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learning models based on high
throughput experimentation data for the discovery
of asymmetric hydrogenation catalysts†

Adarsh V. Kalikadien, ‡a Cecile Valsecchi, ‡b Robbert van Putten, c Tor Maes,c

Mikko Muuronen, c Natalia Dyubankova, c Laurent Lefort *c

and Evgeny A. Pidko *a

Enantioselective hydrogenation of olefins by Rh-based chiral catalysts has been extensively studied for

more than 50 years. Naively, one would expect that everything about this transformation is known and

that selecting a catalyst that induces the desired reactivity or selectivity is a trivial task. Nonetheless,

ligand engineering or selection for any new prochiral olefin remains an empirical trial-error exercise. In

this study, we investigated whether machine learning techniques could be used to accelerate the

identification of the most efficient chiral ligand. For this purpose, we used high throughput

experimentation to build a large dataset consisting of results for Rh-catalyzed asymmetric olefin

hydrogenation, specially designed for applications in machine learning. We showcased its alignment with

existing literature while addressing observed discrepancies. Additionally, a computational framework for

the automated and reproducible quantum-chemistry based featurization of catalyst structures was

created. Together with less computationally demanding representations, these descriptors were fed into

our machine learning pipeline for both out-of-domain and in-domain prediction tasks of selectivity and

reactivity. For out-of-domain purposes, our models provided limited efficacy. It was found that even the

most expensive descriptors do not impart significant meaning to the model predictions. The in-domain

application, while partly successful for predictions of conversion, emphasizes the need for evaluating the

cost–benefit ratio of computationally intensive descriptors and for tailored descriptor design. Challenges

persist in predicting enantioselectivity, calling for caution in interpreting results from small datasets. Our

insights underscore the importance of dataset diversity with broad substrate inclusion and suggest that

mechanistic considerations could improve the accuracy of statistical models.
Introduction

More than half a century ago, Knowles and Horner reported the
rst example of an enantioselective olen hydrogenation cata-
lyzed by Rh in combination with a chiral phosphine ligand.1–3

Although the obtained enantiomeric excesses were modest,
their seminal work started the eld. Asymmetric hydrogenation
immediately appeared as an attractive method to produce
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enantiopure compounds.4–9 Compared to the competing clas-
sical resolution technology, it exhibits 100% theoretical yield,
high atom economy, and good to excellent enantiomeric
excesses. Over the last 50 years, the work from numerous
industrial and academic groups resulted in the development of
many efficient chiral ligands and in the implementation of this
technology for large scale production.10–17 In addition to ligand
development, the mechanism of this reaction was extensively
studied via experimental18–27 and computational studies based
on density functional theory (DFT)28–31 with the realization that
the key elementary steps (i.e. the transition states governing
selectivity and reactivity) vary with the ligands.

Despite the extensive knowledge built over the years, nding
the right asymmetric hydrogenation catalyst for a new prochiral
olen remains a very empirical exercise and requires the
screening of a large set of ligands and reaction conditions. High
throughput experimentation (HTE) methodologies have
successfully been implemented to rapidly explore the numerous
parameters affecting the outcome of an asymmetric hydroge-
nation reaction.32–39 Nevertheless, integrating in silico
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Asymmetric hydrogenation reaction performed in this study. A
set of varying substrates was selected to be tested with a wide range of
Rh-based catalysts under varying conditions.
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assessments of catalyst candidates into HTE campaigns would
be highly benecial.40 It could further accelerate the time-
sensitive process development of active pharmaceutical ingre-
dients and lower the consumption of substrates needed to
perform the HTE screening, oen available in low quantity at
the start of a drug development program. Unfortunately, the in
silico design and development of homogeneous catalysts
remains a challenging task.41–43 Predictive strategies for catalyst
design are generally categorized into two groups depending on
whether or not they require knowledge of the underlying
mechanism of the catalytic cycle.44–49 The mechanism-based
approaches rely on quantum chemical calculations of the key
transition state intermediates and are very specic to the cata-
lytic system under study. In addition, they are computationally
expensive due to the complex energetic landscape of the tran-
sition metal-based catalysts. A few reports utilized this
approach for the prediction of enantioselectivity of Rh based
hydrogenation.50–53 To make mechanism-based approaches
practical at a larger scale, potential energy functions of the
reactants and products such as force-elds are used to
approximate the connecting transition state.45 Recent imple-
mentations either mix the reactant and product potential
energy surface with different weights/corrections to get an
approximation of the stereo-determining transition state50 or
utilize transition-state force elds to approximately describe the
transition state directly.45,51,53

