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Molecular generation stands at the forefront of AI-driven technologies, playing a crucial role in accelerating

the development of small molecule drugs. The intricate nature of practical drug discovery necessitates the

development of a versatile molecular generation framework that can tackle diverse drug design challenges.

However, existing methodologies often struggle to encompass all aspects of small molecule drug design,

particularly those rooted in language models, especially in tasks like linker design, due to the autoregressive

nature of large language model-based approaches. To empower a language model for a wider range of

molecular design tasks, we introduce an unordered simplified molecular-input line-entry system based

on fragments (FU-SMILES). Building upon this foundation, we propose FragGPT, a universal fragment-

based molecular generation model. Initially pretrained on extensive molecular datasets, FragGPT utilizes

FU-SMILES to facilitate efficient generation across various practical applications, such as de novo

molecule design, linker design, R-group exploration, scaffold hopping, and side chain optimization.

Furthermore, we integrate conditional generation and reinforcement learning (RL) methodologies to

ensure that the generated molecules possess multiple desired biological and physicochemical properties.

Experimental results across diverse scenarios validate FragGPT's superiority in generating molecules with

enhanced properties and novel structures, outperforming existing state-of-the-art models. Moreover, its

robust drug design capability is further corroborated through real-world drug design cases.
Introduction

The inherently intricate process of drug development has been
expedited by the emergence of articial intelligence (AI).
However, researchers are confronted with a range of design
challenges in real-world scenarios, including synthesizing novel
active compounds guided by ligand specications, devising
linkers to connect functional groups, and completing structural
fragments based on partial molecular data. To address these
multifaceted challenges, AI-driven molecular design models
have proliferated in recent years.

Recent advancements have yielded noteworthy methodolo-
gies for handling individual tasks. Within the realm of de novo
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molecule generation, Bagal et al. utilized a language model to
interpret molecular simplied molecular input line entry
system (SMILES)1 character sequences, ultimately leading to the
development of MolGPT, a novel framework that leverages the
self-attention mechanism with masking.2 Moreover, Juan-Ni
et al. introduced a fragment-based approach for de novo
molecular design, signicantly enhancing both the effective-
ness and uniqueness of the synthesized molecules.3 Consid-
ering the importance of generating molecules with desired
pharmaceutical properties in lead discovery, Wang et al. pre-
sented MCMG,4 a novel methodology that facilitates the
generation of molecules compliant with multiple constraints.
Additionally, other frameworks, such as REINVENT2,5

MIMOSA,6 and Mol-CycleGAN,7 have achieved remarkable
results in the generation of molecules with specic property
constraints.

In 2020, Imrie et al. introduced the groundbreaking linker
design paradigm, DeLinker, rooted in the variational autoen-
coder (VAE) framework.8,9 This innovative model was designed
to amalgamate two fragments or partial structures, thus
orchestrating the synthesis of a molecule that embodies both
components. Later, Igashov et al. pioneered the development of
3D equivariant molecular features using equivariant networks,
Chem. Sci., 2024, 15, 13727–13740 | 13727
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subsequently employing a diffusion process for linker
synthesis.10 This model enables accurate prediction of the
linker's size, facilitating the generation of a diverse array of
linkers and exhibiting state-of-the-art (SOTA) performance
across various benchmark datasets such as ZINC,11 CASF,12 and
GEOM.13 Then, Imrie et al. further rened the DeLinker
framework to develop DEVELOP,14 a versatile tool applicable to
linker and R-group design,15,16 scaffold hopping,17,18 and PRO-
TAC design,19,20 all demonstrating promising results. More
recently, Jin and colleagues introduced FFLOM,21 a model that
utilizes molecular graphs to represent molecular fragments. By
integrating node and edge ow layers to regulate atom and
bond sampling, this model enhances crucial metrics such as
traceability and molecular binding affinity for across diverse
molecular generation applications.

While the achievements of these molecular design method-
ologies are undoubtedly noteworthy, it is crucial to recognize
the inherent complexity of drug research and development. The
current methodologies tend to focus on modeling specic
generation contexts, thus limiting their adaptability to the wide
range of challenges encountered in drug design. However, in
recent years, substantial progress has been achieved in the
development of large-scale general natural language
models.22–25 These models have demonstrated remarkable effi-
cacy across diverse domains, attributed to their utilization of
pretraining and ne-tuning methodologies.26–29

Utilizing textual representation enables comprehensive
utilization of the modeling approach offered by pre-trained
language models, making SMILES-based pre-trained models
more adaptable and effective in molecular generation
compared to graph-based methodologies.30,31 Moreover,
SMILES-based language models, utilizing architectures like
transformer, are capable of handling lengthy molecular
sequences.32–35 Studies reveal that these models outperform
graph generation models in capturing complex molecular
distributions and possess superior generative capabilities.36

Traditional autoregressive language models, typically utilized in
SMILES or SELFIES, generate molecules sequentially, atom by
atom, from le to right. However, this approach is prone to
exposure bias, where the accuracy of subsequent atom genera-
tion hinges heavily on the preceding fragment, potentially
leading to error accumulation. Additionally, it lacks the capa-
bility to handle molecular design tasks such as linker design,
which require lling gaps within the molecular structure.

