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Environment-sensitive fluorescent agents with near-infrared (NIR) emission are in great demand owing to
their applications in biomedical and quantum technologies. We report a novel NIR absorbing (Ahbs, = 734
nm) and emitting (A« = 814 nm) terrylenediimide (TDI) based donor—acceptor chromophore (TDI-
TPA,), exhibiting polarity-sensitive single-photon emission. By virtue of the charge transfer (CT)
character, ensemble level measurements revealed solvatochromism and NIR emission (¢f = 26.2%),
overcoming the energy gap law. The CT nature of the excited states is further validated by state-of-the-
art fragment-based excited state theoretical analysis. To mimic the polarity conditions at the single-
molecule level, TDI-TPA; was immobilized in polystyrene (PS; low polar) and poly(vinyl alcohol) (PVA;
high polar) matrices, which enables tuning of the energy levels of the locally excited state and charge-
separated (CS) state. Minimal blinking and prolonged survival time of the TDI-TPA, molecule in the PS

matrix, in contrast to the PVA matrix, possibly confirms the implication of the energy gap law and
Recelved 12th June 2024 larity sensitivity of TDI-TPA,. The existence of the CT state | lar and CS state in polar solvent
Accepted 23rd September 2024 polarity sensitivity o 4. The existence of the state in nonpolar an state in polar solvents
was confirmed by transient absorption measurements in the femtosecond regime. The current work

DOI: 10.1039/d4sc03861d sheds light on the design principle for NIR single-photon emitting organic chromophores for deep tissue
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Introduction

Near-infrared single-photon emitters are an emerging class of
compounds for quantum information science, including
computing, sensing, and communication.'” Single-molecule
level scrutiny of organic near-infrared (NIR) emitting mole-
cules has recently gained much attention.®® The efficiency of
the NIR organic emitters is limited by the energy gap law; the
intrinsic forbidden nature of emission from states with low
energy gap results in negligible fluorescence quantum yield.****
The donor-acceptor systems with charge transfer (CT) char-
acter' are better alternatives to circumvent the limitations
possessed by conventional m-conjugated NIR molecules by
narrowing the energy gap for NIR emission.”*™*® The emission
from the CT state is limited due to the forbidden nature of
electronic transition as a result of spatial separation between
the highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO)."*** However, hybrid-
izing the local excited (LE) state with the CT state results in
a favored transition dipole moment, subsequently leading to
NIR emission.*** Exciton delocalization in the aggregates is

School of Chemistry, Indian Institute of Science Education and Research
Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala,
India, 695551. E-mail: mahesh@iisertvm.ac.in
T Electronic  supplementary  information
https://doi.org/10.1039/d4sc03861d

(ESI) available. See DOI:

© 2024 The Author(s). Published by the Royal Society of Chemistry

imaging and probing the nanoscale heterogeneity.

one of the strategies implemented in Pt(u) complexes and bay-
alkylated quaterrylene to successfully overcome the energy gap
law for enhanced NIR fluorescence quantum yield at the
ensemble level.*»** Recently, Erker and Basché validated the
energy gap law for NIR single-photon emitters by investigating
the dielectric dependence of dibenzoterrylene (Afq = 741 nm)
at the ensemble and single-molecule levels.>® In comparison to
the previously investigated NIR single-photon emitters (Table
S1t), probing the dielectric dependence of CT-mediated NIR
emitting chromophores at the single-molecule level remains
elusive. Polarity dependence of fluorescence at the nanoscale
level can be probed using chromophores with emissive CT in
the visible range, which was first demonstrated by Higgins and
co-workers” based on the model developed by Marcus.”®*
Monitoring the intrinsic NIR fluorescence fluctuations at the
single-molecule level in different dielectric environments is
beneficial for probing temporal inhomogeneity and acquiring
autofluorescence-free contrasting images of (bio)specimens.***