The alternative approach that does not require any knowl-
edge of the mechanism is the use of quantitative structure–
property relationships (QSPR).54–60 It consists in establishing
a correlation between the structure of the catalyst and its
performance e.g., with regards to its activity or selectivity.
Originating from the traditional linear free energy relationships
(LFERs), such as Hammett plots,61–63 these methods have
experienced a revival in the last decades with the advent of
machine learning (ML) and its adoption by chemists.46,55,64,65

Rened catalyst representations based on quantum chemical
calculations combined with more sophisticated statistical
approaches are challenging the status quo of homogeneous
catalyst design.55,58,59

Recent studies utilized this approach for the design of
selective Rh-based catalysts.66,67 Xu et al. created a standardized
database including over 12 000 data points on asymmetric
hydrogenation of olens from literature.66 This database was
utilized in a hierarchical learning approach to connect a large
amount of related data from literature to the small amount of
data from ongoing experimentation campaigns. It was shown
that this hierarchical approach performs well for predicting the
selectivity of reactions with closely related substrates. The
tested catalyst and substrate representations were limited to 2D
and 3D cheminformatics-based descriptors. Recently, Singh
et al. showcased an approach rooted in quantum chemistry,67

integrating quantum chemically derived molecular descriptors
from ve different asymmetric binaphthyl-derived catalyst
families to predict the enantioselectivity of asymmetric olen
and imine hydrogenation. A random forest (RF) model trained
on a set of 368 substrate–catalyst combinations demonstrated
impressive predictive power compared to other linear and non-
© 2024 The Author(s). Published by the Royal Society of Chemistry
linear statistical methods, with a root-mean-square error in the
predicted percent of enantiomeric excess (%ee) of about 8.4 ±

1.8 compared to experimental values.
Inspired by a recent publication of Sigman and coworkers

together with Genentech,68 we decided to evaluate whether we
could build a predictive model to support our HTE workow for
the screening of asymmetric hydrogenation catalyst. Our stan-
dard library of 192 chiral Rh catalysts was used to generate high
quality data (up 3552 data points) as sole input for our model
since it has been recognized that literature data could induce
biases.69,70 In parallel, we developed a workow to automatically
generate a set of consistent DFT-based descriptors of our 192
ligands. Herein, we present our ndings on the performance of
our ML models in seven different cases including both out-of-
and in-domain prediction tasks.
HTE data generation and data
reproducibility

Within our HTE group supporting chemical process develop-
ment, we have developed several workows to expedite the
screening of catalysts. For asymmetric hydrogenation, we
routinely screen two plates, each containing 96 chiral ligands, in
combination with Rh. These ligands were selected based on their
documented activity in asymmetric hydrogenation and their
commercial availability. To complete the plates, we included
several ligands not typically used in such reactions. In our ligand
library, bisphosphines (denoted as ‘PP’ ligands) were the most
prevalent, comprising 142 entries (74%), followed by amino-
phosphines (‘PN’) with 25 entries (13%), phosphoramidites with
11 entries (6%), and monophosphines (‘P’) with 10 entries (5%).
Each ligand contained at least one phosphorus donor atom.

In this study, we tested our 192 Rh precatalysts against ve
model substrates: SM1–SM3, representing some of the most
signicant substrates in the development of asymmetric
hydrogenation, and SM4–SM5, which are structurally related
and pose slightly greater challenges (see Fig. 1). Various
substrates were tested under different reaction conditions.
Although not a full factorial design, a total of 3552 data points
were collected, representing to our knowledge the largest and
Chem. Sci., 2024, 15, 13618–13630 | 13619
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Table 1 Details of the 37 96-wells plates hydrogenation; data points
selected for machine learning modeling in bold

Starting
material Solvent T (°C) H (bar) Time (h)

#Data
points

SM1 DCE 25 5 1 192
16 192

30 16 192
Methanol 25 5 1 192

16 576
30 16 192

SM2 DCE 25 5 1 192
16 192

Methanol 25 5 1 192
16 192

SM3 DCE 25 5 1 192
16 192

Methanol 25 5 1 192
16 192

SM4 Methanol 50 5 16 192
SM5 Methanol 25 5 16 96

50 5 16 192
Total 3552 (960)