In response to this challenge, our study introduces FU-
SMILES, a novel molecular representation that identies
disconnection points among molecular fragments, enabling
their seamless integration into whole molecules. Unlike the
traditional le-to-right sequential representation, FU-SMILES
incorporates fragment details from any part of the molecule
into the context. Building upon FU-SMILES, we propose
FragGPT, an innovative and comprehensive fragment-based
drug design large language model. By employing FU-SMILES,
FragGPT prociently handles fragment generation tasks, effi-
ciently mitigating th error accumulation issues associated with
atom-by-atom generation, thereby enhancing the efficiency of
molecule construction.
13728 | Chem. Sci., 2024, 15, 13727–13740
Following a methodology akin to general language models,
FragGPT undergoes initial pretraining on an extensive molec-
ular dataset to enhance its generalization capabilities, followed
by ne-tuning tailored for specic downstream tasks. To fulll
the requirement for drug molecules that need to meet multiple
biophysical properties, the proximal policy optimization (PPO)
algorithm37 is utilized to steer the ne-tuning process of our
model across specic case studies. We propose a comprehen-
sive evaluation reward model for the generated molecules,
encompassing several key metrics such as docking score,
synthetic accessibility (SA) score,38 penalized log P (p log P)
score, and quantitative estimation of drug-likeness (QED) score.
To evaluate the efficacy of FragGPT, we conducted assessments
across a wide range of drug design scenarios, achieving
performance comparable to SOTA methods across all tasks.
Additionally, to examine the performance of FragGPT in real-
world drug design settings, we executed case studies covering
diverse aspects such as de novo design, fragment linker design,
R-group exploration, PROTAC design, side chain optimization,
and scaffold hopping. Our experimental ndings highlight that
FragGPT not only accelerates drug design in various scenarios
but also demonstrates signicant effectiveness in handling
multi-constraint generation tasks.

Results

The comprehensive workow of FragGPT is outlined in Fig. 1.
Initially, molecules are converted into the FU-SMILES format.
Subsequently, the BRICS algorithm is used to segment molec-
ular representations in SMILES format, accompanied by the
inclusion of markers indicating connection points. Following
this segmentation, data augmentation techniques are imple-
mented, ultimately leading to the concatenation process that
generates the FU-SMILES representation of the molecule. The
obtained FU-SMILES are then fed into our backbone model for
pretraining. To economize computational resources in down-
stream applications, we implement low-rank adaptation
(LoRA)39 for ne-tuning. Finally, within the contexts of specic
drug design scenarios, the PPO algorithm is deployed to stra-
tegically optimize the generated molecules across a diverse set
of properties.

To enforce constraints on the generation of molecular
pharmacological properties, we augment the pre-training
process by incorporating information about the absorption,
distribution, metabolism, excretion, toxicity (ADMET) proper-
ties of molecules, leading to the development of FragGPT-
ADMET. Unlike FragGPT, FragGPT-ADMET requires specifying
a set of ideal ADMET values during the generation process.
Typically, we provides the ADMET properties of a reference
molecule, enabling the model to generate molecules with
similar properties, thus adhering to he specied constraints.
For a thorough understanding of the methodology, please refer
to the Methods section.

FragGPT underwent a rigorous evaluation involving various
metrics. Initially, benchmark assessments are conducted across
multiple test datasets, covering ve distinct tasks: de novo
design, linker design, R-group exploration, side chain
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 The overview of FragGPT. (a) The workflow of FragGPT. (b) Data processing of FU-SMILES. (c) The backbone of FragGPT. The SMILES
sequence is derived through the augmentation of molecular fragment data processing. Following this, position encoding and word embedding
are applied to the SMILES sequence to obtain token embedding, which is subsequently fed into GPT2 for pre-training, resulting in the acquisition
of the pre-trained model FragGPT. (d) Fine-tuning architecture. (e) RL for the optimization of multiple properties.
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optimization, and scaffold hopping. Subsequently, we
employed reinforcement learning (RL) based on FragGPT to
delve deeper into specic case studies.
De novo design

Molecular de novo generation stands as one of the fundamental
tasks in molecular design. To assess its performance on this
task, we sampled 30 000 molecules and evaluated them on the
MOSES40 benchmark, utilizing multiple metrics, including val-
idity, uniqueness, novelty, SNN, Frag, and IntDiv. Our model
was benchmarked against several baseline models including
cMOlGPT,41 MOlGPT,2 develop,42 VAE,43 AAE,44 JTN-VAE,45 and
LatentGAN.46 The evaluation results are shown in the Table 1.
Since the original literature for cMOlGPT did not report the
results for IntDiv and novelty scores, these two metrics o were
excluded from the comparison.
© 2024 The Author(s). Published by the Royal Society of Chemistry
As shown in Table 1, FragGPT notably excelled in all other
models in terms of uniqueness, novelty and diversity. This
exceptional performance may be attributed to its extensive data-
driven training and the sufficient utilization of the compre-
hensive and diverse molecular representations and properties.
Most models, particularly MOlGPT, cMOlGPT and FragGPT,
demonstrated high validity, surpassing 98%. However, Latent-
GAN lagged behind in validity due to its reliance on molecular
latent vector for training, which posed challenges in recon-
structing molecules from the latent space. Besides, all models
generated molecules with nearly 100% uniqueness and frag
scores.

Beyond traditional novelty metrics, we utilized multiple
additional metrics including IntDiv and SNN to highlight the
models' capability to generate molecules with diverse and
distinct structures. Notably, FragGPT outperformed the other
Chem. Sci., 2024, 15, 13727–13740 | 13729
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Table 1 The evaluation results for the de novo design task

Model FragGPT CharRNN VAE AAE LatentGAN JT-VAE MolGPT cMolGPT

Validity[ 0.983 0.975 0.977 0.937 0.897 1.000 0.994 0.988
Unique@1K[ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Unique@10K[ 0.999 0.999 0.998 0.997 0.997 0.999 1.000 0.999
Novelty[ 0.994 0.842 0.695 0.793 0.949 0.914 0.797 —
IntDiv1[ 0.862 0.856 0.856 0.856 0.857 0.855 0.857 —
IntDiv2[ 0.861 0.851 0.852 0.852 0.851 0.849 0.851 —
Frag/Test[ 0.994 1.000 0.999 0.991 0.999 0.997 — 1.000
SNN/TestY 0.547 0.601 0.626 0.608 0.538 0.548 — 0.619
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models in novelty, IntDiv and SNN, further demonstrating its
efficacy in generating novel molecules. In comparison, VAE and
AAE showed lower novelty among the models, likely due to their
design strategy of reducing the latent space dimensions,
leading to higher similarity to the training dataset and lower
novelty.47
Linker design

As for linker design, we systematically evaluated FragGPT across
three benchmark datasets: ZINC, CASF, and PDBbind, utilizing
various evaluation metrics including validity, uniqueness,
novelty, SA, p log P, QED, and recovery. The detailed results are
shown in Table 2.