By virtue of the limited blinking and extended survival time
before photobleaching,® terrylenediimide (TDI) is known to be
a suitable candidate for membrane labeling® and single-
molecule investigations.”** Our longstanding interest in
monitoring CT excitons in rylenecarboximide derivatives at the
ensemble and single-molecule levels*®*** motivated us to
explore higher analogs, such as TDI-functionalized
chromophores.”* Herein, we designed and synthesized
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Scheme 1 Design strategy and chemical structures of TDI and TDI-
TPA4.

a NIR absorbing and emitting donor-acceptor chromophore
based on TDI (acceptor) with triphenylamine moiety (TPA) as
a donor (TDI-TPA,) and explored its potential as a polarity-
sensitive NIR single-photon source (Scheme 1). The striking
contrast of fluorescence intensity time traces in different
dielectric environments was demonstrated by single-molecule
thin film measurements, and femtosecond excited state
dynamics investigations corroborated the photoinduced
processes at the ensemble level.

Results and discussion
Synthesis

Novel TDI-TPA, was synthesized via a Suzuki cross-coupling
reaction between tetrabromo-terrylenediimide (TDI-Br,) and 4-
(diphenylamino)phenylboronic acid (Schemes S1 and S27}). TDI
and TDI-Br, were synthesized and characterized as per the
previously reported procedures (Scheme S2 and Fig. S1-S87).*°
The Suzuki coupling reaction between TDI-Br, and 4-(dipheny-
lamino)phenylboronic acid was carried out under inert condi-
tions in the presence of potassium carbonate (K,COj3), dioxane,
and a catalytic amount of tetrakis(triphenylphosphine)palla-
dium(0) followed by heating of the reaction mixture at 85 °C. TDI-
TPA, was isolated and purified using column chromatography
(ethyl acetate/hexane, 1:10) to yield purple-colored TDI-TPA,
with a 40% yield (Scheme S2t). The desired compound was
successfully characterized by "H and *C NMR, IR spectroscopy,
and HRMS mass spectrometry (see Fig. S9-5137).

Optical properties

The electronic absorption spectra of the TDI-TPA, and TDI were
recorded in hexane (HEX, ¢ = 1.88, C = 5-10 uM) (Fig. 1). The
absorption spectrum of TDI-TPA, spans through the visible
range and extends to the NIR window (400-850 nm) with
absorption bands at 734, 597, and 522 nm with a molar
extinction coefficient epa = 3.54 x 10* M~' em™* (at 734 nm)
corresponding to the S, to S; transition (Table 1 and Fig. S14,
S15%). TDI exhibited three distinct vibronic progressions with
an absorption maximum at 634 nm corresponding to the S, to
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Fig. 1 Normalized UV-vis absorption and fluorescence emission
spectra of TDI and TDI-TPA,4 in hexane.