Fig. 2 The influence of various conditions on reactivity (conversion)
and enantioselectivity (ee) in Rh-catalyzed asymmetric olefin hydro-
genation. Solvent effect was evaluated on SM1–SM3 after 1 h reaction
time. Pressure effect was evaluated on SM1 after 16 h. Temperature
effect was evaluated on SM5 after 16 h and on one plate. An interactive
version of this figure displaying the ligand structures corresponding to
the data points can be found in the ESI (see interactive figure
‘Fig. 2.html’ in the ESI†).
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most homogeneous dataset published for this crucial catalytic
reaction. Table 1 summarizes the collected data points.

To assess the stability of our Rh precatalysts, we evaluated
the entire set with substrate SM1 immediately aer their prep-
aration, and again aer six and twelve months of storage. Good
reproducibility was observed for the enantiomeric excesses (ee),
with coefficients of determination ranging between 0.87 and
0.94 across the experiments (see ESI, Fig. S3†). Out of 576 data
points, only 38 showed a discrepancy where the absolute change
in ee (jDeej) measured in different runs exceeded 0.2.

As anticipated for a straightforward substrate like SM1, the
conversion exhibited a strongly bimodal distribution, predomi-
nantly clustering around a value of 1 (indicating full conversion).
To ensure a balanced classication, we categorized the data points
into high conversion (conversion $0.8) and low conversion
(conversion <0.8). Out of 192 ligands, only 20 of them exhibited
a variation in classication across different runs, resulting in an
average Pearson correlation coefficient of 0.86 across the three
runs. The accuracy levels for pairwise comparisons ranged from
0.92 to 0.96. For detailed information on the experimental proce-
dure we refer the reader to Section S1 of the ESI.†
Data analysis
Internal data analysis of experimental results

A total of 3552 data points were generated during the data
production exercise across 37 96-well plates (Table 1). SM1,
SM2, and SM3 were tested in 2 solvents (methanol (MeOH) and
1,2-dichloroethane (DCE)) and 2 reaction times (1 and 16 h). For
SM1, higher pressure (30 bar instead of 5 bar) was also explored.
Additionally, the more challenging SM5 was tested at 2
temperatures (25 °C and 50 °C).

In addition to serving as high-quality input for machine
learning models, this comprehensive dataset enables
13620 | Chem. Sci., 2024, 15, 13618–13630
a systematic investigation of the effects of temperature, pres-
sure and solvent across the entire set of ligands (see Fig. 2). At
rst glance, it appears that a variation of the reaction conditions
has less inuence on the ee than on the conversion. As ex-
pected, increased temperatures lead to higher conversion while
exerting minimal impact on enantioselectivity. Elevated
hydrogen pressures were found to generally improve conversion
but adversely affected enantioselectivity for a few ligands.18,27,71

The solvent choice had the most signicant effect on the
performance; primarily on catalyst activity and, to a lesser
extent, on enantioselectivity. These ndings underscore the
importance of solvent screening in HTE campaigns, advocating
for its execution across a broad ligand set.
Consistency analysis of experimental results and literature
data

Since the substrates of our study have been extensively studied
in Rh-catalyzed asymmetric hydrogenation, we conducted
© 2024 The Author(s). Published by the Royal Society of Chemistry
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a comparison between our experimental results and those
documented in the literature. This endeavor necessitated the
aggregation and renement of published data, a process that
proved to be challenging. Utilizing the reaxys database72

(accessed in March 2023), we performed a reaction search for
the conversion of SM1–SM5 into their corresponding hydroge-
nated products, omitting stereochemistry. This search yielded
2098 references, each requiring diligent formatting and clean-
ing to standardize reaction component labels and conditions.
Aer discarding entries with missing information and focusing
exclusively on Rh-catalyzed reactions, we obtained a dataset
comprising 752 entries. Notably, 566 of these entries matched
ligands from our library in conjunction with either MeOH or
DCE as solvents. In line with observations made by other
research groups,70,73 our HTE campaign contained more nega-
tive results (low conversion and/or enantioselectivity) as
compared to those reported in literature (see Fig. 3A), a disparity
that augments the value of our dataset for machine learning
model development.