FragGPT exhibited an overall satisfactory performance in
terms of validity, achieving a validity rate above 90% through
autoregressive fragment generation without conducting valence
checks during the pre-training and ne-tuning phases. Fine-
Table 2 The evaluation results for the linker design task

Metric FragGPT FragGPT-LoRA De

ZINC
Validity[ 90.75% 97.34% 98
Uniqueness[ 65.47% 37.93% 44
Novelty[ 98.61% 98.16% 39
Recovery[ 21.25% 24.75% 79
SAY 3.14 2.93 3.
p log P[ 0.74 0.75 0.
QED[ 0.56 0.66 0.

CASF
Validity[ 90.00% 91.36% 95
Uniqueness[ 24.00% 23.00% 51
Novelty[ 99.21% 99% 51
Recovery[ 25.42% 26.00% 53
SAY 3.91 3.84 4.
p log P[ −0.36 −0.36 −0
QED[ 0.43 0.42 0.

PDBbind
Validity[ 93.20% 94.56% 96
Uniqueness[ 39.60% 35.30% 86
Novelty[ 98.33% 99.00% 84
Recovery[ 19.80% 14.10% 1.
SAY 3.73 3.60 4.
p log P[ −0.89 −0.83 −2
QED[ 0.41 0.45 0.

13730 | Chem. Sci., 2024, 15, 13727–13740
tuning FragGPT with LoRA further enhanced its validity,
comparable to those of DeLinker and 3DLinker. DeLinker,
employing a masking mechanism to enforce simple valence
rules, achieved top results on the CASF and PDBbind datasets,
closely trailing 3Dlinker on ZINC. The validity of the molecules
generated by DiffLinker exhibited signicant variation across
the ZINC and CASF datasets, possibly owing to its implicit
organization of atom coordinates.

Remarkably, FragGPT surpassed all models in generating
over 98% novel molecules across datasets, exceeding the
second-best model by a substantial margin of approximately
50% on ZINC, 42% on CASF, and 9% on PDBbind, showcasing
its exceptional capability to generate novel molecules and
explore a wider chemical space.

However, FragGPT displayed a relatively weaker performance
in recovery metrics compared to other models, partly attributed
to mismatches between fragment tokens and the specic
Linker DiffLinker 3DLinker DEVELOP

.40% 94.80% 98.67% —

.20% 50.90% 29.42% —

.50% 47.70% 32.48% —

.00% 77.50% 93.58% —
10 3.24 — —
32 −0.24 — —
64 0.65 — —

.50% 68.40% — —

.90% 57.10% — —

.00% 56.90% — —

.70% 48.80% — —
05 4.12 — —
.91 −0.41 — —
36 0.40 — —

.90% — — 93.10%

.10% — — 77.30%

.00% — — 88.70%
90% — — 22.40%
05 — — 4.05
.00 — — −1.93
37 — — 0.37

© 2024 The Author(s). Published by the Royal Society of Chemistry
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connections of test molecules. Nevertheless, FragGPT still ach-
ieved notable recovery rates even without ne-tuning, and its
recovery performance was only slightly inferior to that of
DEVELOP on PDBbind, reecting a balance between recovery
and a reasonable training data segmentation strategy.

The performance of FragGPT on three drug-likeness metrics
corroborated our initial hypothesis. FragGPT, especially
FragGPT-LoRA, excelled in drug-like properties across all data-
sets, achieving superior SA, QED, and p log P score perfor-
mances. This success can be attributed to our autoregressive
fragment-by-fragment molecule generation strategy, which
effectively circumvented the generation of chemically infeasible
structures, especially in complex ring systems. FragGPT's
outstanding performance in SA, QED, and p log P scores sur-
passed all other atom-by-atom generation models across all test
sets, highlighting its efficacy in generating molecules with
desired properties.
R-group exploration

We conducted an evaluation of FragGPT using the CASF and
PDBbind benchmarks, and compared its performance against
Delinker and DEVELOP, as summarized in Table 3. Similar to
the linker design task, the absence of atomic valence checks
slightly reduced the validity of the molecules generated by
FragGPT compared to DeLinker and DEVELOP. DeLinker
exhibited outstanding performance on CASF and PDBbind,
achieving 100% validity, while FragGPT's pre-training model
achieved over 90% validity on these two test sets, indicating its
commendable performance.

Due to the constrained modication space and compara-
tively larger building blocks in the R-group exploration task, our
uniqueness performance on CASF was intermediate between
DeLinker and DEVELOP, which slightly trailing on PDBbind.
However, in terms of novelty, FragGPT exhibited robust capa-
bilities, generating over 95% novel molecules and surpassing
other models on both test datasets. Particularly note-worthy,
Table 3 The evaluation results for the R-group design task

Metric FragGPT FragGPT-LoRA DeLinker DEVELOP

CASF
Validity[ 91.12% 91.09% 100.00% 99.80%
Uniqueness[ 35.66% 40.80% 74.20% 39.70%
Novelty[ 98.18% 98.56% 55.10% 43.40%
Recovery[ 39.40% 40.00% 33.60% 58.70%
SAY 3.26 3.21 — 3.39
p log P[ −0.26 −0.24 — −0.54
QED[ 0.39 0.54 — 0.52

PDBbind
Validity[ 95.86% 95.52% 100.00% 99.50%
Uniqueness[ 40.00% 43.00% 87.80% 76.20%
Novelty[ 99.19% 99.61% 71.10% 78.20%
Recovery[ 16.78% 13.00% 1.00% 15.30%
SAY 3.48 3.41 — 3.87
p log P[ −0.81 −0.78 — −1.57
QED[ 0.45 0.52 — 0.42

© 2024 The Author(s). Published by the Royal Society of Chemistry
FragGPT's pre-trained model achieved a remarkable 98.18%
novelty on the CASF test dataset, surpassing the second-highest
model, DeLinker, by 43.08%.