S, electronic transition. The fluorescence emission spectrum of
TDI-TPA, consists of a NIR band with a maximum at 814 nm
when excited at 591 nm in HEX (Fig. 1). The remarkable red-
shift in the fluorescence emission spectrum of TDI-TPA, as
compared to TDI (AXfi. = 173 nm or 3315.16 cm ™) corroborate
the existence of charge transfer between the four TPA moieties
and the TDI core. The solvent-dependent absorption measure-
ments of TDI-TPA, depicted a red-shift (AAA2S, = 20 nm) with
increasing solvent polarity from HEX to ACN (Table 1 and
Fig. S14-S17%). The solvent-dependent fluorescence spectra of
TDI-TPA, (C = 5-10 pM) depict a bathochromic shift along with
significant fluorescence quenching upon increasing polarity
from HEX (¢ = 1.88, ¢p = 26.2%), THF (¢ = 7.58, ¢pp; = 17.5%) to
ACN (e = 37.50, ¢ = 10.2%) (Fig. S181 and Table 1). The
decreased fluorescence quantum yield of TDI-TPA, in hexane
compared to TDI (¢r = 90%)* is indicative of other non-
radiative decay channels upon photoexcitation. The substantial
Stokes shift of TDI-TPA, in the polar solvents (ADgores = 227 M
or 3097.90 cm ™ ' in THF and AVsopes = 231 nm or 3110.16 cm ™ *
in ACN) when compared to TDI-TPA, in HEX (AVgiores = 80 nm
or 1338.77 cm™ ') results from the lowering of the energy gap,
leading to the reduced fluorescence quantum yield, which is in
accordance with the energy gap law. The emission spectra
recorded by exciting at 734, 597, and 522 nm depicted intact
emission maximum at b, = 814 nm (Fig. S191). The excitation
spectra collected at the respective emission maximum of TDI-
TPA, in HEX, THF, and ACN resemble the absorption spectra,
validating the emissive nature of the CT state (Fig. S207%).*
Time-correlated single photon counting (TCSPC) measurement
of TDI-TPA, was performed in HEX (A, = 640 nm and moni-
tored at 814 nm), suggesting the existence of a single emissive
component with a fluorescence lifetime 7z = 1.37 ns (Fig. S217).
The concentration-dependent and temperature-dependent
absorption measurements of TDI-TPA, were performed in
THF to understand the possibility of aggregate formation. The
absorption spectra of TDI-TPA, were recorded for different
concentrations (C = 0.01 mM to 0.20 mM) and exhibited
constant Iy/I; ratios, ruling out the possibility of aggregation
(Fig. S22 and Table S2f). Monitoring the temperature-
dependent absorption spectra of TDI-TPA, (C = 5-10 pM)

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Fluorescence quantum yields (¢r) and fluorescence time constants (t), and driving force for charge separation (AGcs), driving force for
charge recombination (AGcg), and rate constants for radiative (k,), nonradiative (k,,), processes of TDI-TPA,

Aﬁ'?;;( Aﬁiax €max X 104 ¢Fl Ta AGCS AGCR kr X 109 knr X 109
Solvent (nm) (nm) M tem™) (%) £ 5 (ps) (eV) (eV) (s™ (s™
HEX (¢ = 1.88) 734 814 3.54 26.2 1210.0 0.20 —-1.77 0.216 0.6
THF (¢ = 7.58) 750 977 3.33 17.5 1.5 —0.21 —1.36 116.6 550.0
ACN (e = 37.50) 754 985 3.13 10.2 0.5 —0.33 —1.24 204.0 1796.0

“ From global fits of fSTA spectra. AGes and AGcg from Rehm-Weller analysis. &, and &, are calculated as per the reported procedure from the

literature.>>*’

from 10 °C to 60 °C depicted negligible changes in the spectral
feature, further strengthening the monomeric nature of TDI-
TPA, in the solution state (Fig. S237).

Theoretical investigations

The ground state optimization of the TDI-TPA, was performed
using density functional theory (DFT) in vacuum using the
Gaussian 16 program.®® 2,6-Diisopropylphenyl group at the imide
position has been replaced with a methyl group to reduce
computational cost. For ground state and first singlet excited
state optimization, a range-separated hybrid exchange-
correlation functional CAM-B3LYP (using the Coulomb-
attenuating method) in combination with a def2-SVP basis set
was used to account for the charge transfer excitations in TDI-
TPA,. The optimized structure of TDI and TDI-TPA, revealed
a considerable contortion in the TDI core with a dihedral angle of
18.8° and 18.6° as a result of bulky TPA substitution in the bay
region (Fig. 2a, b and S247). The propeller-like TPA moieties are
oriented at angles 115.3° and 115.1° with respect to the ortho

