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Probing Machine Learning Models Based on High
Throughput Experimentation Data for the Discovery of
Asymmetric Hydrogenation Catalysts†

Adarsh V. Kalikadien,a‡ Cecile Valsecchi,b‡ Robbert van Putten,c Tor Maes,c Mikko
Muuronen,c Natalia Dyubankova,c Laurent Lefort,∗c and Evgeny A. Pidko∗a

Enantioselective hydrogenation of olefins by Rh-based chiral catalysts has been extensively studied for
more than 50 years. Naively, one would expect that everything about this transformation is known and
that selecting a catalyst that induces the desired reactivity or selectivity is a trivial task. Nonetheless,
ligand engineering or selection for any new prochiral olefin remains an empirical trial-error exercise.
In this study, we investigated whether machine learning techniques could be used to accelerate
the identification of the most efficient chiral ligand. For this purpose, we used high throughput
experimentation to build a large dataset consisting of Rh-catalyzed asymmetric olefin hydrogenation
results, specially designed for applications in machine learning. We showcased its alignment with
existing literature while addressing observed discrepancies. Additionally, a computational framework
for the automated and reproducible quantum-chemistry based featurization of catalyst structures was
created. Together with less computationally demanding representations, these descriptors were fed
into our machine learning pipeline for both out-of-domain and in-domain prediction tasks of selectivity
and reactivity. For out-of-domain purposes, our models proved limited efficacy. It was found that
even the most expensive descriptors do not impart significant meaning to the model predictions. The
in-domain application, while partly successful for predictions of conversion, emphasizes the need for
evaluating the cost-benefit ratio of computationally intensive descriptors and for tailored descriptor
design. Challenges persist in predicting enantioselectivity, calling for caution in interpreting results
from small datasets. Our insights underscore the importance of dataset diversity with broad substrate
inclusion and suggests that mechanistic considerations could improve the accuracy of statistical
models.

Introduction
More than half a century ago, Knowles and Horner reported
the first example of an enantioselective olefin hydrogenation cat-
alyzed by Rh in combination with a chiral phosphine ligand.1–3

Although the obtained enantiomeric excesses were modest, their
seminal work started the field. Asymmetric hydrogenation imme-
diately appeared as an attractive method to produce enantiop-
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ure compounds.4–9 Compared to the competing classical reso-
lution technology, it exhibits 100% theoretical yield, high atom
economy, and good to excellent enantiomeric excesses. Over the
last 50 years, the work from numerous industrial and academic
groups resulted in the development of many efficient chiral lig-
ands and in the implementation of this technology for large scale
production.10–17 In addition to ligand development, the mech-
anism of this reaction was extensively studied via experimen-
tal18–27 and computational studies based on Density Functional
Theory (DFT)28–31 with the realization that the key elementary
steps (i.e. the transition states governing selectivity and reactiv-
ity) vary with the ligands.

Despite the extensive knowledge built over the years, finding
the right asymmetric hydrogenation catalyst for a new prochi-
ral olefin remains a very empirical exercise and requires the
screening of a large set of ligands and reaction conditions. High
throughput experimentation (HTE) methodologies have success-
fully been implemented to rapidly explore the numerous parame-
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ters affecting the outcome of an asymmetric hydrogenation reac-
tion.32–39 Nevertheless, integrating in-silico assessments of cat-
alyst candidates into HTE campaigns would be highly benefi-
cial.40 It could further accelerate the time-sensitive process de-
velopment of active pharmaceutical ingredients and lower the
consumption of substrates needed to perform the HTE screening,
often available in low quantity at the start of a drug develop-
ment program. Unfortunately, the in-silico design and develop-
ment of homogeneous catalysts remains a challenging task.41–43

Predictive strategies for catalyst design are generally categorized
into two groups depending on whether or not they require knowl-
edge of the underlying mechanism of the catalytic cycle.44–49 The
mechanism-based approaches rely on quantum chemical calcu-
lations of the key transition state intermediates. Consequently,
they require knowledge of the reaction mechanism and are there-
fore very specific to the catalytic system under study. In addi-
tion, they are computationally expensive due to the complex en-
ergetic landscape of the transition metal-based catalysts. A few
reports utilized this approach for the prediction of enantioselec-
tivity of Rh based hydrogenation.50–53 To make mechanism-based
approaches practical at a larger scale, potential energy functions
of the reactants and products such as force-fields are used to ap-
proximate the connecting transition state.45 Recent implementa-
tions either mix the reactant and product potential energy sur-
face with different weights/corrections to get an approximation
of the stereo-determining transition state50 or utilize transition-
state force fields to approximately describe the transition state
directly.45,51,53

The alternative approach that does not require any knowledge
of the mechanism is the use of quantitative structure-property re-
lationships (QSPR).54–60 It consists in establishing a correlation
between the structure of the catalyst and its performance e.g.,
with regards to its activity or selectivity. Originating from the
traditional linear free energy relationships (LFERs), such as Ham-
mett plots,61–63 these methods have experienced a revival in the
last decades with the advent of machine learning (ML) and its
adoption by chemists.46,55,64,65 Refined catalyst representations
based on quantum chemical calculations combined with more so-
phisticated statistical approaches are challenging the status quo
of homogeneous catalyst design.55,58,59

Recent studies utilized this approach for the design of selec-
tive Rh-based catalysts.66,67 Xu et al. created a standardized
database including over 12,000 data points on asymmetric hydro-
genation of olefins from literature.66 This database was utilized
in a hierarchical learning approach to connect a large amount
of related data from literature to the small amount of data from
ongoing experimentation campaigns. It was shown that this hi-
erarchical approach performs well for predicting the selectivity
of reactions with closely related substrates. The tested cata-
lyst and substrate representations were limited to 2D and 3D
cheminformatics-based descriptors. Recently, Singh et al. show-
cased an approach rooted in quantum chemistry,67 integrating
quantum chemically derived molecular descriptors from five dif-
ferent asymmetric binaphthyl-derived catalyst families to pre-
dict the enantioselectivity of asymmetric olefin and imine hydro-
genation. A random forest (RF) model trained on a set of 368

substrate-catalyst combinations demonstrated impressive predic-
tive power compared to other linear and non-linear statistical
methods, with a root-mean-square error in the predicted percent
of enantiomeric excess (%ee) of about 8.4± 1.8 compared to ex-
perimental values.