In terms of recovery, FragGPT exhibited comparable perfor-
mance to other models. On the CASF test dataset, FragGPT
demonstrated superior performance in the R-group exploration
task, achieving a 25.42% higher recovery rate compared to the
linker design task. This discrepancy may stem from the distinct
linking methodologies employed in these two tasks. Linker
design involves the intricate connection between two break-
points, followed by the integration of the generated linker
fragments, while R-group exploration simplies this process by
only considering the connection of a single breakpoint. The
variability in molecules generated based on different linking
points, even with identical linker fragments, may explain the
lower recovery observed in the linker design task.

Regarding drug likeness properties, FragGPT excelled in SA,
QED, and p log P on both test datasets, surpassing the other two
models. Its consistently outstanding performance across both
linker design and R-group exploration tasks underscores
FragGPT's capacity in generating chemically reasonable mole-
cules with substantial potential for lead design.

Scaffold hopping

Given the scarcity of scaffold hopping benchmark datasets, we
evaluated the pre-trained FragGPT models on the PDBbind test
dataset and compared them with DiffHopp. The results are
summarized in Table 4. DiffHopp achieved the highest molec-
ular validity performance of 91.4%, while FragGPT displayed
a slightly lower validity of 85.30%, still outperforming
DiffHopp-EGNN, GVP-inpainting, and EGNN-inpainting. Addi-
tionally, FragGPT exhibited signicantly higher levels of
Uniqueness and novelty compared to all other models.
Conversely, DiffHopp-EGNN only generated 0.64% unique
molecules, indicating potential mode collapse. The observed
decline in Uniqueness for DiffHopp and DiffHopp-EGNN may
be attributed to their more complex molecular representations.
DiffHopp employed graph information to model protein
pockets, atom features, and ligand coordinates, aiming to
capture a broader range of spatial structural features. Gener-
ating molecules based on atom types and coordinate informa-
tion posed greater challenges compared to utilizing only 2D
molecule graph information. This spatial characteristic also
impacted the performance of QED, where FragGPT exhibited
weaker performance than DiffHopp but was comparable to
other models.

Side chain optimization

Finally, we assessed the side chain growth capabilities on the
PDBbind test dataset, with results summarized in Table 5.
Given the scarcity of related studies or benchmark datasets for
this task, we exclusively compared the generatedmolecules with
the test dataset. We analyzed the validity, uniqueness, novelty,
recovery, SA, p log P, and QED metrics of the molecules gener-
ated by FragGPT, FragGPT-LoRA (ne-tuned on the PDBbind
training set), and FragGPT-ADMET. The pre-trained FragGPT
Chem. Sci., 2024, 15, 13727–13740 | 13731
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Table 4 The evaluation results for the scaffold hopping task on the PDBbind dataset

Metric FragGPT DiffHopp DiffHopp-EGNN GVP-inpainting EGNN-inpainting

Validity[ 85.30% 91.40% 75.70% 65.20% 79.30%
Uniqueness[ 82.80% 59.20% 0.64% 66.80% 66.70%
Novelty[ 99.80% 99.80% 100.00% 99.70% 99.90%
QED[ 0.48 0.61 0.51 0.55 0.47

Table 5 The evaluation results for the side chain optimization task

Model FragGPT FragGPT-LoRA Test/PDBbind

Validity[ 92.81% 77.63% —
Uniqueness[ 72.73% 43.97% —
Novelty[ 99.99% 99.98% —
Recovery[ 3.90% 11.80% —
SAY 3.04 3.00 3.30
p log P[ −0.20 −0.89 −2.23
QED[ 0.54 0.62 0.56
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model, without the constraints imposed by the PDBbind
training set, achieved the highest scores in validity (92.81%),
uniqueness (72.73%), and novelty (99.99%) among the three
models. However, its recovery rate was comparatively lower,
standing at 3.9%. Upon ne-tuning with the PDBbind training
set, FragGPT-LoRA demonstrated a slight decrease in validity
and uniqueness but an increase in recovery. This observation
could be attributed to the limited size of the PDBbind training
dataset, comprising less than 20 000 entries, which may reduce
the model's search space.

FragGPT demonstrated superior performance in the SA,
QED, and p log P evaluations in comparison to the molecules
from the PDBbind dataset. FragGPT achieved a higher SA score
than the test set by a margin of approximately 0.26 and signif-
icantly outperformed it in p log P, with a difference of 2.03
higher. However, regarding the QED score, FragGPT's perfor-
mance was comparable to that of the test set. Aer ne-tuning
with the training set, FragGPT-LoRA exhibited substantial
enhancement in both SA and QED scores, signicantly
surpassing the scores of the molecules in the PDBbind test set.
In summary, FragGPT and FragGPT-LoRA demonstrated
notable improvements in molecular quality compared to the
molecules generated by the PDBbind test set.
Conditioned generation using FragGPT-ADMET

We introduce FragGPT-ADMET, an extension of FragGPT, that
integrates 56 ADMET properties as conditional regulators for
molecular generation, aiming to enrichmolecular attributes. To
assess its effectiveness, we evaluated FragGPT-ADMET's
performance in optimizing both single and multiple ADMET
properties across two distinct tasks: de novo design and linker
design. Specically, our experiments focused on analyzing the
impact of three key ADMET properties: log P, stress response-
antioxidant response element (SR-ARE) and inhibitor of cyto-
chrome P450 2C9 protein (CYP2C9), under single- and multi-
constraint conditions.
13732 | Chem. Sci., 2024, 15, 13727–13740
As depicted in Fig. 2, our ndings revealed that FragGPT-
ADMET outperformed FragGPT in generating molecules with
improved properties across all three dimensions, both in linker
design and de novo design tasks. Subsequently, we tested the
proportion of molecules that met the specied criteria under
multiple constraints. These multiple constraints include a log P
value between 1 and 3, as well as meeting the criteria for SR-ARE
and CYP2C9 inhibition. As summarized in Table 6, FragGPT-
ADMET achieved success rates 2.6 times higher in linker
design and 1.2 times higher in de novo design compared to
FragGPT. Integrating these results with Fig. 2, we observed
a more pronounced enhancement of FragGPT-ADMET in the de
novo design task, likely due to the limited chemical space in
linker design, which restricts molecule generation to linker
structures dened by terminal groups. In essence, FragGPT-
ADMET exhibited superior conditional generation capabilities.
Drug design in real-world scenarios

In this section, we applied FragGPT in conjunction with RL to
address four specic molecular design challenges in real-world
scenarios, including linker design, R-group exploration, scaf-
fold hopping, and PROTAC design. Our primary objective was to
generate molecules with optimized docking scores, QED, and
SA, thereby demonstrating the exceptional generalization
capacity of FragGPT. For each design task, we set specic targets
and utilized four authentic reference molecules for comparative
analysis, with detailed information provided in the Methods
section.