position of the TDI core to decrease steric repulsion (Fig. S24 and
S25t1). Time-dependent DFT was employed to compute the
vertical excitation energies and oscillator strengths at the CAM-
B3LYP/def2-SVP level of theory. The singlet excited states S;
(2.105 eV), S, (2.885 eV), and S; (2.886 eV) are identified as bright
states with considerable oscillator strength in TDI-TPA, (Table
S37). Further investigation into the character of the excited states
was carried out using fragment-based excited-state analysis
developed by Plasser, implemented in TheoDORE.*** Becke, 3-
parameter, Lee-Yang-Parr functional with D3, an empirical
correction for dispersion forces and def2-SVP basis set was
employed to perform the calculations. The degree of excitation
energy delocalization in various fragments is determined by the
participation ratio (PR). TDI core and four TPA groups were
categorized as two fragments for the fragment analysis of the
TDI-TPA, (Fig. S26%1). The nature of the excited state is repre-
sented by the charge transfer (CT) value where CT > 0.8 denotes
the CT state, and CT = 0 depicts the Frenkel exciton state (FE). A
hole-electron correlation plot is used to pictorially represent the
nature of the excited states. The S, state of TDI-TPA, is identified

1.20
1.05
0.90
s oo (fos
) 0.60
0.45 ¥
0.30 BW -
0.15 33t BBy o
Lo U5 FEOR
PR=1.10 : ﬁ,ﬁ' ;
Hole Electron

Fig. 2 Ground state optimized geometry of TDI-TPA4 shown in (a) top view and (b) side view at CAM-B3LYP/def2-SVP level of theory (2,6-
diisopropylphenyl group has been replaced with methyl group to reduce computational cost. Hydrogen atoms are omitted for clarity). (c) Hole—
electron correlation plots showing the nature for the Sy, S,, Ss, and S4 excited states. (d) Corresponding hole—electron isosurface distribution of
S, state (isovalue = 0.001). The CT and PR values are shown to define the nature of excitations.
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as a partial CT state (hybridized feature of CT and LE) with a CT
value of 0.64 (PR = 1.46). Conversely, transitions S, — S,, S —
S;, and S, — S, possessed CT values of 0.91, 0.89, and 0.90,
respectively, corresponding to a strong CT character (Fig. 2c). In
the hole-electron isosurface of the S, state, the electron is
confined to the TDI core while the hole is confined to the TPA
fragments, establishing the CT nature of TDI-TPA, (Fig. 2d).** To
obtain further insights into the electron density distribution
within the TDI-TPA, molecule, the natural transition orbital
(NTO) isosurface analysis for S, S, S3, and S, excited states was
carried out. For the S; state, the electron density is distributed on
both the TDI core and TPA fragment, and the lowest unoccupied
NTO is localized on the TDI core, corroborating the hybrid nature
of the CT and LE. The predominant CT character of higher S,, S,
and S, excited states is further substantiated by the spatially
disjoint electron density distribution of the highest occupied
NTO on electron donating TPA fragment and the lowest unoc-
cupied NTO on the TDI core (Fig. S277).

Single-molecule fluorescence measurements

Exploitation of CT-based organic chromophores as a single-
molecule source remained challenging due to quenching of
local excited state fluorescence via electron transfer.®> Consid-
erable efforts have been reported in the literature to monitor
single-molecule electron transfer of rylenediimide dendrimers
in the visible range.®**” The fluorescence lifetime imaging
(FLIM, Fig. 3a and e) and fluorescence intensity trajectories
(FITs) were measured using the MicroTime 200 (MT200) time-
resolved fluorescence microscope from PicoQuant. The inver-
ted microscope (Olympus IX83) is equipped with a piezo-
scanning stage (P-733.2CD, PI). The sample was excited using
a 512 nm pulsed laser (LDH-D-C-512, PicoQuant) with
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a repetition rate of 20 MHz and scanned with a dwell time of 0.4
ms. To acquire the single-molecule emission in the NIR region,
the intensity traces were recorded using an SPCM-AQRH single-
photon avalanche detector (SPAD) having spectral range 400-
1100 nm with 70% maximum detection efficiency at 700 nm and
180 nm diameter of active area.