Inspired by a recent publication of Sigman and coworkers to-
gether with Genentech,68 we decided to evaluate whether we
could build a predictive model to support our HTE workflow for
the screening of asymmetric hydrogenation catalyst. Our stan-
dard library of 192 chiral Rh catalysts was used to generate high
quality data (up 3552 data points) as sole input for our model
since it has been recognized that literature data could induce bi-
ases.69,70 In parallel, we developed a workflow to automatically
generate a set of consistent DFT-based descriptors of our 192 lig-
ands. Herein, we present our findings on the performance of our
ML models in seven different cases including both out-of- and in-
domain prediction tasks.

HTE data generation and data reproducibility
Within our HTE group supporting chemical process development,
we have developed several workflows to expedite the screening
of catalysts. For asymmetric hydrogenation, we routinely screen
two plates, each containing 96 chiral ligands, in combination with
Rh. These ligands were selected based on their documented ac-
tivity in asymmetric hydrogenation and their commercial avail-
ability. To complete the plates, we included several ligands not
typically used in such reactions. In our ligand library, bisphos-
phines (denoted as ‘PP’ ligands) were the most prevalent, com-
prising 142 entries (74%), followed by aminophosphines (‘PN’)
with 25 entries (13%), phosphoramidites with 11 entries (6%),
and monophosphines (‘P’) with 10 entries (5%). Each ligand con-
tained at least one phosphorus donor atom.

Fig. 1 Asymmetric hydrogenation reaction performed in this study. A
set of varying substrates was selected to be tested with a wide range of
Rh-based catalysts under varying conditions.

In this study, we tested our 192 Rh precatalysts against five
model substrates: SM1-SM3, representing some of the most sig-
nificant substrates in the development of asymmetric hydrogena-
tion, and SM4-SM5, which are structurally related and pose
slightly greater challenges (see Figure 1). Various substrates were
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tested under different reaction conditions. Although not a full
factorial design, a total of 3552 data points were collected, rep-
resenting to our knowledge the largest and most homogeneous
dataset published for this crucial catalytic reaction. Table 1 sum-
marizes the collected data points.

Table 1 Details of the 35 96-wells plates hydrogenation; data points
selected for machine learning modeling in bold

Starting material Solvent T [°C] H [bar] Time [h] #data points

SM1

DCE 25 5 1 192
16 192

30 16 192

Methanol 25 5 1 192
16 576

30 16 192

SM2
DCE 25 5 1 192

16 192

Methanol 25 5 1 192
16 192

SM3
DCE 25 5 1 192

16 192

Methanol 25 5 1 192
16 192

SM4 Methanol 50 5 16 192

SM5 Methanol 25 5 16 96
50 5 16 192

Total 3552 (960)

To assess the stability of our Rh precatalysts, we evaluated the
entire set with substrate SM1 immediately after their prepara-
tion, and again after six and twelve months of storage. Good
reproducibility was observed for the enantiomeric excesses (ee),
with coefficients of determination ranging between 0.87 and 0.94
across the experiments (see SI, Figure S3). Out of 576 data
points, only 38 showed a discrepancy where the absolute change
in ee (|∆ee|) measured in different runs exceeded 0.2.

As anticipated for a straightforward substrate like SM1, the
conversion exhibited a strongly bimodal distribution, predom-
inantly clustering around a value of 1 (indicating full conver-
sion). To ensure a balanced classification, we categorized the
data points into high conversion (conversion ≥ 0.8) and low con-
version (conversion < 0.8). Out of 192 ligands, only 20 of them
exhibited a variation in classification across different runs, result-
ing in an average Pearson correlation coefficient of 0.86 across the
three runs. The accuracy levels for pairwise comparisons ranged
from 0.92 to 0.96. For detailed information on the experimental
procedure we refer the reader to Section S1 of the Supplementary
Information.

Data analysis
Internal data analysis of experimental results

A total of 3552 data points were generated during the data pro-
duction exercise across 37 96-well plates (Table 1). SM1, SM2,
and SM3 were tested in 2 solvents (methanol (MeOH) and 1,2-
dichloroethane (DCE)) and 2 reaction times (1 and 16 h). For
SM1, higher pressure (30 bar instead of 5 bar) was also explored.
Additionally, the more challenging SM5 was tested at 2 tempera-
tures (25°C and 50°C).

In addition to serving as high-quality input for machine learn-
ing models, this comprehensive dataset enables a systematic in-
vestigation of the effects of temperature, pressure and solvent

across the entire set of ligands (see Figure 2). At first glance, it ap-
pears that a variation of the reaction conditions has less influence
on the ee than on the conversion. As expected, increased temper-
atures lead to higher conversion while exerting minimal impact
on enantioselectivity. Elevated hydrogen pressures were found
to generally improve conversion but adversely affected enantios-
electivity for a few ligands.18,27,71 The solvent choice had the
most significant effect on the performance; primarily on catalyst
activity and, to a lesser extent, on enantioselectivity. These find-
ings underscore the importance of solvent screening in HTE cam-
paigns, advocating for its execution across a broad ligand set.

Fig. 2 The influence of various conditions on reactivity (conversion) and
enantioselectivity (ee) in Rh-catalyzed asymmetric olefin hydrogenation.
Solvent effect was evaluated on SM1-3 after 1 h reaction time. Pressure
effect was evaluated on SM1 after 16 h. Temperature effect was evalu-
ated on SM5 after 16 h and on one plate. An interactive version of this
figure displaying the ligand structures corresponding to the data points
can be found in the SI (see interactive figure ‘Figure2.html’ in the SI).

