results from O2beY- and pAaF-containing libraries
failed to yield peptide sequences with signicant enrichment.
Accordingly, macrocyclic peptides selected for further charac-
terization were chosen solely from the O4bbY- and pCaaF-based
cyclic peptide libraries. Interestingly, enriched macrocyclic
peptides (‘hits’) were obtained from all four O4bbY-based
libraries (i.e., for both the 9-mer and 11-mer libraries and for
both linkage orientations) with distinct consensus sequences
associated with each library (Fig. 4A). By contrast, sequence
‘hits’ derived from the pCaaF-containing libraries were found
solely in the Cys/pCaaF orientation (i.e., i/i − 8 or i/i − 10),
indicating a clear advantage of the Cys/pCaaF connectivity over
the pCaaF/Cys connectivity for binding to the target RNAs
(Fig. 4A). Overall, these results evidence the impact of different
cyclization modules and linkage orientations on phage recovery
and enrichment, highlighting the distinct advantage of the
present multiplexed MOrPH system for exploring a larger
macrocycle space than possible using a single eUAAmodule and
thus increasing chances of success in hit identication against
a desired target.

Analysis of the sequences selected from the 9-mer (i/i − 8)
pCaaF-based library showed a single, highly enriched peptide
(i.e., pCaaF(i − 8)-m1, called FSS-m1) (Fig. 4A) with markedly
higher abundance over the other top-scoring sequences (19%
vs. <0.6%). On the other hand, the 11-mer (i/i− 10) pCaaF-based
library yielded two highly enriched peptides, one of which
represented as much as 37% of the sequence reads (i.e., pCaaF(i
© 2024 The Author(s). Published by the Royal Society of Chemistry
− 10)-m1, called FSS-m2). In addition, several other sequences
among the top-scoring ones show a high level of homology to
FSS-m2 (Fig. 4A). Notably, FSS-m1 and FSS-m2, the top hits from
the 9-mer and 11-mer libraries, respectively, share nearly iden-
tical motifs (–KQL(R/H)–).

Sequencing results from the 9-mer (i/i + 8) O4bbY-linked
library (Fig. 4A) revealed four peptides with signicant abun-
dance within the library (0.4–4.9%). Interestingly, the top
sequences identied from this library show a high level of
homology, displaying two distinct consensus groups of cyclic
peptides. The top enriched peptide (i.e., O4bbY(i + 8)-m1, called
FSS-m3) shares a –KKYR– motif with the less abundant (0.4%)
O4bbY(i + 8)-m3 peptide (called FSS-m5). The second and third
top enriched peptides share a similar –LQ(Q/N)–motif (Fig. 4A).
Furthermore, a consensus was observed among the sequences
identied from the 11-mer (i/i − 10) O4bbY-based library with
the top sequence (i.e., O4bbY(i− 10)-m1, called FSS-m8) sharing
a similar –KRH– motif with the second most highly enriched
peptide. In addition, a preference for aromatic amino acid
residues (Phe/Tyr) is observed at the i + 1 position relative to the
preinstalled cysteine at the ith position, with the exception of
the third top enriched peptide, which contains an amphipathic
Arg residue at the i + 1 position (Fig. 4A).

In general, panning experiments against the DL resulted in
more substantial enrichment and stronger consensus
sequences among hits compared to those targeting the FSS PK.
For most of the libraries, sequence hits were identied from
affinity selection experiments against the DL, although the
same sequences were also found among those selected from
panning experiments against the FSS PK. As an exception, the
opposite result (i.e., stronger enrichment and consensus for hits
selected against the FSS PK vs. DL) was observed for the pCaaF-
based libraries. Notably, sequence hits identied from the FSS
PK binding experiments included FSS-m2, which showed the
largest degree of enrichment (and strongest consensus) among
hits from all libraries (Fig. 4A). The FSS PK panning experiments
notably yielded strong hits from only one sub library (i.e., that
comprising 11-mer cyclic peptides constrained by a pCaaF-
based thioether linkage in the Cys/pCaaF orientation). These
results indicate that — among the 16 different macrocyclic
peptide scaffolds tested— this cyclopeptide topology is optimal
and nearly uniquely suited for interaction with the FSS PK —

a result consistent with the distinctly higher phage recovery
observed for the pCaaF-based libraries during panning against
this target (Fig. 3B).
Solid-phase synthesis of selected cyclic peptides