Single-molecule fluorescence (SMF) measurements of TDI-
TPA, were carried out in two different dielectric polymer media
such as polystyrene (PS, ¢ = 2.6) and poly(vinyl alcohol) (PVA, ¢
= 7.8) nonpolar and polar analogs, respectively, akin to the
ensemble measurements.®® FLIM images represent discrete
TDI-TPA, molecules in the PS and PVA matrices (Fig. 3a and e).
FITs depict the real-time fluorescence fluctuations of single
molecules in their local environment.®® The FITs under inves-
tigation include molecules showing blinking (reversible
switching between on/bright and off/dark states) or single-step
photobleaching (irreversible switch to off state). In the PS
matrix, TDI-TPA, depicted (81 single molecules) prolonged
photon count and seldom blinking in agreement with the
photophysical process occurring in the low dielectric ensemble
measurements (Fig. 3b). The single-molecule fluorescence life-
time distribution of TDI-TPA, in PS showed monoexponential
lifetime distribution (Fig. 3c) peaking at ~2-3 ns (Fig. 3d).
Frequent blinking and low fluorescence emission were observed
for TDI-TPA, single molecules in the polar PVA matrix (119
single molecules). The contrasting blinking dynamics in
matrices of distinct dielectric constants corroborated photoin-
duced charge separation is the major contributor to the dark
states in TDI-TPA,. The feasibility of charge separation being
less favored in low polar PS matrix accounts for the high pho-
tostability and relatively high rate of radiative process in TDI-
TPA, compared to PVA.*” Whereas charge separation is facili-
tated as an additional nonradiative pathway in the PVA matrix,
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Fig. 3 Representative fluorescence lifetime images with average lifetime (t,,4) and events scale, of TDI-TPA, in (a) PS and (e) PVA matrices.
Fluorescence intensity trajectories (FITs) of TDI-TPA4 in (b) PS and (f) PVA matrices. Representative single-molecule fluorescence decay
measurements of TDI-TPA, in (c) PS and (g) PVA matrices. Fluorescence lifetime distribution plot of TDI-TPA, in (d) PS and (h) PVA matrices.
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corroborating the frequent blinking and relatively low fluores-
cence emission in TDI-TPA, (Fig. 3f). The single-molecule
fluorescence lifetime of TDI-TPA, in the PVA matrix is spread
over the 2-6 ns range (Fig. 3g and h). The broad distribution of
lifetime implies the existence of a wide range of rate constants
for electron transfer in the PVA matrix possibly due to the
rigidity and residual low polar local environment offered by
toluene molecules in PVA layer (see Section 1.10 in ESI{).27%97°
An erratic blinking and irreversible photobleaching is reported
as a consequence of the stabilization of the CS state in the polar
nano-environment.” The excited state stabilization results in
the lowering of transition energy at the single-molecule domain,
leading to the opening up of new nonradiative channels implied
by the energy gap law.

Antibunching experiments of TDI-TPA; in PS and PVA
matrices were carried out using an 800 nm short-pass filter. A
doublet peak was observed at zero delay point, which is char-
acteristic of the afterglow (fluorescence from one detector
initiating the other) from the silicon detector (Fig. S287).”* Since
there is a considerable contribution from afterglow above
700 nm, reliable antibunching data were not acquired.
However, the contribution from the afterglow photons in the
FIT measurements is buried in the background signal
(Fig. S28t1). The single-molecule investigation of the present
work exclusively contains spatially separated single molecules
that undergo blinking or single-step photobleaching. (Repre-
sentative FITs; Fig. S29 and S30%).