Consistency analysis of experimental results and literature
data

Since the substrates of our study have been extensively studied
in Rh-catalyzed asymmetric hydrogenation, we conducted a com-
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Fig. 3 Consistency Analysis: (A) Raw distributions of conversion and |ee| in the current study (HTE data) - all data points in Table 1 - and in
literature (Reaxys+Scifinder). (B) Scatter plot comparing the closest enantiomeric excess (|ee|) from literature with our experimental results under
identical conditions (same catalyst, starting material, and solvent). (C) Venn diagram of ligand/substrate/solvent triplets divided into triplets with
at least one consistent or discrepant Reaxys record (green and red set, respectively). The arrow shows that 8 triplets for which a consistency with
Scifinder was found. (D) Comparative analysis of |ee| discrepancies (|∆ee| > 0.2) across our data (blue), Reaxys (orange), and Scifinder (red) for the
15 triplets for which no consistency with Reaxys was found. An interactive version of this figure displaying the ligand structures corresponding to the
data points can be found in the SI (see interactive figure ‘Figure3.html’ in the SI).

parison between our experimental results and those documented
in the literature. This endeavor necessitated the aggregation
and refinement of published data, a process that proved to be
challenging. Utilizing the Reaxys database72 (accessed in March
2023), we performed a reaction search for the conversion of SM1-
SM5 into their corresponding hydrogenated products, omitting
stereochemistry. This search yielded 2098 references, each re-
quiring diligent formatting and cleaning to standardize reaction
component labels and conditions. After discarding entries with
missing information and focusing exclusively on Rh-catalyzed re-
actions, we obtained a dataset comprising 752 entries. Notably,
566 of these entries matched ligands from our library in conjunc-
tion with either MeOH or DCE as solvents. In line with obser-
vations made by other research groups,70,73 our HTE campaign
contained more negative results (low conversion and/or enantios-
electivity) as compared to those reported in literature (see Figure
3A), a disparity that augments the value of our dataset for ma-
chine learning model development.

The 566 literature entries comprised 75 unique lig-
and/substrate/solvent combinations, or "triplets", involving 39
distinct ligands. We compared the ee values reported in liter-
ature with our experimental values for each triplet (see Figure
3B). A "good match" was defined by an absolute ee difference of
less than 0.2 (i.e., |∆ee| < 0.2). Among the 75 triplets, 45 ex-
hibited complete concordance with no discrepancies observed be-
tween literature data and our experimental findings (see Figure
3C). Furthermore, 15 triplets showed partial agreement, with at
least one literature result aligning with our experimental data.

Overall, 80% of the literature data sourced from Reaxys aligned
with our experimental results, reflected by a Pearson coefficient of
0.78. An additional search in Scifinder (accessed in March 2023)
targeting the 15 triplets with discrepancies unearthed 152 new
literature entries, enabling the reconciliation for an additional
8 triplets (Figures 3C and 3D), thereby elevating the agreement
with published studies to over 90%. For the remaining 7 discrep-
ancies, no Scifinder records were found. As depicted in Figure 3D,
our ee values were consistently higher than those documented in
literature. A closer examination revealed that all discrepant lit-
erature data emanated from a singular source,74 suggesting the
possibility of a systematic experimental discrepancy within that
study.

Data selection for predictive models

After the analysis of the consistency of our HTE dataset, 960 data
points out of 3552 were selected as inputs for our models (Table
1). Despite the common advocacy for larger datasets in enhanc-
ing statistical model performance, this selection was driven by the
need for data uniformity and the avoidance of redundancies that
might compromise model effectiveness. Moreover, we opted to
exclude data from the literature, such as those from Xu et al.,66

to prevent the introduction of inconsistencies, adhering to find-
ings discussed elsewhere regarding data bias.69,75–78 In addition,
this avoided the overrepresentation of a specific substrate. For
simpler substrates SM1, SM2, and SM3, results from a 1-hour re-
action time were chosen to ensure a balanced reactivity distribu-
tion. The empirically determined optimal temperature for each
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substrate was selected, and MeOH was consistently used as the
solvent across all substrates to minimize variability from solvent
effects, thereby allowing the model to more accurately focus on
catalyst-specific features.

Considering the logarithmic nature of the enantiomeric excess,
we chose to compute and model the ∆∆G‡ values,79 which fol-
lowed a distribution that approximates normality.48

In the final set of 960 data points, enantioselectivity (∆∆G‡)
demonstrated a distribution approximating a normal curve, with
values ranging from -15 to 15 kJ/mol for SM1, SM2, and SM3,
and -5 to 7 kJ/mol for SM4 and SM5.80 The conversion results
exhibited a bimodal distribution (see Figure 4), predominantly
skewed towards higher values. Therefore, a classification model
was built on a threshold of 0.8.

Spearmans rank correlation coefficient (see Figure 4) was em-
ployed to evaluate and compare the catalyst rankings across dif-
ferent substrates. SM1 and SM3 showed the highest correlation
in their experimental values, with correlation coefficients of 0.77
for conversion and 0.83 for ∆∆G‡. This was followed by SM1-
SM2 (correlations of 0.59 for conversion and 0.82 for ∆∆G‡) and
SM2-SM3 (correlations of 0.65 and 0.80, respectively). In con-
trast, SM4 and SM5 did not exhibit significant correlations with
the other substrates. For instance, among the top performers
in enantioselectivity for substrates SM1-3 are ligands (R,R,S,S)-
DuanPhos (L55) and (R,R)-Et-DuPhos (L68), whereas for sub-
strates SM4 and SM5, the ligands providing highest enantiose-
lectivity are SL-J505-1 (L18) and L186, respectively. Notably, L18
and L186 exhibit significantly lower selectivity with other sub-
strates. As further detailed, conducting such an analysis provides
critical insights for selecting training sets for out-of-domain tasks.

Catalysts and substrate descriptors
The next step towards a statistical model involved the featuriza-
tion, i.e., mathematical representation, of the chemical entities.
Descriptors were generated for the 192 catalysts and five sub-
strates independently and then used as input features in our pre-
dictive models to encode the entire reaction space.81

Ligand descriptors

The numerical representation of chemical entities is key to the
quality of machine learning models. We decided to test three
different representations with increasing simplicity for our set of
192 catalysts: DFT-based descriptors derived from DFT optimized
geometries, 2D cheminformatics based extended-connectivity fin-
gerprints (ECFP4 with 512 bits) and one hot-encoding (OHE) of
ligands and substrates.