Based on the sequencing results and consensus motifs derived
above, we selected eight representative cyclic peptides for
synthesis and further characterization derived from the O4bbY-
and pCaaF-based MOrPH libraries. To this end, solid-phase
peptide synthesis (SPPS) protocols were developed to prepare
peptides cyclized via Cys/pCaaF, O4bbY/Cys and Cys/O4bbY
linkages (Scheme 1A–C). Briey, the Cys/pCaaF-cyclized
peptides were synthesized via the use of N0-allyloxycarbonyl
(Alloc)-protected p-aminophenylalanine (pAmF) and Acm-
Chem. Sci., 2024, 15, 19520–19533 | 19523
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Fig. 4 Macrocyclic peptides identified from deconvoluted MOrPH-PhD libraries. (a) Top enriched cyclic peptides were identified from i/i± 8 and
i/i ± 10 libraries. Cyclic peptides identified from sequenced libraries panned against the FSS comprise the pCaaF i/i − 10 11-mer library. All other
peptides were identified from NGS deconvoluted libraries panned against the DL RNA from SARS-CoV-2. (b) Cyclic peptides with the highest
binding affinity for the DL RNA.
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protected cysteine. Aer incorporation of the protected pAmF
residue and assembly of the remainder of the peptide, the side-
chain Alloc group was removed using a Pd(PPh3)4 catalyst and
PhSiH3 followed by acylation with chloroacetyl chloride. Aer
peptide assembly, the cysteine residue was deprotected with
a PdCl2 catalyst followed by on-resin cyclization under basic
conditions (Scheme 1A). The O4bbY/Cys-linked peptides were
prepared via a different strategy using an acetamidomethyl
(Acm)-protected cysteine and 9-uorenylmethyloxycarbonyl
(Fmoc)-protected O4bbY. Upon the completion of peptide
assembly, cysteine deprotection and on-resin cyclization were
performed in a similar manner to that described above (Scheme
1B). Synthesis of Cys/O4bbY cyclized peptides involved the use
of an allyl-protected dipeptide encompassing the Cys/O4bbY
linkage (Scheme S1†). Upon incorporation of the dipeptide
and assembly of the remainder of the peptide, the side-chain
allyl group was removed using a Pd(PPh3)4 catalyst and
PhSiH3 followed by cyclization via amide bond formation
(Scheme 1C). Further details regarding methods for solid-phase
synthesis and characterization of the cyclic peptides are
described in the ESI.†
19524 | Chem. Sci., 2024, 15, 19520–19533
Cyclic peptides bind SARS-CoV-2 RNA targets

Aer synthesis, cyclic peptides FSS-m1 through FSS-m8 were
characterized for DL binding affinity (apparent KD) and binding
kinetics (kon and koff) using surface plasmon resonance (SPR)
(Table 1 for averaged binding parameters and Fig. S4† for
representative binding sensorgrams and curve ts). These
experiments showed that peptides FSS-m1, FSS-m2, and FSS-m7
bind the dimerization loop with micromolar affinity (KD = 3.6–
4.6 mM). To test target specicity, the SPR experiments were
repeated in the presence of a 100-fold molar excess of yeast
tRNA in the SPR buffer relative to the immobilized DL RNA
target. Importantly, each cyclic peptide maintained the same or
only slightly weakened (2–3 fold) affinity for binding (KD = 3.7–
8.5 mM), demonstrating the specicity of each peptide for the
target RNA. Peptides FSS-m1 and FSS-m2, which comprise 9-
mer and 11-mer cyclic peptides, share a common KQL motif,
and display similar DL binding affinities (KD values of 3.6 ± 0.2
mM and 4.6 ± 0.2 mM). In addition, each showed only a slight
increase in KD in the presence of tRNA (1.6–2.4-fold), suggesting
each peptide forms a specic interaction with the DL structure.
Peptide FSS-m7, which comprises an 11-mer cyclized via an
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 SPPS methods for the generation of cyclic peptides analyzed in this study. (a) SPPS of peptides comprised by a Cys/pCaaF linkage. (b)
SPPS of peptides comprised by an O4bbY/Cys linkage. (c) SPPS of peptides comprised by a Cys/O4bbY linkage.
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O4bbY/Cys linkage, maintained full affinity in the presence of
tRNA, as indicated by no discernible difference in the KD under
conditions with and without tRNA (i.e., KD values of 3.7 ± 0.3
mM vs. 3.7 ± 1.6 mM, Table 1).