The 566 literature entries comprised 75 unique ligand/
substrate/solvent combinations, or “triplets”, involving 39
distinct ligands. We compared the ee values reported in litera-
ture with our experimental values for each triplet (see Fig. 3B). A
“good match” was dened by an absolute ee difference of less
than 0.2 (i.e., jDeej < 0.2). Among the 75 triplets, 45 exhibited
complete concordance with no discrepancies observed between
literature data and our experimental ndings (see Fig. 3C).
Furthermore, 15 triplets showed partial agreement, with at least
one literature result aligning with our experimental data.
Fig. 3 Consistency analysis: (A) raw distributions of conversion and jee
literature (reaxys + scifinder). (B) Scatter plot comparing the closest enant
identical conditions (same catalyst, startingmaterial, and solvent). (C) Ven
least one consistent or discrepant reaxys record (green and red set, re
scifinder was found. (D) Comparative analysis of jeej discrepancies (jDeej
15 triplets for which no consistency with reaxys was found. An interactive
the data points can be found in the ESI (see interactive figure ‘Fig. 3.htm

© 2024 The Author(s). Published by the Royal Society of Chemistry
Overall, 80% of the literature data sourced from reaxys aligned
with our experimental results, reected by a Pearson coefficient
of 0.78. An additional search in scinder (accessed in March
2023) targeting the 15 triplets with discrepancies unearthed 152
new literature entries, enabling the reconciliation for an addi-
tional 8 triplets (Fig. 3C and D), thereby elevating the agreement
with published studies to over 90%. For the remaining 7
discrepancies, no scinder records were found. As depicted in
Fig. 3D, our ee values were consistently higher than those
documented in literature. A closer examination revealed that all
discrepant literature data emanated from a singular source,74

suggesting the possibility of a systematic experimental
discrepancy within that study.
Data selection for predictive models

Aer the analysis of the consistency of our HTE dataset, 960
data points out of 3552 were selected as inputs for our models
(Table 1). Despite the common advocacy for larger datasets in
enhancing statistical model performance, this selection was
driven by the need for data uniformity and the avoidance of
redundancies that might compromise model effectiveness.
Moreover, we opted to exclude data from the literature, such as
those from Xu et al.66 to prevent the introduction of inconsis-
tencies, adhering to ndings discussed elsewhere regarding
data bias.69,75–78 In addition, this avoided the over-
representation of a specic substrate. For simpler substrates
SM1, SM2, and SM3, results from a 1 hour reaction time were
chosen to ensure a balanced reactivity distribution. The
j in the current study (HTE data) – all data points in Table 1 – and in
iomeric excess (jeej) from literature with our experimental results under
n diagram of ligand/substrate/solvent triplets divided into triplets with at
spectively). The arrow shows 8 triplets for which a consistency with
> 0.2) across our data (blue), reaxys (orange), and scifinder (red) for the
version of this figure displaying the ligand structures corresponding to
l’ in the ESI†).

Chem. Sci., 2024, 15, 13618–13630 | 13621
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Fig. 4 Distribution for conversion (%, on the top) and enantioselectivity (DDG‡ in kJ mol−1, on the right) in green, yellow, magenta, red and blue
representing SM1, SM2, SM3, SM4, and SM5, respectively. The figure includes a Spearman correlation matrix of experimental values for substrate
pairs, with the upper triangle showing DDG‡ and the lower triangle indicating conversion.

Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
Ju

ly
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

/2
0/

20
26

 1
2:

26
:1

3 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
empirically determined optimal temperature for each
substrate was selected, and MeOH was consistently used as the
solvent across all substrates to minimize variability from
solvent effects, thereby allowing the model to more accurately
focus on catalyst-specic features.

Considering the logarithmic nature of the enantiomeric
excess, we chose to compute and model the DDG‡ values,79

which followed a distribution that approximates normality.48

In the nal set of 960 data points, enantioselectivity (DDG‡)
demonstrated a distribution approximating a normal curve,
with values ranging from −15 to 15 kJ mol−1 for SM1, SM2, and
SM3, and −5 to 7 kJ mol−1 for SM4 and SM5.80 The conversion
results exhibited a bimodal distribution (see Fig. 4), predomi-
nantly skewed towards higher values. Therefore, a classication
model was built on a threshold of 0.8.