For the DFT-based descriptors, we opted to compute well-
established general descriptors for this reaction type without de-
signing descriptors tailored to a specific reaction mechanism.
We aimed at a state-of-the-art level of accuracy by performing
DFT optimization with the PBE0-D3(BJ)/def2-SVP method (see
SI section S3 for details) on all 192 Rh- precatalyst, i.e., the
cationic square planar [Rh(L)(NBD)]+ (NBD=Norbornadiene)
formed upon mixing [Rh(NBD)2]BF4 with a chiral ligand and
therefore reflecting the precatalyst state in the experimental cat-

alyst library. In addition to the alignment with the experimental
workflow, the rigid and symmetrical nature of NBD was key to
limit the conformational freedom and reduce the computational
cost while featuring a Rh-olefin interaction.82 Although this com-
plex needs to lose NBD to enter the catalytic cycle, we anticipated
that the descriptors derived from such a metal-ligand complex
would be close to the catalytically-relevant states where a square
planar complex with a P-Rh-alkene and P-Rh-O bond is formed
in the transition state. A Python package, Open Bidentate Lig-
and eXplorer (OBeLiX),44 was developed to extract and calculate
steric, geometric and electronic descriptors. A more detailed ex-
planation about the featurization of the precatalyst structure is
provided in section S4 of the SI. Among other features, OBeLix
utilizes a graph-based method to identify the ligand in the com-
plex. This ensured that steric descriptors, such as the buried
volume, were only taking the ligand into account. For the non-
symmetrical bidentate ligands, the two coordinating atoms were
distinguished based on their charge with the label min/max de-
noting the least/most positively charged donor atom, respectively.
In addition to descriptors derived from the [Rh(L)(NBD)]+ com-
plex, we also generated electronic descriptors for the ligand alone
(labelled as free ligand). For this purpose, the ligand geometry
was extracted from the optimized structure of the corresponding
[Rh(L)(NBD)]+ followed by a single-point (SP) DFT calculation.
This entire workflow resulted in a total of 101 descriptors per cat-
alyst. Highly correlated descriptors as well as descriptors judged
redundant based on our computational chemistry intuition (e.g.,
Mulliken charges for atoms where NBO charges were already
available) were removed leaving a final set of 34 descriptors per
catalyst.83 This set contained 15 steric, 8 geometric and 11 elec-
tronic descriptors. The steric descriptors include percent buried
volumes calculated with either the donor atoms or metal as the
center of the sphere, measuring the steric hindrance induced by a
ligand.84,85 The geometric descriptors include specific angles and
distances, such as the bite angle,86 the cone angle, a dihedral an-
gle of NBD with respect to the donor atoms and distances between
the donor atoms and the metal center in the complex. The Tol-
man cone angle87 often serves as a method to assess the steric
size of a ligand, however it was shown to be inaccurate for asym-
metric ligands. The exact cone angle88 as implemented in Mor-
feus was used instead. Finally, the electronic descriptors set con-
sist of commonly used descriptors derived from electronic struc-
ture calculations such as the HOMO-LUMO gap, NBO charges of
the donor and metal atoms, and lone pair occupancies of donor
atoms. These descriptors represent either the metal-ligand bond-
ing or the local electronic environment within the complex. Sim-
ilarly, electronic parameters were extracted from the SP DFT cal-
culation on the free ligand.

In addition to the 3D representation, 2D ECFP representations
were generated from the metal-ligand complexes using RDKit.89

Recently, Sigman and coworkers published descriptors for 111
ligands present in our library.68 Although these authors used
Pd(L)(Cl)2 in their DFT calculations, their global geometric and
electronic descriptors correlate well with our descriptors. How-
ever, large discrepancies were observed for the local steric de-
scriptors that are more sensitive to the procedure for the initial
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Fig. 4 Distribution for conversion (%, on the top) and enantioselectivity (∆∆G‡ in kJ/mol, on the right) in red, blue, green, yellow, and magenta
representing SM1, SM2, SM3, SM4, and SM5, respectively. The Figure includes a Spearman correlation matrix of experimental values for substrate
pairs, with the upper triangle showing ∆∆G‡ and the lower triangle indicating conversion.

structure generation and to conformers search and selection (see
SI section S5 for a detailed comparison).

PCA analysis of 3D DFT-based descriptors

We conducted a principal component analysis (PCA) on our
dataset of DFT-based descriptors to investigate whether a dimen-
sionality reduction would allow a visualization of the ligand space
that aligns with human chemical intuition and understanding.
Applying PCA directly to the 34 descriptors and selecting the first
two principal components, which explain 37% of the variance,
resulted in the formation of well-defined clusters (see Figure 5A)
corresponding to chemically distinct classes of ligands (e.g., phos-
phoramidites, PN ligands, phosphine oxide). As expected, the
loading plots for the first two principal components revealed a
predominant influence of electronic descriptors, confirming that
the clustering was primarily based on electronic differences (see
SI Figure S11).

In an effort to discern smaller clusters, subsequent PCA anal-
yses were performed on each category of descriptors (namely,
the electronic, steric and geometric descriptors). The first prin-
cipal component from each category was then used to construct
cross sections and the results are summarized in Figure 5B-D (see
PCA Interactive Figure in the SI for enhanced visualisation and
analysis). The first component within each category accounts
for a significant proportion of the variance explained by the de-
scriptors, with values of 48%, 35%, and 21% for steric, elec-
tronic, and geometric descriptors, respectively. The cross sec-
tion derived from geometric and steric descriptors clearly demon-
strates that families of chemically distinct ligands occupy the en-
tire geometric/steric space. The structures of a few ligands and
their placements on the four PCA maps are depicted in Figure
5. Notably, similar ligands, such as the MandyPhos (L21 and

L23) and phospholane-based ligands (L69 and L121), are posi-
tioned in close proximity to one another. Along the steric axis,
the bulky MandyPhos ligands (L21 and L23) are contrasted with
the smaller DuPhos (L69) and BPE (L121), aligning with chemi-
cal intuition. Less intuitively, the WalPhos ligand (L101), charac-
terized by two di-tert-butyl-phosphino groups and likely a large
cone angle or Rh-P distance, is located at the extreme of the geo-
metric axis. L100, another WalPhos ligand with only one di-tert-
butyl-phosphino group, is appropriately positioned slightly below
L101. At the opposite end of the geometric axis lies L153, a BI-
BOP ligand, presumably due to its compactness and small bite
angle. These PCA maps could facilitate a data-driven approach
for selecting a chemically diverse set of ligands for experimental
screening. However, it is noteworthy that privileged structures,90

such as for example the BINAP ligand (L32), are located in the
center of all maps and thus are not distinguished by this method-
ology.