Encouraged by these results, we investigated other peptides
for DL binding in the presence of tRNA. Peptides FSS-m3, FSS-
m4, and FSS-m5 (Fig. 4A) — identied from the 9-mer library
containing an i/i + 8 O4bbY/Cys linkage — yielded micromolar
affinity to DL (KD values from 9–14 mM; Table 1). On the other
hand, peptide FSS-m6, which comprises an i/i − 8 Cys/O4bbY
linkage in the reverse orientation, did not exhibit binding. By
© 2024 The Author(s). Published by the Royal Society of Chemistry
contrast, peptide FSS-m8, which comprises an i/i − 10 Cys/
O4bbY linkage, exhibited high micromolar affinity to the DL
(KD >120 mM; Table 1). This stark contrast highlights a clear
advantage of the O4bbY/Cys cyclization topology over the Cys/
O4bbY topology for binding to the DL.

The highest affinity cyclic peptides identied in the DL
binding experiments (i.e., peptides FSS-m1, FSS-m2, and FSS-
m7) were tested next for binding to the FSS PK in the presence of
tRNA (Fig. 4B). Notably, pCaaF-based cyclic peptides FSS-m1
and FSS-m2, which share the –KQL–consensus motif, displayed
three- to four-fold increases in binding affinity for the FSS PK
Chem. Sci., 2024, 15, 19520–19533 | 19525
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Table 1 Average binding and kinetic parameters of DL binding by cyclic peptides in SPR buffer containing 100-fold molar excess yeast tRNAc d e

Peptide kon × 102 (M−1 s−1) S.E. × 102 (M−1 s−1) koff × 10−2 (s−1) S.E. × 10−2 (s−1) KD (mM) S.E. (mM) X2 (RU2) S.E.

FSS-m1 11.3 (7.9a) 0.05 (0.6a) 0.96 (0.28a) 0.01 (0.01a) 8.5 (3.6a) 0.2 (0.2a) 1.9 (2.3a) 0.05 (0.1a)
FSS-m2 n.a. n.a. n.a. n.a. 7.4b (4.6a,b) 3.5b (0.2a,b) 0.5b (12.8a,b) 0.2b (2.1a,b)
FSS-m3 17.4 0.8 2.38 0.004 13.7 0.6 222 13.2
FSS-m4 32.8 3.0 3.59 0.84 10.8 1.8 4.2 0.4
FSS-m5 31.2 0.9 2.76 0.09 8.9 0.5 100 1.3
FSS-m6 n.b. n.b. n.b. n.b. n.b. n.b. n.b. n.b.
FSS-m7 44.9 (21.4a) 3.8 (1.3a) 1.65 (1.06a) 0.01 (0.02a) 3.7 (3.7a) 0.3 (1.6a) 10.0 (96.5a) 0.7 (6.9a)
FSS-m8 n.a n.a n.a. n.a 126.3 52.8 2.7 1.0

a Peptides tested in SPR buffer lacking 100-fold molar excess yeast tRNA. b Equilibrium dissociation constants determined via steady-state analysis.
c S.E. indicates standard error. d n.a. indicates not assessed. e n.b. indicates no detectable binding.