Molecular design tasks were conducted by utilizing RL
tailored to the specic objectives across diverse scenarios. Fig. 3
depicts the progression of the RL optimization steps and the
mean docking scores, QED, and SA values for the molecules
generated at each step. Throughout all tasks, a consistent
improvement in these three molecular properties was observed
as the RL iterations progressed under the guidance of FragGPT.
In each subplot, the red dashed line represents the values of the
reference molecules.

In the linker design task, RL was employed to rene the
linker structure of the reference molecule, aiming to optimize
their three key properties. As depicted in Fig. 3(a), a continual
improvement in the average molecular properties was observed
through RL, ultimately reaching a level comparable to the
reference molecule. Initially, the docking score increased, fol-
lowed by a slight decrease, converging closely to the docking
score of the reference molecule. Concurrently, QED demon-
strated steady enhancement, while SA gradually declined,
eventually surpassing the reference value. The initial rise and
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 The performance of the conditioned generation task. (a) De novo design with single constraint, (b) de novo design with multi-constraints,
(c) linker design with single constraint, and (d) linker design with multi-constraints. FragGPT-ADMET (blue) and FragGPT-ADMET (red).

Table 6 j The success rate for the de novo and linker design tasks with
multi-constraints

Task De novo design Linker design

FragGPT 24.55% 39.89%
FragGPT-ADMET 63.09% 46.27%
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subsequent minor decline in docking score were attributed to
model adjustments for balancing the three properties. The
R-group exploration task involved RL optimization of the
© 2024 The Author(s). Published by the Royal Society of Chemistry
R-group structure of the reference molecule to enhance their
three properties. As illustrated in Fig. 2(b), continuous
enhancement was observed across all three molecular proper-
ties via RL, ultimately exceeding the reference molecule values.
In the scaffold hopping and PROTAC design tasks, FragGPT
demonstrated exceptional performance. As depicted in Fig. 3(c
and d), the model-generated molecules exhibited a more
signicant enhancement in docking and QED scores compared
to the reference molecules. Given the signicantly longer length
of PROTAC, the average SA scores for both generated and
reference PROTACs were higher than the molecules in the other
Chem. Sci., 2024, 15, 13727–13740 | 13733
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Fig. 3 The correlation between the average molecular properties and the progression of optimization steps during RL. (a) Linker design, (b) R-
group exploration, (c) scaffold hopping, and (d) PROTAC design. The curves denote the mean values of the docking scores (red), QED (blue), and
SA (green). The red dashed lines denote the values for the reference molecules.
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three cases. Consequently, the shi range of SA score was
limited and occupied a relatively small part of the optimization
process.

According to the foregoing results, we hypothesize that the
variance in performance may stem from the relevance of each
task to the corresponding objectives. As shown in Fig. 4, the
fragments to be modied in linker design and R-group explora-
tion were quite small, and thus the molecules generated by
FragGPT remained highly similar docking conformations to the
reference molecule, with minimal changes to the unaltered
fragments. This feature not only stayed consistent with our initial
design but also reduced the complexity of optimizing molecule
properties, which was conrmed by the RL performance of
FragGPT in these two cases, as seen in Fig. 3(a and b). In contrast,
for scaffold hopping, while the generated molecules occupy the
same protein pocket as the reference, the non-xed orientations
of the excised fragments lead to a more signicant variation in
the generated molecule structures compared to the other three
cases. This may be the reason why the molecular properties in
this case were much more difficult to be predicted or optimized.

Besides, FragGPT exhibited a remarkable capability in
producing fragments that were highly analogous yet superior to
the reference fragment. For example, the linker in the second
row of Fig. 4(a) differed from the reference linker with only one
13734 | Chem. Sci., 2024, 15, 13727–13740
atom, while the R-group in the second row of Fig. 4(b) precisely
resembled the reference, comprising a ve-atom heterocyclic
ring. Remarkably, even in the PROTAC design case, FragGPT
generated PROTACs with conformations quite similar to the
reference PROTAC, leveraging the exibility of its linkers to
outperform the latter in terms of docking and QED scores. The
visualization of these docking conformations, together with the
above RL optimization steps, demonstrated the ability of
FragGPT to generate molecules with comprehensive chemical
properties and controllable conformational transformation.

Discussion

In this study, we present a novel molecular representation, FU-
SMILES, alongside FragGPT, a pioneering comprehensive large
language model for drug design that relies on this representa-
tion. Through rigorous benchmarking experiments across 5
generation scenarios, FragGPT exhibited remarkable perfor-
mance, distinctiveness, and innovation. Notably, FragGPT-
generated molecules surpassed all SOTA models in terms of
SA and QED metrics, highlighting its ability to capture critical
drug-like properties. Moreover, we simulated real-world drug
design scenarios and employed RL optimization to design
molecules with superior properties compared to the reference
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 The docking conformations of the reference molecules and the corresponding chosen molecules generated by FragGPT with improved
docking score, SA and QED scores in four real-world scenarios: (a) linker design, (b) R-group exploration, (c) scaffold hopping, and (d) PROTAC
design. The pale blue conformation shown in the first row refers to the reference molecule in each case while the other two dark blue
conformations refer to the generated molecules.
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molecules. These results demonstrate FragGPT's prociency in
generating molecules with chemically plausible structures and
desired properties, aligned with predened optimization
objectives. As a result, FragGPT emerges as a unied and robust
molecular generation framework with signicant potential
across diverse applications.
Methods
Datasets

Pre-training. The training data set comprised 78 million
molecules, originating from PubChem35 and ChEMBL.48 Wemake
56 ADMET predictions for these molecules, thereby enriching the
pre-training with pharmacochemical property information.