Substrate descriptors

A static representation of all five substrates, SM1-SM5, was gen-
erated using four sets of descriptors: 3D DFT-based steric finger-
print, 3D SMILES-based steric fingerprint, ECFP and OHE. The
steric fingerprints aimed to describe the local steric environment
surrounding the olefinic bond. They were either created from a
DFT optimized structure of the substrate alone or from a 3D struc-
ture generated by Openbabel91 based on the SMILES of the sub-
strate. The carbon atoms involved in the double bond (denoted
as C1 or C2) as well as those directly connected to them were
enumerated (denoted as R1 to R4). A buried volume for all these
atoms and Sterimol parameters (B1, B5 and L) for each possible
C and R pairing were calculated, resulting in a fingerprint con-
sisting of six buried volumes and 12 Sterimol parameters (see our
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Fig. 5 PCA score plot (A) and cross-sections (C,D,E) based on binning descriptors into three categories: steric, geometric and electronic. Eight
bisphosphine ligands are included as example (B). Percent of explained variance (EV) is reported in the axis label.

Github repository of the published ML pipeline for more details
and code).

In/Out Domain Modeling
As previously mentioned, our experimental data exhibits a bi-
modal distribution for conversion, biased towards higher conver-
sion. Consequently, we opted for a classifier to model catalyst ac-
tivity. The distribution of enantiomeric excesses (∆∆G‡) displayed
a more normal pattern, rendering it suitable for regression anal-
ysis. Given the dataset encompassing five substrates (SM1-SM5)
and 192 catalysts, our study presented a unique opportunity to
explore both out-of-domain and in-domain modeling (see Figure
6).

In the out-of-domain approach, which would constitute the
most impactful scenario, samples of the target starting material
are excluded from the training dataset to evaluate the model’s
ability to predict reactivity and selectivity for starting materials
that it has not encountered. This method involves numerically en-
coding both catalysts and substrates, followed by concatenating
these encoded representations. The theoretically most informa-
tive feature set combines DFT-based descriptors for ligands with
DFT-based steric fingerprints for substrates. Conversely, the sim-
plest feature combination employs one-hot encoding for both lig-
ands and substrates. Additionally, we explored the scenario when
only a half of the target starting material’s samples is included
in the training set, simulating the use of first HTE plate results
before running a second plate. This approach is referred to as
partially out-of-domain modeling. For conversion classification,

we set a common threshold of 0.8 as the best balance between
class distribution across substrate data.

During our data analysis, we observed varying levels of corre-
lation of the results obtained with the five starting materials (see
Figure 4). This prompted us to investigate the impact of training
set and target correlations on out-of-domain model accuracy. We
detailed seven specific cases in Figure 6. Cases 1-3 focused solely
on the related starting materials SM1, SM2, and SM3, using only
the two most closely related substrates for training when predict-
ing the target substrate’s behavior. Cases 4-6 were still focused on
predicting SM1, SM2, SM3 but with the inclusion of additional,
less related substrates (SM4 and SM5) into the training set. Here,
the goal was to assess the effect of substrate set diversity on model
performance. Case 7 posed a more complex challenge, aiming to
predict reactivity and selectivity for SM4 using the unrelated sub-
strates SM3 and SM5 for training.

In the in-domain modeling, the objective is to predict catalyst
performance for a specific substrate, employing a portion of the
192 results for model training and the remainder for evaluation.
The conversion classifier’s threshold is set based on the median
conversion specific to each substrate.

The efficacy of both out-of-domain and in-domain modeling ap-
proaches significantly depends on the choice of catalysts included
in the training set. To mitigate this dependency and ensure the
robustness of our findings, we tested three distinct random splits
of the train/test set for each case. Hyperparameter tuning via a
grid search within a predefined parameter space and k-fold cross-
validation were performed for each split (see SI section S8 for
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Fig. 6 Schematic Representation of the Machine Learning Workflow. In both fully and partially out-of-domain modeling scenarios, for each target
starting material (SM), the model is trained on data from at least two additional SMs in accordance with seven specific cases. The feature matrix,
is formed by concatenating descriptors of both catalyst and starting material. In partially out-of-domain modeling, half of the target SM samples
are included in the training set. For in-domain tasks, each SM model undergoes training with an 80:20 training-test split, focusing solely on catalyst
descriptors. We use of Random Forest for classification (reactivity) and regression (selectivity).

more details on our ML pipeline).

Following preliminary screening with automated machine
learning tools such as Auto-Sklearn92 and TPOT,93 we chose
Sklearns Random Forest implementation as our study’s algo-
rithm.94,95 Random Forest, an ensemble learning algorithm, har-
nesses multiple decision trees and randomness to construct a pre-
dictive model capable of handling diverse data types and excelling
in classification and regression tasks.67,96

Furthermore, correlation analysis (see Excel file with experi-
mental data and descriptors in the SI), revealed a limited univari-
ate linear correlation (maximum absolute Spearman correlation
coefficient of 0.58) between conversion and the DFT-based de-
scriptors. The correlation of these descriptors with enantioselec-
tivity was generally weaker (maximum absolute Spearman cor-
relation coefficient of 0.15). A preliminary in-domain linear re-
gression modeling (see SI Jupyter notebooks and pickle files with
the final results in the SI) failed to accurately predict conversion
and ∆∆G‡, further justifying the selection of the Random Forest
algorithm.

Considering four possible representations for the five starting
materials, three ligand representations, seven cases and the pre-
diction of both conversion and enantioselectivity, we trained in
total over 700 models including 168 models for the fully out-
of-domain task, 504 for the partially out-of-domain task (across
three different training-test splits), and 90 for the in-domain task.
To evaluate the predictive performance of our classifiers and re-
gressors, we calculated the balanced accuracy (BA) and the coeffi-
cient of determination (R2 score), respectively. BA is the average

of recall obtained on each class and it ranges between 0 and 1
with 1 being the desired outcome (See the data availability state-
ment for more information on all code and data).