Table 2 Average binding and kinetic parameters of FSS PK binding by cyclic peptides FSS-m1, FSS-m2, and FSS-m7 in buffer containing 100-fold
molar excess yeast tRNA

Peptide kon × 102 (M−1 s−1) S.E. × 102 (M−1 s−1) koff × 10−2 (s−1) S.E. × 10−2 (s−1) KD (mM) S.E. (mM) X2 (RU2) S.E

FSS-m1 16.3 4.8 0.31 0.10 1.9 0.01 0.03 0.01
FSS-m2 65.8 13.0 1.24 0.03 2.1 0.47 0.14 0.01
FSS-m7 10.6 0.6 0.85 0.01 8.1 0.52 92.9 0.10
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compared to DL (8.5 ± 0.2 mM vs. 1.9 ± 0.01 mM and 7.4 ± 3.5
mM vs. 2.1 ± 0.5 mM; Tables 1 and 2 for averaged binding
parameters and Fig. S3F and G† for representative binding
sensorgrams and curve ts). It is worth noting that peptide FSS-
m2 (pCaaF(i − 10)-m1) was identied from the libraries panned
against the FSS PK. By contrast, 11-mer cyclic peptide FSS-m7
cyclized via an O4bbY/Cys linkage, produced a poorer KD of 8.1
mM for binding to the FSS PK (Table 2 for averaged binding
parameters and Fig. S4H† for a representative binding sensor-
gram and curve t). This value is 2-fold worse than binding to
the shorter DL, which yielded a KD of 3.7± 0.3 mM (Table 1). The
molecular basis for this difference in affinity is unknown at
present.

To evaluate whether the cyclic peptides exhibited off-target
RNA interactions with pseudoknots, we tested FSS-m1 and
FSS-m2 for binding to riboswitch RNAs that adopt different
pseudoknot folds. Specically, we chose the type II preQ1-I
riboswitch, which adopts an H-type pseudoknot that binds
a single preQ1 (7-aminomethyl-7-deazaguanine) molecule.68 We
also tested a type I preQ1-I riboswitch that folds as an H-type
pseudoknot to cooperatively bind two preQ1 equivalents in
a single binding pocket.69 The third riboswitch adopts an HHH
pseudoknot fold that recognizes a single equivalent of
guanine.70 These experiments revealed that neither peptide
showed evidence of binding to off-target pseudoknots at
concentrations that elicit a binding response in the presence of
FSS PK (Fig. S5† vs. Table 2 and Fig. S4†).
Chemical modication localizes peptide binding to the FSS
dimerization loop

We next sought to identify the binding location for each of the
three highest affinity cyclic peptides. Selective 20-hydroxyl acyl-
ation analyzed by primer extension (SHAPE) followed by next-
19526 | Chem. Sci., 2024, 15, 19520–19533
generation sequencing was used to probe peptide binding to
the RNA target.71 The 26-nucleotide dimerization stem loop of
the SARS-CoV-2 FSS PK was embedded in a folding cassette
comprising anking 50 and 30 hairpins and a downstream
primer binding site (Fig. 5A);72 two additional G–C pairs were
added to the stem for stability. As an internal control to monitor
non-specic binding, the 50 hairpin was composed of the HIV-1
FSS hairpin loop. The RNA cassette was folded and bound to
either FSS-m1, FSS-m2 or FSS-m7 and subsequently acylated by
2-methylnicotinic acid imidazolide (NAI).73 Differential reac-
tivity was quantied by deep-sequence reads measured for the
bound and unbound RNA. Each peptide revealed a signicant
decrease in reactivity at base U13518 (Fig. 5B–D). In addition,
anking nucleotides C13517 and A13521 showed minor
reductions in acylation. Whereas the 9-mer pCaaF(i − 8)-m1
(FSS-m1) showed almost no change at A13516, 11-mer cyclic
peptides pCaaF(i− 10)-m1 (FSS-m2) and O4bbY(i + 10)-m1 (FSS-
m7) revealed a slight decrease in reactivity. Reductions in
acylation suggest a loss in exibility in the presence of ligand,74