Cyclic voltammetry and Rehm-Weller analysis

Having established the existence of bright and dark states of TDI-
TPA, in nonpolar and polar matrices, respectively at the single-
molecule domain, we evaluated the thermodynamic feasibility
of electron transfer at the ensemble level using cyclic voltam-
metry (CV) and differential pulse voltammetry (DPV). CV and
DPV measurements were performed against Ag/Ag’ in dry
dichloromethane (DCM) under a nitrogen atmosphere to
examine the redox properties of TDI-TPA, using ferrocene/
ferrocenium (Fc/Fc') couple as a reference (Fig. S317). Two
distinct reversible reduction waves (E;eq)y = —1.01 V and Ey(req) =
—1.14 V) and three reversible oxidation waves (E;(y = 0.44 V,
E>(ox) = 0.59 V and Ej(ox) = 0.82 V) of TDI-TPA, confirms profound
electronic communication between the TDI core and TPA moiety.
Rehm-Weller formalism provides the feasibility associated with
the electron transfer process in the donor-acceptor system in
terms of Gibbs free energy changes for charge separation
(AGgs).” The positive AG¢s = 0.20 eV indicates the infeasibility
of charge separation of TDI-TPA, in HEX. The AGcs = —0.21 eV
in THF and AGcs = —0.33 €V in ACN suggests the feasibility of
photoinduced electron transfer in medium and high polar
solvents, respectively. The electrochemical energy gap (E,) is
estimated to be 1.45 eV from experimentally observed LUMO and
HOMO energy levels (Table S47).

Femtosecond transient absorption measurements

Solvent-dependent transient absorption measurements provide
insights into the excited state dynamics of TDI-TPA, in different

© 2024 The Author(s). Published by the Royal Society of Chemistry
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dielectric environments. Femtosecond transient absorption
spectra (fsTA) of TDI-TPA, were recorded in HEX (¢ = 1.88), THF
(e = 7.58), and ACN (¢ = 37.50) having optical density 0.2-0.3
using ~100 fs laser pulse exciting at 520 nm (Fig. 4). A Spectra-
Physics Mai Tai SP mode-locked laser (800 nm, 86 MHz) was
used as a seed for Spectra-Physics Spitfire Ace regenerative
amplifier (1 kHz, 5.5 m]J). Using TOPAS, a portion of the
amplified 800 nm output beam was converted into a 520 nm
pump pulse. The magic angle polarization (~54.7°) between
pump and probe pulses was used to ensure an isotropic signal
of the sample. Singular value decomposition (SVD) and global
analysis of the AA versus time-based wavelength-based three-
dimensional map of the fsTA spectra were carried out to
extract the kinetic components responsible for the total spectra.
The fsTA spectra of TDI-TPA, in HEX displayed negative ground
state bleach (GSB) and stimulated emission (SE) band from
~552-850 nm accompanied by a positive excited state absorp-
tion (ESA) band ranging from ~876-1400 nm (Fig. 4a). The one-
component sequential kinetic model A — GS (GS = ground
state) was employed to acquire the evolution-associated spectra
(EAS) of TDI-TPA, in HEX. The deconvolution of the fsTA
spectra revealed a single principal component with a decay
constant of 1.21 ns in HEX, attributed to a CT state that matches
the fluorescence lifetime obtained from TCSPC measurement.
The inaccessibility of the CS state from the CT state in HEX is
probably due to the large energy barrier for charge separation
from the CT state, which is evident from the positive AGcs =
0.20 eV calculated from the Rehm-Weller analysis.

Transient absorption spectra recorded for TDI-TPA, in
a moderately polar solvent THF exhibited a negative band
~550-827 nm corresponding to GSB and SE. The positive ESA
consists of two bands: a low intense band (~829-906 nm) and
a broad intense absorption band ranging from ~934-1396 nm
(Fig. 4b). A two-component sequential kinetic model A — B —
GS was employed to elucidate the excited state process in THF.
Upon deconvolution, fsTA spectra result in two principal
components centered at 1215 nm (A) and 1196 nm (B), which
can be attributed to a CT state and a CS state, respectively. The
negative AGcs = —0.21 €V calculated from the Rehm-Weller
analysis validates the feasibility of populating the CS state in
THF.”* The CT state decays with a time constant of 1.5 ps,
leading to the CS state, which subsequently decays to the
ground state within 149.2 ps. The 3D plot of fsTA confirms the
evolution of a new species in the later time delay in the ~829-
906 nm region, which resembles the spectroscopic signature of
chemically oxidized absorption of TPA reported in the literature
(Fig. S32 and S33+t).”* The chemical oxidation experiments were
carried out for the TPA in toluene and ACN using antimony(v)
chloride, further confirming the characteristic absorption
feature of the TPA radical cation in this wavelength regime
(Fig. S347).