Spearman's rank correlation coefficient (see Fig. 4) was
employed to evaluate and compare the catalyst rankings across
different substrates. SM1 and SM3 showed the highest corre-
lation in their experimental values, with correlation coefficients
of 0.77 for conversion and 0.83 for DDG‡. This was followed by
SM1–SM2 (correlations of 0.59 for conversion and 0.82 for
DDG‡) and SM2–SM3 (correlations of 0.65 and 0.80, respec-
tively). In contrast, SM4 and SM5 did not exhibit signicant
correlations with the other substrates. For instance, among the
top performers in enantioselectivity for substrates SM1–SM3 are
ligands (R,R,S,S)-DuanPhos (L55) and (R,R)-Et-DuPhos (L68),
whereas for substrates SM4 and SM5, the ligands providing
highest enantioselectivity are SL-J505-1 (L18) and a BoQPhos PN
ligand (L186), respectively. Notably, L18 and L186 exhibit
signicantly lower selectivity with other substrates. As further
detailed, conducting such an analysis provides critical insights
for selecting training sets for out-of-domain tasks.
13622 | Chem. Sci., 2024, 15, 13618–13630
Catalysts and substrate descriptors

The next step towards a statistical model involved the featuri-
zation, i.e., mathematical representation, of the chemical enti-
ties. Descriptors were generated for the 192 catalysts and ve
substrates independently and then used as input features in our
predictive models to encode the entire reaction space.81

Ligand descriptors

The numerical representation of chemical entities is key to the
quality of machine learning models. We decided to test three
different representations with increasing simplicity for our set
of 192 catalysts: DFT-based descriptors derived from DFT opti-
mized geometries, 2D cheminformatics based on extended-
connectivity ngerprints (ECFP4 with 512 bits) and one hot-
encoding (OHE) of ligands and substrates.

For the DFT-based descriptors, we opted to compute well-
established general descriptors for this reaction type without
designing descriptors tailored to a specic reaction mechanism.
We aimed at a state-of-the-art level of accuracy by performing
DFT optimization with the PBE0-D3(BJ)/def2-SVP method (see
ESI Section S3† for details) on all 192 Rh-precatalyst, i.e., the
cationic square planar [Rh(L)(NBD)]+ (NBD = Norbornadiene)
formed upon mixing [Rh(NBD)2]BF4 with a chiral ligand and
therefore reecting the precatalyst state in the experimental
catalyst library. In addition to the alignment with the experi-
mental workow, the rigid and symmetrical nature of NBD was
key to limit the conformational freedom and reduce the
computational cost while featuring a Rh-olen interaction.82

Although this complex needs to lose NBD to enter the catalytic
cycle, we anticipated that the descriptors derived from such
a metal–ligand complex would be close to the catalytically-
© 2024 The Author(s). Published by the Royal Society of Chemistry
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relevant states where a square planar complex with a P–Rh-
alkene and P–Rh–O bond is formed in the transition state. A
Python package, Open Bidentate Ligand eXplorer (OBeLiX),44was
developed to extract and calculate steric, geometric and elec-
tronic descriptors. A more detailed explanation about the featu-
rization of the precatalyst structure is provided in Section S4 of
the ESI.† Among other features, OBeLix utilizes a graph-based
method to identify the ligand in the complex. This ensured
that steric descriptors, such as the buried volume, were only
taking the ligand into account. For the non-symmetrical biden-
tate ligands, the two coordinating atoms were distinguished
based on their charge with the label min/max denoting the least/
most positively charged donor atom, respectively. In addition to
descriptors derived from the [Rh(L)(NBD)]+ complex, we also
generated electronic descriptors for the ligand alone (labelled as
‘free ligand’). For this purpose, the ligand geometry was extracted
from the optimized structure of the corresponding [Rh(L)(NBD)]+

followed by a single-point (SP) DFT calculation. This entire
workow resulted in a total of 101 descriptors per catalyst. Highly
correlated descriptors as well as descriptors judged redundant
based on our computational chemistry intuition (e.g., Mulliken
charges for atoms where NBO charges were already available)
were removed leaving a nal set of 34 descriptors per catalyst.83