possibly through a direct interaction or through allosteric
changes due to cyclic peptide binding (Fig. 5B–D). Although the
stem loop nucleotides are predicted to reside in an unpaired
region, A13516 through U13521 engage in palindromic inter-
molecular Watson–Crick pairing via a kissing loop that is key
for effective frameshiing and viral RNA synthesis.67 Most
notably, U13518 shows the greatest reduction in acylation in the
presence of each cyclic peptide and is predicted to pair inter-
molecularly with A135190.

In terms of off-target binding, our workow allowed parallel
monitoring of an upstream 50 HIV-1 FSS element (Fig. 5).
Specically, each cyclic peptide produced acylation changes in
the stem loop. Cyclic peptides FSS-m1 and FSS-m2 produced
increases in exibility (Fig. 5B and C), whereas FSS-m7
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 SHAPE-Seq data localizes peptide binding to U13518 within the dimerization loop. (a) Secondary structure of the RNA cassette containing
the stable HIV-1 FSS hairpin at the 50 end, followed by the SARS-CoV-2 FSS dimerization loop (DL) upon its stem, a strong 30 linker hairpin, and the
reverse transcriptase primer binding site. SARS-CoV-2 numbering corresponds to reference genome NC_045512.2. (b) Differential SHAPE
reactivity (Dr) profiles of the SARS-CoV-2 DL showing average differential acylation in the presence and absence of peptide (i.e., r+(pCaaF(i−8)-m1)−
r−(pCaaF(i−8)-m1)) versus sequence position. (c) Differential SHAPE reactivity (Dr) profiles of the SARS-CoV-2 DL showing average differential
acylation in the presence and absence of peptide (i.e., r+(pCaaF(i−10)-m1) − r−(pCaaF(i−10)-m1)) versus sequence position. (d) Differential SHAPE
reactivity (Dr) profiles of the SARS-CoV-2 DL showing average differential acylation in the presence and absence of peptide (i.e., r+(O4bbY(i+10)-m1)

− r−(O4bbY(i+10)-m1)) versus sequence position. Each bar represents the average of two replicates with standard deviations shown.

© 2024 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2024, 15, 19520–19533 | 19527
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produced minor decreases in exibility (Fig. 5D). Such differ-
ences may reect the different sequences of these peptides
since FSS-m1 and FSS-m2 share a –KQL(R/H)– consensus motif,
whereas FSS-m7 is rich in positive charge but devoid of gluta-
mine (Fig. 4). Notably, the latter peptide prompts fewer off-
target changes while eliciting a strong acylation decrease on
the SARS CoV-2 FSS stem loop at U13518.
Scanning mutagenesis of RNA-targeting MOrPHs reveals key
amino acids

We next asked whether individual amino acids could be iden-
tied in a representative cyclic peptide that alter SARS CoV-2
dimerization loop recognition. One key advantage of the
MOrPH system is that peptides can be expressed recombinantly
in E. coli, where they undergo spontaneous and chemoselective
cyclization to form the desired macrocyclic peptide.41,43,66

Accordingly, constructs for recombinant production of cyclic
peptide FSS-m1 and alanine-scanning mutants at each position
of the peptide were designed to comprise the macrocyclic
peptide precursor with N-terminal Met–Gly sequence fused to
an polyhistidine-tagged Mxe GyrA intein (Table S3†). Tyr was
inserted at the junction between the macrocyclic peptide
precursor and the intein to promote thiophenol-mediated
intein cleavage aer expression and isolation via Ni-affinity
chromatography, resulting in macrocyclic peptide MG-FSS-m1
and its alanine variants containing an additional Gly and Tyr at
the N- and C-terminus, respectively (Table S6†).