The transient absorption spectra of TDI-TPA, were recorded
in ACN to probe excited state dynamics in a high dielectric
environment. The negative GSB and SE featured in the ~550-
835 nm region, and the positive ESA band spanned from the
~836-1445 nm region. The two-component sequential kinetic
model A — B — GS is used to comprehend the photoinduced

Chem. Sci., 2024, 15,17007-17016 | 17011
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Fig. 4

(Top row) Femtosecond transient absorption spectra of TDI-TPA4 in (a) HEX, (b) THF, and (c) ACN showing the excited state dynamics

upon photoexcitation (Aex = 520 nm). (Middle row) Species-associated spectra reconstructed from global analysis of TDI-TPA4; with A — GS
model for HEX (left), the A - B — GS model for THF (center), and A — B — GS model for ACN (right). (Bottom row) Relative population profiles

of the excited states in TDI-TPA, in HEX, THF, and ACN.

processes of TDI-TPA, in ACN. The first component (A) at
1195 nm undergoes ultrafast decay to the second component (B)
with a rate constant k,_, = (0.5 ps) '. The formation of the
second component at 1130 nm occurs in the later time delay,
which further relaxes to the ground state with the rate constant
of kg_gs = (8.8 ps)~". The second band at 1130 nm matches
with the chemically reduced anion formed from TDI-TPA, in the
ACN upon treatment with bis(cyclopentadienyl)cobalt(u) as
a reducing agent (Fig. S35t). The A and B components can be
attributed to CT and CS states, respectively, which are in
agreement with the feasibility of charge separation AGcs =
—0.33 eV in ACN. The spectroelectrochemistry measurements
further reinforced the evolution and spectral signature of TDI-
TPA, radical anion by applying electric potential. Electro-
chemical reduction of light-irradiated TDI-TPA, solution in
DCM exhibited an emergence of a new band at ~983 nm upon
applying the 3.5 V potential, which confirms the existence of the
TDI-TPA, radical anion (Fig. S36f). The fluorescence time
constant (t), AGgs, driving force for charge recombination
(AGcR) and rate constants (k) of TDI-TPA, in different solvents
are summarized in Table 1. The remarkable increase in the
nonradiative rate with the decrease in the transition energy
validates the energy gap law in TDI-TPA, at the ensemble level.
The selected kinetic traces superimposed with the global anal-
ysis fitted curves at different wavelengths of fsTA in HEX, THF,
and ACN are shown to display the fitting quality in Fig. S37.7 To
evaluate the possibility of triplet state formation upon charge
recombination proposed by El-Sayed,”” nanosecond transient
absorption spectroscopy (nsTA) measurements were performed

17012 | Chem. Sci., 2024, 15, 17007-17016

in HEX, THF, and ACN by exciting the sample at 532 nm. The
absence of a long-lived species with a positive absorption
feature (tr > 8 ns) in the nsTA spectra further confirms the rapid
charge recombination in TDI-TPA, to a singlet state in THF and
ACN (Fig. $38%).