De novo design.We used theMoses40 data set for ne-tuning,
which contains a total of 1 743 265 training molecules and 19
367 validation molecules.

Linker and R-group. We used the ZINC-250K11 data set that
contains 156 922 training molecules and 400 validation
molecules.

Scaffold hopping and side chain optimization. We used the
PdbBind49 data set for ne-tuning. The training set includes 17
393 small molecules and the validation set included 1933
molecules.

Linker design. We tested on ZINC-250K,11 casf-2016,12 and
PdbBind.49 The processing of fragment–linker pairs in the test
set followed the approach reported by Imrie et al.8 The ZINC-
250K data set contains 400 linker test pairs, casf-2016
contains 309 linker pairs, and PdbBind contains 321 linker
tests.
© 2024 The Author(s). Published by the Royal Society of Chemistry
R-group exploration. We tested on the casf-2016 and
PdbBind datasets. Like the linker, the fragment processing
followed the method of Imrie et al.8 casf-2016 contains 237 R-
group test pairs, and PdbBind contains 295 R-group test pairs.
To process the test sets, we adopt the Diopp method,50 which
divides each molecule into two parts: the R group (>1) and the
Murcko scaffold.51 The growth based on the scaffold serves as
the side chain modication task, and the generation based on
the side chain is used as the scaffold hopping task. The scaffold
hopping task includes 82 pairs of test data, and the side chain
task includes a similar number of 82 pairs. Among the 82 pairs
used for scaffold hopping, 66 pairs of data have an R number
less than or equal to 2, while 16 pairs exhibit an R number
greater than 2.
FU-SMILES

FU-SMILES cleverly characterizes molecular fragments in a very
simple way, enabling the model to seamlessly adapt to diverse
generation scenarios. Fig. 1(b) shows the brief ow of data
processing of FU-SMILES. Molecular generative models handle
generated data very differently from language models.
Language models assemble words corresponding to tokens into
complete sentences based on the token generation order,
whereas molecular generation necessitates consideration of the
crucial connectivity issue, not merely the token order. How to
effectively assemble the fragments generated by the model into
a valid molecule is the key to ensure the model's proper func-
tionality. We found that a molecule can be divided into several
fragments. To reconstruct a molecule from its fragments, one
approach is to record the disconnection site information. Based
Chem. Sci., 2024, 15, 13727–13740 | 13735
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on this, we rst use BRISC to fragment the small molecule X and
obtain molecular fragments. We then identify the two
endpoints of the disconnection point using [i*], resulting in the
fragment Xfrag with connection information. Notably, these
identiers must appear in pairs, where the serial number i <= n
(n is the number of molecular fragments). Finally, we connect
the molecular fragments using the special mark delimiter
hsepi> to obtain Xseq.

Xfrag = {x1,x2,.,xn}. (1)

Xseq ¼ x
0
1hsepix2.hsepi. x

0
n: (2)

At the same time, we found that the two ends of the
disconnection sites in assembled molecular fragments and
bonds is independent of the value of i or the order of the frag-
ments within a molecular fragment sequence. The value of i can
be considered as an unordered categorical information used to
distinguish different pairs of break points. Based on this, we
performed the rst data augmentation method: randomly
transforming the i value within (1 ∼ n), so that the break point
identication of each fragment has a probability of any value in
(1 ∼ n) (ensuring that the serial number i <= n appears only
once). Through this transformation, for the molecular fragment
group obtained through n break keys, there are a total of n
factorial combinations of possibilities. By adjusting the order of
break point numbering, the model can more effectively learn
the relationship between the data. Furthermore, the assembly
of fragments into valid molecules relies solely on their identi-
cation information. Unlike language models that operate with
sequential sequences where varying orders can yield different
meanings, different fragment sequences may represent the
same molecule. Therefore, we conducted a second data
augmentation method: by randomly shuffling molecular frag-
ments, allowing the fragments to be in any position in the
sequence, achieving the disordering of fragments in the
sequence. Assuming the molecule consists of three fragments,
namely fragment A, fragment B, and fragment C. Aer data
augmentation, there are six possible combinations, namely
{ABC, ACB, BCA, BAC, CBA, CAB}, and during the training
phase, one of these possibilities is randomly selected as input.
Both data augmentations are carried out simultaneously to
further enrich the diversity of data and enhance the robustness
of the model.
Backbone

FragGPT. We follow the GPT2 architecture, which is
a general generative language model. Its core is the attention
mechanism that can comprehensively consider the relation-
ships among each token in the sequence data and update its
representation based on the degree of relevance. This mecha-
nism can effectively capture the contextual information of the
text and guide the model generation.

AttentionðQ;K;VÞ ¼ softmax

�
QKTffiffiffiffiffi

dk
p

�
V (3)
13736 | Chem. Sci., 2024, 15, 13727–13740
For a SMILES data set, the language modeling task is used as
the training target.23 The standard goal of language modeling is
to maximize the likelihood:

F(D) =
P

logP(dijdi−k.,d1;q). (4)

GPT2 builds a neural network q through the transformer
decoder to model the conditional probability P, where k is the
prex or contextual information generated by the molecule.
Here Xseq is the input of the model, which is initially encoded
through TokenEncode. Among them, TokenEncode utilizes
a tokenizer to obtain the token encoding of Xseq, followed by
position encoding and word embedding on the token to derive
H0. Subsequently, H0 is fed into the GPTBlock block of l layer,
and the predicted molecular fragment sequence is decoded
using TokenDecoder. Among them, TokenDecoder is Hl that is
generated through the MLP layer and is the score of the model
for each possible fragment in the vocabulary at each output
position. The nal fragment sequence is determined through
somax activation, and these fragments are then assembled to
form the nal molecule generated by the model.