Aer purication following intein cleavage, SPR analysis of
the parent recombinant peptide MG-FSS-m1 and its alanine
variants was performed to elucidate key residues for DL binding
(Fig. S7†). Responses for mutants K1A, R4A and K5A were
comparable to the response for MG-FSS-m1, suggesting the side
chains are not critical for target binding. By contrast, the
response for L7A was lower than the parent peptide. Notably,
the response for Q6A was substantially higher than the response
for MG-FSS-m1, while the responses for Q2A and L3A were
substantially lower, suggesting these side chains contribute to
RNA affinity or cyclic peptide conformation. Interestingly, Q2
and L3 are each contained within the consensus motif (–KQL(R/
H)–) shared by FSS-m1 (pCaaF(i− 8)-m1) and FSS-m2 (pCaaF(i−
10)-m1), suggesting this region of the motif may be important
for targeting the SARS CoV-2 FSS dimerization loop. By contrast,
mutation of R4A was approximately neutral, which is unex-
pected if the guanidinium group participates in RNA recogni-
tion.37,75 Q6A was the only position that enhanced binding
affinity relative to the parent peptide, consistent with the lack of
conservation at this position in cyclic peptide FSS-m2 (Fig. 4).
Discussion

Due to the emerging appreciation of RNA as a promising
target,4,14,49,76,77 we investigated here the potential of genetically
encoded macrocyclic peptide libraries for targeting RNA, using
the −1 programmed ribosomal frameshiing stimulatory
sequence (FSS) RNA pseudoknot of SARS-CoV-2 as a model of
a therapeutically relevant RNA molecule.46,78 In particular, we
19528 | Chem. Sci., 2024, 15, 19520–19533
have introduced and applied here a multiplexed version of the
MOrPH-PhD platform,41 in which libraries of phage displayed
macrocyclic peptides are diversied through the use of multiple
eUAAs (i.e., O2beY, O4bbY, pAaF, and pCaaF) and thus produce
different types of intramolecular thioether crosslinks. By
exploiting the modularity of the MOrPH architecture, these
cyclopeptide libraries were further diversied through variation
of the ring size (9-mer vs. 11-mer) and orientation of the eUAA/
Cys linkage (e.g., i/i + 8 vs. i/i − 8, where i is the position of the
eUAA with respect to the invariant cysteine residue). Finally, to
favor RNA targeting, the amino acid sequences of these peptide
libraries were randomized using amino acid residues that are
found to be statistically more prevalent at protein-RNA inter-
faces, including Lys, Arg, His, Phe, Tyr, Leu, Asn, and Gln.63–65

Altogether, the resulting RNA-targeting library contains ∼55
million unique macrocyclic peptides.

Additional elements were implemented to adapt the present
phage display system for RNA targeting. As anticipated, our
experiments were hindered initially by RNase degradation
during library panning. This setback was overcome by use of
a protein-based RNase inhibitor that allows broad application
of our phage display approach against RNA targets. We also
found that RNase degradation could be minimized by applying
our method to the shorter 26-nucleotide dimerization loop
hairpin (DL), which is substantially less complex in terms of its
fold and the number of non-helical joining regions (Fig. 1).

Of the ∼55 million peptide sequences subjected to the
panning procedure, we found enrichment primarily of cyclo-
peptide members from the O4bbY- and pCaaF-based libraries.
Sequencing results from O2beY- and pAaF-containing libraries
failed to yield peptide sequences with signicant levels of
enrichment, suggesting such cyclic peptides cannot adopt
conformations suited for molecular recognition of the DL or
full-length FSS PK. Moreover, panning of the same libraries
against the smaller DL and the full-length FSS PK produced
a larger number of hits for the former target RNA molecule. On
the one hand, these results highlight the value of the present
multiplexed MOrPH-PhD system toward enabling the explora-
tion of different cyclopeptide topologies against a target of
interest. On the other hand, the results suggest that the pursuit
of small, well-denedmotifs— such as the dimerization loop—

is more tractable than more complex targets, such as the full-
length FSS. This observation may be related to the inherently
dynamic structural properties of the full-length FSS
pseudoknot.46,79–82 Our ndings have broader implications for
target choices using high-throughput ligand screening
platforms.