The fsTA thin film measurements of TDI-TPA, in PS and PVA
polymer matrices were carried out to comprehend the excited
state dynamics in low polar and high polar polymer environ-
ments upon photoexciting at 520 nm. The samples for thin film
experiments were prepared by drop-casting the TDI-TPA, and
polymer solution on a cleaned round quartz cuvette. The thin
film thickness of TDI-TPA, in PS and PVA matrices were
measured to be ~430 £ 5 nm and 470 + 5 nm respectively, using
profilometry (KLA Tencor D600 stylus surface profiler;
Fig. S397). In the low polar PS matrix, the TDI-TPA, exhibited
negative GSB at ~561-771 nm accompanied by ESA at ~1046-
1349 nm region (Fig. S401). The wavelength range of the GSB
and ESA of TDI-TPA, in the PS matrix resembles the spectral
signatures of TDI-TPA, in HEX (Fig. 4a). The deconvolution of
the fsTA spectra of TDI-TPA, in PS thin film was carried out
using a sequential kinetic model A — GS having a time constant
of 14 _,gs = 0.87 ns, which is attributed to the CT state. A faster
kinetic decay of TDI-TPA, was observed in the PS thin films
compared to the fsTA spectra of TDI-TPA, in the HEX solution.
The accelerated decay kinetics of TDI-TPA, in PS compared to
HEX is possibly due to the higher dielectric environment offered
by PS. The fsTA spectra of TDI-TPA, in the PVA matrix depict an
ESA band centered at ~1240 nm, which is characteristic of the
ESA band observed in the polar solvents (THF and ACN).

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Jablonski diagram showing the excited state deactivation
mechanism of TDI-TPA4 in HEX, THF, and ACN.

Deconvolution of the total spectra using A — B — GS
sequential kinetic model resulted in two principal components
with decay constants of 0.3 ps followed by 4.7 ps, which can be
attributed to the CT and CS state of TDI-TPA, in the PVA matrix,
respectively (Fig. S407). In thin film fsSTA measurements, higher
concentration of TDI-TPA, (~5 mM) reduces the interaction
with residual toluene molecules per unit area. As a result, the
influence of low polar environment offered by residual solvent
molecules may not be detectable in the ensemble level transient
absorption measurements. The thin film fSTA measurements of
TDI-TPA, in PVA matrix correspond to the excited state
dynamics in the high dielectric environment, consistent with
observations from high-polarity solution state fsTA measure-
ments. This indeed affirms the capability of single-molecule
techniques to probe unique events that are averaged out in
ensemble level measurements.

A proposed Jablonski diagram illustrating the excited state
dynamics of TDI-TPA, in various dielectric environments is
shown in Fig. 5. In the HEX or PS matrix, the deactivation from
the CT state is identified as a major pathway as a result of a large
energy barrier in achieving the CS state. In a moderately polar
solvent THF and polar ACN or in a PVA matrix, the access to the
CS state from the CT state is facilitated by the stabilization of
the CT state in a higher dielectric environment.

Conclusions

In summary, a novel NIR absorbing and emitting TDI-TPA, was
explored at bulk and the single-molecule level. The sol-
vatochromism and a significant red-shift in the emission
spectrum exhibited by TDI-TPA, with respect to TDI (AXax =
173 nm) revealed CT character at the ensemble level and is
supported by theoretical analysis. Quantum chemical calcula-
tions, including fragment-based excited state analysis of TDI-
TPA,, suggested the nature of the first singlet excited state (S;)
as a hybrid state of both CT and LE states and S,, S;, and S,
excited states as CT states. Single-molecule fluorescence
measurements in PS and PVA unambiguously confirmed the
dielectric dependence and implication of the energy gap law of
the TDI-TPA, to serve as a NIR emitting polarity probe in the
nanoscale environment. In the low polar PS matrix, relatively

© 2024 The Author(s). Published by the Royal Society of Chemistry
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high photostability and photon count were observed in
comparison to the frequent blinking and photobleaching in the
polar PVA matrix. The thermodynamic feasibility of charge
separation of TDI-TPA, in THF and ACN (AGgs = —0.21 and
AGgs = —0.33 €V) is validated by Rehm-Weller formalism. The
evolution of radical anion and cation of TDI-TPA, in polar
solvent is characterized by redox titration, spectroelec-
trochemistry, and femtosecond transient absorption measure-
ments. Our findings manifest the potential of TDI-TPA, donor-
acceptor chromophore as a polarity-sensitive NIR single-photon
emitter and pave the way for a wide range of futuristic
applications.
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