H0 = TokenEncode(Xseq), (5)

Hl = GPTBlock(H0), (6)

P(Xi) = TokenDecode(Hl). (7)

FragGPT-ADMET. First, we predicted the properties of the
SMILESmolecule data and obtained 56 ADMET properties. These
ADMET properties were then encoded using BertModel to get S0.

Sadmet = {s1,s2,.,sk}, (8)

S0 = Admet Encoder(Sadmet). (9)

Then we concatenate the ADMET feature S0 and the molec-
ular fragment sequence feature H0, yielding Hs as the input of
GPTBlock, which is expressed as:

Hs = concatenation(S0,H0). (10)

Hs is propagated through the l layer GPTBlock block, resulting in
an output Hs

l that incorporates both the ADMET properties and
the characteristics of small molecules. For decoding purposes, we
exclusively extract the small molecule features Hl from Hs

l to
obtain the nal molecule. Assuming that the feature dimension
of L1 is the sum of S0 andH0, with S0 spliced beforeH0 as a prex,
we extract the features Hl that have the same dimensions asH0 at
the end, and use them as the small molecule features.

Hs
l = GPTBlock(Hs

l−1), (11)

Hl = Slicing(Hs
l), (12)

P(Xi) = TokenDecode(Hl). (13)
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fine-tuning

We use LoRA39 to ne-tune the pre-trained model on a target
dataset. The core strategy of LoRA is to inject trainable low-
rank decomposition matrices into specic layers of the GPT
architecture, thereby reducing the number of trainable
parameters for downstream tasks. For each layer, a linear
layer is introduced to compress the features from dimension
d to r, and then expand thm back from dimension r to
d (adding the feature dimension of the next layer of
dimension d). Finally, the original features of the model are
then combined with the LoRA-derived features to produce
the nal output. Here, r is the rank in LoRA, where r � d.
Assuming that the pre-training model weight parameter
matrix is W0 ˛ Rd*k, and Wl is the LoRA weight parameter
matrix, the parameter update of LoRA can be expressed
through eqn (15):

W0 + Wl = W0 + L1L2,L1 ˛ Rd*rL2 ˛ Rr*d (14)

During the training process, the parameters W0 are frozen,
and only the parameters in L1 and L2 are updated. To maintain
the original output of the network at the start of training while
ensuring better convergence during learning, we follow the
LoRA parameter initialization method. The parameters in L1
are initialized with a Gaussian distribution, and those in L2 are
initialized to 0. If both matrices are initialized to 0 at the same
time, all neurons will be initially equivalent and may easily
cause the gradient to disappear. If all initialization is
Gaussian, an excessively large offset will be obtained in the
initial stage of model training, and too much noise will be
introduced, which could hinder model convergence. By using
these methods, we have ne-tuned our model on datasets such
as MOSES and ZINC, enhancing its adaptability to specic
data.
Reinforcement learning

The concise process of RL is illustrated in Fig. 1(e), where the
model is continually rened through feedback from the scorer.
However, fully updating model parameters in RL can easily lead
to model collapse. To address this, we use the LoRA method for
ne-tuning. We freeze the pre-trained model during parameters
update, focusing solely on updating the LoRA parameters. Then
we designed a reward function (reward model) based on prox-
imal policy (PPO) with multiple objectives. We have set up
a public reward function, a docking reward function, and
a medicinal property reward function. The public reward
function scores whether a legal molecule is generated and
provides a score S(comment). The docking reward function uses
karmadock to dock the generated molecule, and its docking
score is compared with that of the reference molecule to obtain
S(docking). For drug properties, we calculated the QED and SA
of the generated molecule and compared them with those of the
reference molecule to obtain S(drug). The nal score S(m) is the
sum of these three reward function scores:

S(m) = S(comment) + S(docking) + S(drug). (15)
© 2024 The Author(s). Published by the Royal Society of Chemistry
The process of establishing the reward function involves
inputting a specic task and calculating a penalty term for the
difference between generated and reference molecules. The
penalty term is sued to punish or reward RL for any deviation
from the dened optimization goals within each training batch.
The aim is to ensure that the model generates molecules that
align with the set optimization goals. Finally, the model is
optimized based on the reward index of the current batch of
data to guide the training of LoRA accordingly.

Experimental setup

For the pre-training model, a 12-layer GPT2 model with
a hidden dimension of 768 and an attention head of 8 is used as
the backbone architecture. In order to make the model
convergence more robust, we use the cosine annealing algo-
rithm52 to dynamically adjust the optimization learning rate,
with an initial learning rate of 0 and a nal learning rate of 1 ×

10−4, and use AdamW for parameter optimization. During the
training phase, the hyperparameter batch size was set to 32 × 8,
and 3 epochs were trained on 8 A100 GPUs. In the LoRA ne-
tuning phase, we set the dimension r of the update mean
matrix to 16, the scaling factor to 32, and trained for 10 epochs.
The scaling factor is to adjust the amplitude of the update
matrix, with a higher factor exerting a greater inuence on
model parameters. RL uses the same LoRA settings as the ne-
tuning stage. Benchmarking involved ne-tuning models: de
novo design on Moses, side chain optimizaiton and scaffold
hopping on PdbBind, and linker design and R-group explora-
tion on ZINC. Except for the de novo design task, which gener-
ates 30 000 molecules for testing on Moses, the other tasks
generate 250 molecules for each test pair.