Based on the sequencing results and consensus analysis, we
chose eight representative cyclic peptides derived from the
O4bbY- and pCaaF-based MOrPH libraries for synthesis and
characterization. Binding was assessed by SPR, which resulted
in the identication of three high affinity peptides for the target
RNA, namely FSS-m1, FSS-m2 and FSS-m7. Binding was estab-
lished using both the DL and the full-length FSS PK. Only
a small change in affinity between the two RNAs was observed,
suggesting that the cyclic peptides bind structural features
shared by the DL and FSS PK RNAs.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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SHAPE-seq analysis revealed that the peptides localize to the
DL sequence, which is expected to show non-canonical base-
pairing properties.78 The importance of maintaining a precise
level of frameshiing is underscored by the fact that a single
nucleotide mutation in the slippery sequence of the viral RNA
abolishes replication.83 Similarly, point mutants in the DL that
ablate dimerization have a deleterious effect on −1 PRF. While
the exact mode of cyclic peptide binding remains unknown, our
present data indicated that it is localized to the apical loop
region (Fig. 5). Binding of cyclic peptides within the DL may be
analogous to recognition of the HIV-1 TAR UCU bulge wherein
regions of non-canonical base pairing allow arginine- and
glutamine-mediated readout of the major groove.37,84,85 Similar
comparisons can be made to the HCV IRES and FMN ribos-
witch, which recognize small molecules within a helical bulge
and multi-helix junction.17 Importantly, as demonstrated by our
in vitro binding experiments in the presence of tRNA (Fig. S4†)
and our control experiments with unrelated RNA pseudoknots
(Fig. S5†), the cyclic peptides isolated through the present
strategy show high specicity toward the target RNA molecule.

It is also instructive to compare these FSS targeting cyclic
peptides with other compounds previously developed against
this RNA target. In previous studies, the best hit isolated from
the screening of ∼4000 small molecule drugs was reported to
exhibit an IC50 of ∼20 mM in a frameshiing reporter assay,11

while an optimized analog from an initial screen of ∼40 000
small molecules had a KD of 60 mM against the frameshiing
element RNA in an SPR assay.48 In this context, the (low
micromolar) cyclopeptides reported here constitute alternative
and promising starting points for the development of cyclo-
peptide agents directed against this RNA target, e.g., through
affinity maturation via site-saturation and/or combinatorial
mutagenesis as done previously by our groups for other bioac-
tive cyclic peptides.37,84 Finally, while further studies will be
required to assess the activity of these compounds in cellular
assays,86 it is promising that no signicant cytotoxicity was
observed against mammalian cells (HEK293T) even aer incu-
bation of FSS-m1 at 50 mM for 24 hours (Fig. S6†).

Conclusion

The emergence of RNA as a key regulator of cellular functions
and human disease heightens the importance of developing
strategies that can accelerate the discovery of molecules that
target RNA with high affinity and specicity. While libraries of
genetically encoded macrocyclic peptides have provided a valu-
able source of chemical agents for modulating protein–protein
interactions,41,50–60 their application toward developing RNA-
targeting molecules has remained underexplored. This work
demonstrates the implementation and validation of a multi-
plexed MOrPH phage display platform for the discovery of
macrocyclic peptides that target SARS-CoV-2 RNA with speci-
city and low micromolar affinity. Given the importance of the
SARS-CoV-2 −1 PRF FSS PK in the viral life cycle and its
conservation within the betacoronavirus genus, these results
represent a rst step toward the development of rst-in-class
cyclopeptide inhibitors of the −1 PRF pathway. We further
© 2024 The Author(s). Published by the Royal Society of Chemistry
envision these compounds can be useful for the development of
systems for RNA degraders.49,77,87 More broadly, these results
pave the way to the application of multiplexed MOrPH-PhD for
the discovery of chemical entities directed against RNAs and
other biomolecular targets.
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