Results and discussion
Machine Learning predictions

Out-of-domain approaches

The performance metrics of the models for the out-of-domain task
are presented in Figure 7A and C (red dots). For reactivity mod-
eling, we observed a BA ranging from 0.58 (case 7) to 0.85 (case
1, modeling SM3) with DFT-based descriptors for the catalysts,
indicating that the models are able to estimate the experimental
results with reasonable accuracy. Notably, SM3 modeling, when
incorporating non-correlated substrates in case four, resulted in a
marked decrease in performance (from 0.85 case 1 to 0.73 case
4), whereas this impact was minimal for other substrates (SM2,
from 0.78 case 2 to 0.74 case 5; SM1, from 0.74 case 3 to 0.72
case 6). For the selectivity modeling using DFT-based descriptors
for the catalysts, the highest R2 score of 0.68, was observed in
case 3.

In this scenario, the target substrate SM1 exhibited a strong ex-
perimental correlation (∆∆G‡) with SM2 and SM3, as indicated
by Spearman correlation scores of 0.82 and 0.83 respectively.
Conversely, the performance of the model declined when intro-
ducing unrelated substrate in the training set (case 6: R2 score of
0.53) and was very poor when trying to estimate the unrelated
substrate SM4 (case 7: R2 score of -0.3). Incorporating half of
the catalyst set for the target substrate (partially out-of-domain
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Fig. 7 Performance Metrics for out-of-domain and in-domain modeling. Panel A and C display the balanced accuracy and R2 score for out-of-domain
modeling (A: Conversion; C: ∆∆G‡), while Panel B and D illustrate the same for in-domain modeling (B: Conversion; D: ∆∆G‡). In A and C the starting
material’s representation is one-hot encoded. Representations of fully out-of-domain results for DFT-based by red dots. E: Gini feature importance
for RF in-domain classifiers trained on DFT-based descriptors to model conversion.

task) generally did not significantly impact the balanced accuracy
or the R2 score (see Figure 7A and C, box plots). Indeed, the box
plots obtained from random splits of the training set in the par-
tially out-of-domain task almost always contain the red dots of
the fully out-of-domain tasks.

Surprisingly, the more straightforwardly computed ECFP and
trivial OHE exhibited BAs for conversion were largely consistent
with those of the more costly DFT-based descriptors both for the
fully and partially out-of-domain tasks. For case 2 and 3 only, the
performance of OHE was notably inferior, suggesting that these
models are influenced by the selection of training sets and hyper-
parameters. To mitigate overfitting, we restricted the maximum
depth of the trees. This constraint, however, can be a bottleneck
for OHE, adversely affecting its effectiveness, therefore for OHE
only we let the model expand nodes until all leaves are pure.
Models built on ECFP and OHE features, demonstrated perfor-
mance that was for most cases comparable to DFT-based descrip-
tors. To further examine the influence of catalyst featurization,
we introduced a new set of ligand descriptors consisting of 34
randomly generated values ranging from -100 to +100 for each
ligand. A total of 192 vectors of random descriptors were gener-
ated and assigned to each ligand. In the out-of-domain modeling
where multiple substrates are considered, a single ligand appears
multiple times and was consistently represented by the same ran-
dom vector. Interestingly, these random descriptors achieved the
same performance as the DFT-based descriptors, with BAs rang-
ing from 0.59 to 0.78 across the seven cases and R2 score between
0.37 (case 5) and 0.68 (case 3) for the first six cases and a drop
in performance for case seven. The maximum disparity noted

in outcomes derived from DFT-based descriptors versus random
descriptors within the fully out-of-domain approach is 0.06, as
observed for case 7 for modeling conversion. These data suggests
that our generated DFT-based descriptors were not able to cap-
ture the essential chemistry in this dataset as they do not impart
significant meaning to the model estimates. The poorer perfor-
mance demonstrated by OHE in certain cases suggests that binary
descriptors may be less informative or less prone to chance corre-
lations compared to other descriptor types. In general, the models
effectiveness varied notably across different cases. The ability to
estimate the experimental values correctly appears to be more re-
lated to the inherent correlation of catalyst performance across
different substrates, rather than the intrinsic value of the descrip-
tors. For instance, modeling SM4 using non-correlated substrates
(SM3, SM5) in case 7 proved unsuccessful (Figure 7A,C), while
outcomes based on correlated substrates (as in case 1) were more
accurate (average BA for conversion of 0.8 and average R2 score
for selectivity prediction of 0.6). This outcome highlights that our
machine learning models primarily estimates based on the princi-
ple of "what works now, will work in other cases" and vice versa
(see SI Figure S13). Adding partial information about the target
substrate to the training set (partially out-of-domain modeling)
did not significantly enhance the accuracy nor alter the behavior
of the model. In other words, a limited introduction of target
substrate information does not substantially influence the perfor-
mance of our models.
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In-domain approach

Confronted with the unsuccessful out-of-domain modeling task,
our focus shifted towards in-domain modeling, i.e., a more man-
ageable, albeit less valuable, endeavor, in line with recent lit-
erature.58,59,68 The objective was to test whether models con-
structed within a substrate-specific context, thus trained solely on
catalyst descriptors, could effectively discern meaningful infor-
mation. An additional goal was to assess whether DFT-based de-
scriptors would introduce superior chemical information into the
model compared to ECFPs and random descriptors. Results are
summarized in Figure 7B and D. For reactivity, modeling using
random descriptors achieved a BA around 0.5. Models utilizing
DFT-based descriptors and ECFPs exhibited superior performance
across all substrates. Specifically, for substrates SM1, SM3, and
SM4, DFT-based descriptors surpassed ECFPs, achieving average
BAs of 0.73, 0.80, and 0.77 on the test set, respectively, com-
pared to ECFPs average BAs of 0.64, 0.71, and 0.63. For sub-
strates SM2 and SM5, the performance of ECFPs was comparable
to DFT-based descriptors, recording BAs of 0.65 versus 0.66 and
0.67 versus 0.69, respectively.

For SM1, SM3 and SM4, we investigated the feature impor-
tance of the trained models (see Figure 7E). Roughly, the same
features are present for the related substrates SM1 and SM3 while
different features are used by the model for unrelated SM4. For
SM1 and SM3, most of the descriptors are electronic, for exam-
ple, E7 (lone pair occupancy of the min donor atom calculated
on free ligand), E5 (NBO charge of metal center) and E10 (NBO
charge of the max donor atom calculated on the free ligand). The
only geometric descriptor present in all four models is G4 (dis-
tance between Rh and the minimum donor). S15 (buried volume
on minimum donor atom) seems to be the most important steric
descriptors. Overall, it is difficult to derive any meaningful mech-
anistic considerations from these observations.