Baselines

In our study, we evaluated a diverse array of models for different
molecular design tasks. For de novo design, we examined
CharRNN,42 VAE,43 AAE,44 LatentGAN,46 JT-VAE,45 MolGPT,2 and
cMolGPT.41 For linker design, our comparisons included Dif-
fLinker,10 DeLinker,8 3DLinker,53 and DEVELOP.14 For R-group
design, we assessed DeLinker and DEVELOP. Since scaffold
hopping design lacks established benchmarks, we solely
compared with DiffHopp.50 To assess the effectiveness of our
models in the de novo design task, we generated 30 000molecules
for evaluation. For the other tasks, we sampled 250molecules per
test pair. The evaluation metrics, including validity, uniqueness
and novelty were aligned with the ndings reported in the orig-
inal papers.2,41 Additionally, for traceability, SA, p log P and QED,
we relied on the results reported in the FFLOM paper.21

Metrics

Evaluation of medicinal properties. SA score. This parameter
is used to evaluate the complexity of synthesized compounds,54

where lower the SA scores, the easier the molecules are to be
synthesized. QED score. It is a probability value that reects the
likelihood of a compound being a potential drug candidate,
with a score closer to 1 indicating a higher potential. p log P
Chem. Sci., 2024, 15, 13727–13740 | 13737
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score. This score, penalized by ring size and synthetic reach-
ability, is predicted using the model reported by You et al.55 A
higher p log P score indicates better overall properties. For the
de novo task, we used the MOSES evaluation metric.

Validity. RDKit's molecular structure parser is usually used
to determine the validity of a molecule. Validity refers to the
valid molecule Gv in the generated set Gm.

validity ¼ number of Gv

number of Gm

(16)

Uniqueness@k. In the generated set Gm, we calculated the
proportion of Gu aer removing duplicated molecules for the
rst K = 1000 and K = 10 000.

uniqueness ¼ number of Gu

number of Gm

(17)

Novelty. As for the proportion of molecules Gn in the
generated set Gm that are not present in the training set, a lower
novelty score may indicate overtting of the model.

novelty ¼ number of Gn

number of Gm

(18)

Internal diversity (IntDiv). By calculating the power (r) mean
of the Tanimoto similarity (TM) across all SMILES molecules in
the generated set Gm, the internal diversity of the generated
molecules is evaluated. We evaluated the internal diversity
when r is 1 and 2 simultaneously.

IntDivpðGÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffi
1

jGmj2
r

s X
m1m2

TMðma;mbÞr (19)

Fragment similarity (Frag). This parameter uses cosine
similarity to measure the BRICS fragment pairs of molecules
within the generation set G and the training set T.

Frag(Gm,Tm) = 1 − cos(F(Gm),F(Gt)) (20)

Nearest neighbor similarity (SNN). By calculating the average
Tanimoto similarity TM(ma,mb) between a molecule ma in the
generated set Gm and the nearest neighbor molecule mb in the
training set Tm. If the generated molecule is far away from the
training set, the similarity to its nearest neighbor will be lower.

SNN

�
Gm;TmÞ ¼ 1

jGmjmax TMðma;mbÞ
�

(21)

For the linker, R-group, and sidechain tasks, in addition to
the validity, uniqueness, novelty, and drug feasibility evalua-
tions, traceability evaluations were also performed. Recovery
refers to the proportion of test data in the test set(test) that can
regenerate the same test case set(G) as the ground truth.

novality ¼ setðGÞ
setðtestÞ (22)
13738 | Chem. Sci., 2024, 15, 13727–13740
In the case study, we also calculated docking scores and applied
the structural ltering strategy proposed by Imrie et al.8 to the
generated molecules.

Docking score. We use karmadock56 to calculate the docking
scores for generated molecules, serving as a component in devel-
oping a comprehensive molecule evaluation reward model within
the RL framework. Karmadock, proposed by Zhang et al.,56 can
quickly and accurately predict protein-ligand binding conforma-
tion and affinities. Given the need for rapid yet accurate evaluation
models in RL, Karmadock stands out as a fast alternative while
maintaining comparable accuracy to traditional docking methods.
Reference molecules in real-world drug design

Linker design. MALT1, a crucial regulator of the immune
system, plays a pivotal role in lymphocyte antigen-dependent
responses and orchestrates the NF-kB signaling pathway. Inspired
by the discovery of the nanomolar selective allosteric inhibitors
MLT-748 and MLT-747 of MALT1 reported by Quancard et al.,57 we
took MLT-747 as a reference molecule for the linker design task.
The properties of MLT-747 are as follows: a docking score of 41.64,
along with the QED and SA values of 0.57 and 3.47, respectively.

R-group exploration. The association of the TRPM8 channel
with cold pain induced by oxaliplatin and nerve damage was
elucidated by Zhao et al., revealing its therapeutic potential for
mitigating migraine and inammation-induced cold hyper-
algesia.58 Additionally, Bianchini et al. developed potent antago-
nists targeting TRPM8 for ocular pain relief, with compound 51
(N-alkoxyamide derivative) demonstrating notable pharmaco-
logical efficacy.59 Building upon this groundwork, our investiga-
tion focused on the R-group substitution based on the scaffold of
compound 51. Compound 51 served as the reference with
a docking score of 17.17, QED of 0.92, and SA of 2.87.

Scaffold hopping. Hu et al. identied 11 scaffold hopping
fragment pairs from the structures of known CDK9 inhibitors,
excluding those designated as CDK9 hinge region.60 By aug-
menting the number of terminal fragments, they generated
thousands of novel molecules containing the input fragments.
Notably, one of these compounds, compound 4, displayed
similar hydrogen bonds and end fragments to those of a known
inhibitor BAY-114357. BAY-114357 served as the reference, with
a docking score of 23.39, QED of 0.72, and SA of 2.68.

PROTAC design. BRD4, a crucial factor in transcriptional
and epigenetic regulation, harbors bromodomains essential for
embryogenesis and cancer progression. Gadd et al. introduced
MZ1, a PROTAC degrader targeting BRD4, which effectively
induced protein degradation, impeded BRD4's binding to the
acetylated markers and disrupted gene transcriptional regula-
tion.61 In this study, we took MZ1 as a reference PROTAC and
modied its linker using FragGPT. The properties of MZ1 are as
follows: a docking score of 40.00, QED of 0.07, and SA of 5.06.
Data availability

The code and data used in the study are publicly available from
the GitHub repository: https://github.com/pengbingxin/
FragGPT-Interface.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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