In-domain modeling for enantioselectivity was unsuccessful, as
evidenced by R2 scores not exceeding 0.2 on the test set. DFT-
based descriptors for substrates SM1, SM2, and SM3 showed
marginally better results than other descriptors. To investigate
whether best-performing models for enantioselectivity could re-
side within smaller subsets of related catalysts, we implemented a
Monte-Carlo data selection approach. This involved testing 1,000
random splits for each catalyst fraction, ranging from 90% to 10%
of the entire catalyst set in decrements of 10%. Each subset was
divided into an 80:20 training-test ratio, and RF models were
trained exclusively using DFT-based descriptors. Our findings in-
dicate the feasibility of deriving models with high R2 scores (up
to 0.98) on sets comprising merely 10% of the catalysts (only 25
and 4 data points in training and test set, respectively, see SI Fig-
ure S14). However, the lack of discernible pattern differentiating
these catalysts from others, e.g. by ligand family or class, sug-
gests that such high scores are solely due to chance correlation
and test overfitting. This approach, deviating from standard ma-
chine learning practices, was employed to demonstrate the poten-
tial pitfalls when working with small datasets in machine learning
pipelines, highlighting the risk of uncovering spurious, albeit ap-
pealing, correlations.

Conclusions
Using our high throughput experimentation workflow, we have
generated and made available a large and reliable dataset of
asymmetric hydrogenation results, encompassing most of the
commercially available chiral ligands. Our experimental results
align well with existing literature, affirming their validity but
substantially exceed those in uniformity and comprehensiveness.
Discrepancies observed were meticulously analysed and satisfac-
torily accounted for, ensuring the robustness of our dataset.

We proved that the application of machine learning modeling to
estimate the reactivity of an unseen substrate relies solely on lig-
and differentiation with only a marginal improvement in perfor-
mance observed for our set of DFT-based descriptors in the fully
out-of-domain task for three out of seven cases. Several factors
may contribute to this outcome. The dataset encompasses a lim-
ited range of substrates (five) and catalyst variability (192). This
constraint hinders the models’ ability to effectively interpret and
differentiate features based on meaningful chemical properties.
Instead, the models tend to rely on mere object differentiation,
which explains why random descriptors exhibit performance lev-
els comparable to those of more expensive DFT-based descriptors.
The outcomes of our models can be explained by the fact we de-
rived our descriptors from the precatalyst with the goal to pro-
duce models with broad applicability. However, the combination
of the reaction constituents, i.e., [Rh(L)(NBD)]+ and substrate,
may not be descriptive of reactivity-/stereo determining steps in
the reaction mechanism. Given the current dataset, considering
a transition state of catalysts with a specific substrate might be
a more accurate alternative for modeling, albeit more computa-
tionally intensive and lacking the desired generality.

The "in-domain" strategy, while successful to some degree in
modeling conversion, did not perform as well as anticipated.
For certain substrates, we observed that ECFPs descriptors per-
formed similarly to our DFT-based descriptors, indicating that our
generated DFT-based descriptors might not significantly impact
the model’s effectiveness in certain scenarios. We acknowledge
that our general, but still computationally intensive descriptors
do not automatically outperform descriptors computed through
more simplistic, naïve methods. This observation underscores the
necessity for both a critical evaluation of the computational cost-
benefit ratio and a tailored approach in the selection and engi-
neering of descriptors for specific applications.

Enantioselectivity modeling remains a considerable challenge.
We found no discernible correlations between our DFT-based de-
scriptors and ∆∆G‡, especially when working with small datasets
(fewer than 20 data points). In such datasets, any strong correla-
tions observed are likely due to chance, underscoring the neces-
sity for cautious interpretation of results.

The insights garnered from our study highlight the importance
of dataset diversity and mechanistic insights. Our findings sug-
gest that expanding the dataset to include a broader range of sub-
strates and ligands and applying an ad hoc DFT-based feature en-
gineering process could potentially enhance model performance,
particularly in out-of-domain scenarios. The library of 192 Rh
catalysts is regularly being tested for new substrates of our de-
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velopment pipeline. The generated data are used to augment the
dataset of the model with more diverse chemical entities. In addi-
tion, we are exploring alternative modeling approaches and new
descriptors that might better capture the complexities of reactiv-
ity and selectivity modeling. Once our model will exhibit a high
level of accuracy, we will include the screening of virtual ligands
generated via in-silico modification of the existing ones44 with
the ambition to discover entirely new asymmetric hydrogenation
catalysts.

Data availability
The used machine learning pipeline will be made public
on the Github organization page of the ISE group at TU
Delft: EPiCs-group (https://github.com/EPiCs-group/obelix-ml-
pipeline). Similarly, the used Python package for featuriza-
tion of catalyst structures, OBeLiX, will be made public on
the Github organization page of the ISE group at TU Delft:
EPiCs-group (https://github.com/EPiCs-group/obelix). In addi-
tion to this manuscript, supporting information and all used
datasets are available together with an extensive readme via
4TU.ResearchData at https://doi.org/10.4121/ecbd4b91-c434-
4bdf-a0ed-4e9e0fb05e94:

• List and visualization of ligands (‘ligand_list.pdf’)

• Interactive figures (‘Figure2.html’,‘ Figure3.html’ and
‘PCA.html’)

• DFT input and output files for metal-ligand
complexes and extracted free ligand struc-
tures (‘nbd_metal_ligand_dft_output.zip’ and
‘free_ligand_extracted_from_dft_output.zip’)

• Excel file with experimental data and descriptors
(‘C=C_AH_dataset.xlsx’)

• Excel file with ML results (‘ml_results_tables.xlsx’)

• Jupyter notebooks and pickle files with
the final results (‘data_analysis.ipynb’, ‘Lit-
erature_comparison_Reaxys_SciFinder.ipynb’,
‘dft_nbd_model_literature_comparison.zip’, ‘view.ipynb’,
‘dict_res_obj1.pkl’, ‘dict_res_obj2.pkl’, ‘dict_res_obj3.pkl’,
‘dict_res_obj4.pkl’)
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Zurański, T. Kogej, P.-O. Norrby, A. G. Doyle, N. V. Chawla
et al., Chem. Sci., 2023, 14, 4997–5005.

70 M. Fitzner, G. Wuitschik, R. Koller, J.-M. Adam and
T. Schindler, ACS Omega, 2023, 8, 3017–3025.

71 M. Shevlin, High-Throughput Experimentation-Enabled Asym-
metric Hydrogenation, American Chemical Society, 2022, vol.
1419, pp. 107–130.

72 A. J. Lawson, J. Swienty-Busch, T. Géoui and D. Evans,
The Making of Reaxys-Towards Unobstructed Access to Relevant
Chemistry Information, American Chemical Society, 2014, vol.
1164, pp. 127–148.

73 F. Strieth-Kalthoff, F. Sandfort, M. Kühnemund, F. R. Schäfer,
H. Kuchen and F. Glorius, Angew. Chem. Int. Ed., 2022, 61,
e202204647.

74 M. Alame, N. Pestre and C. de Bellefon, Adv. Synth. Catal.,
2008, 350, 898–908.

75 P. Schwaller, A. C. Vaucher, T. Laino and J.-L. Reymond, Mach.
Learn.: Sci. Technol., 2021, 2, 015016.

76 X. Jia, A. Lynch, Y. Huang, M. Danielson, I. Langat, A. Milder,
A. E. Ruby, H. Wang, S. A. Friedler, A. J. Norquist and
J. Schrier, Nature, 2019, 573, 251–255.

77 W. Beker, R. Roszak, A. Woos, N. H. Angello, V. Rathore, M. D.
Burke and B. A. Grzybowski, J. Am. Chem. Soc., 2022, 144,
4819–4827.

78 M. Fitzner, G. Wuitschik, R. J. Koller, J.-M. Adam, T. Schindler
and J.-L. Reymond, Chem. Sci., 2020, 11, 13085–13093.

79 ∆∆G‡ =−RT ln (100+%eeR)
(100−%eeR)

as in ref. 48.
80 Our analytical method allows for the accurate determination

of ee up to 99.5%, corresponding to ∆∆G‡ of 15 kJ/mol.

81 D. K. Mandal, Transition metal-catalysed reactions: Diastereos-
electivity and asymmetric synthesis, Academic Press, 2021, pp.
457–493.

82 M. S. Baidun, A. V. Kalikadien, L. Lefort and E. A. Pidko, J.
Phys. Chem. C, 2024, 128, 7987–7998.

83 A comprehensive overview of all descriptors can be found in
the Excel file with experimental data and descriptors in the SI.
Additionally, a detailed explanation including code and data
for the creation of this DFT NBD descriptors set is given in the
SI section S4.

84 A. Poater, B. Cosenza, A. Correa, S. Giudice, F. Ragone,
V. Scarano and L. Cavallo, Eur. J. Inorg. Chem., 2009, 2009,
1759–1766.

85 L. Falivene, R. Credendino, A. Poater, A. Petta, L. Serra,
R. Oliva, V. Scarano and L. Cavallo, Organometallics, 2016,
35, 2286–2293.

86 D. J. Durand and N. Fey, Chem. Rev., 2019, 119, 6561–6594.
87 C. A. Tolman, Chem. Rev., 1977, 77, 313–348.
88 J. A. Bilbrey, A. H. Kazez, J. Locklin and W. D. Allen, J. Com-

put. Chem., 2013, 34, 1189–1197.
89 G. Landrum, RDKit: Open-source cheminformatics, 2020,

http://www.rdkit.org/.
90 T. P. Yoon and E. N. Jacobsen, Science, 2003, 299, 1691–1693.
91 N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vander-

meersch and G. R. Hutchison, J. Cheminform., 2011, 3, 33.
92 M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer and

F. Hutter, arXiv, 2022.
93 T. T. Le, W. Fu and J. H. Moore, Bioinformatics, 2020, 36,

250–256.
94 L. Breiman, Mach. Learn., 2001, 45, 5–32.
95 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot and Édouard Duchesnay, J. Mach. Learn.
Res., 2011, 12, 2825–2830.

96 K. V. Chuang and M. J. Keiser, Science, 2018, 362, eaat8603.

Journal Name, [year], [vol.],1–13 | 13

Page 13 of 14 Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
Ju

ly
 2

02
4.

 D
ow

nl
oa

de
d 

on
 7

/1
6/

20
24

 1
2:

35
:2

7 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4SC03647F

http://www.rdkit.org/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sc03647f


The used machine learning pipeline will be made public on the Github organization page of the 
ISE group at TU Delft: EPiCs group (https://github.com/EPiCs-group/obelix-ml-pipeline).  
Similarly, the used Python package for featurization of catalyst structures, OBeLiX, will be made 
public on the Github organization page of the ISE group at TU Delft: EPiCs-group 
(https://github.com/EPiCs-group/obelix). In addition to this manuscript, supporting information 
and all used datasets are available together with an extensive readme via 4TU.ResearchData at 
https://doi.org/10.4121/ecbd4b91-c434-4bdf-a0ed-4e9e0fb05e94:

• List and visualization of ligands (‘ligand_list.pdf’)
• Interactive figures (‘Figure2.html’, ’Figure3.html' and ‘PCA.html’)
• DFT input and output files for metal-ligand complexes and extracted free ligand 

structures (‘nbd_metal_ligand_dft_output.zip’ and 
‘free_ligand_extracted_from_dft_output.zip')

• Excel file with experimental data and descriptors (‘C=C_AH_dataset.xlsx’)
• Excel file with ML results (‘ml_results_tables.xlsx’)
• Jupyter notebooks and pickle files with the final results (‘data_analysis.ipynb’, 

‘Literature_comparison_Reaxys_SciFinder.ipynb’, 
‘dft_nbd_model_literature_comparison.zip’, ‘view.ipynb’, ‘dict_res_obj1.pkl’, 
‘dict_res_obj2.pkl’, ‘dict_res_obj3.pkl’, ‘dict_res_obj4.pkl’)
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