This set contained 15 steric, 8 geometric and 11 electronic
descriptors. The steric descriptors include percent buried
volumes calculated with either the donor atoms or metal as the
center of the sphere, measuring the steric hindrance induced by
a ligand.84,85 The geometric descriptors include specic angles
and distances, such as the bite angle,86 the cone angle, a dihedral
angle of NBD with respect to the donor atoms and distances
between the donor atoms and the metal center in the complex.
The Tolman cone angle87 oen serves as a method to assess the
steric size of a ligand, however it was shown to be inaccurate for
asymmetric ligands. The exact cone angle88 as implemented in
Morfeus was used instead. Finally, the electronic descriptors set
consist of commonly used descriptors derived from electronic
structure calculations such as the HOMO–LUMO gap, NBO
charges of the donor andmetal atoms, and lone pair occupancies
of donor atoms. These descriptors represent either the metal–
ligand bonding or the local electronic environment within the
complex. Similarly, electronic parameters were extracted from
the SP DFT calculation on the free ligand.

In addition to the 3D representation, 2D ECFP representations
were generated from the metal–ligand complexes using RDKit.89

Recently, Sigman and coworkers published descriptors for
111 ligands present in our library.68 Although these authors
used Pd(L)(Cl)2 in their DFT calculations, their global geometric
and electronic descriptors correlate well with our descriptors.
However, large discrepancies were observed for the local steric
descriptors that are more sensitive to the procedure for the
initial structure generation and to conformers search and
selection (see ESI Section S5† for a detailed comparison).
PCA analysis of 3D DFT-based descriptors

We conducted a principal component analysis (PCA) on our
dataset of DFT-based descriptors to investigate whether
© 2024 The Author(s). Published by the Royal Society of Chemistry
a dimensionality reduction would allow a visualization of the
ligand space that aligns with human chemical intuition and
understanding. Applying PCA directly to the 34 descriptors and
selecting the rst two principal components, which explain 37%
of the variance, resulted in the formation of well-dened clus-
ters (see Fig. 5A) corresponding to chemically distinct classes of
ligands (e.g., phosphoramidites, PN ligands, phosphine oxide).
As expected, the loading plots for the rst two principal
components revealed a predominant inuence of electronic
descriptors, conrming that the clustering was primarily based
on electronic differences (see ESI Fig. S11†).

In an effort to discern smaller clusters, subsequent PCA
analyses were performed on each category of descriptors
(namely, the electronic, steric and geometric descriptors). The
rst principal component from each category was then used to
construct cross sections and the results are summarized in Fig.
5B–E (see PCA interactive gure in the ESI† for enhanced visu-
alisation and analysis). The rst component within each cate-
gory accounts for a signicant proportion of the variance
explained by the descriptors, with values of 48%, 35%, and 21%
for steric, electronic, and geometric descriptors, respectively.
The cross section derived from geometric and steric descriptors
clearly demonstrates that families of chemically distinct ligands
occupy the entire geometric/steric space. The structures of a few
ligands and their placements on the four PCA maps are depic-
ted in Fig. 5. Notably, similar ligands, such as the MandyPhos
(L21 and L23) and phospholane-based ligands (L69 and L121),
are positioned in close proximity to one another. Along the
steric axis, the bulky MandyPhos ligands (L21 and L23) are
contrasted with the smaller DuPhos (L69) and BPE (L121),
aligning with chemical intuition. Less intuitively, the WalPhos
ligand (L101), characterized by two di-tert-butyl-phosphino
groups and likely a large cone angle or Rh–P distance, is
located at the extreme of the geometric axis. L100, another
WalPhos ligand with only one di-tert-butyl-phosphino group, is
appropriately positioned slightly below L101. At the opposite
end of the geometric axis lies L153, a BIBOP ligand, presumably
due to its compactness and small bite angle. These PCA maps
could facilitate a data-driven approach for selecting a chemi-
cally diverse set of ligands for experimental screening. However,
it is noteworthy that privileged structures,90 such as for example
the BINAP ligand (L32), are located in the center of all maps and
thus are not distinguished by this methodology.
Substrate descriptors

A static representation of all ve substrates, SM1–SM5, was
generated using four sets of descriptors: 3D DFT-based steric
ngerprint, 3D SMILES-based steric ngerprint, ECFP and
OHE. The steric ngerprints aimed to describe the local steric
environment surrounding the olenic bond. They were either
created from a DFT optimized structure of the substrate alone
or from a 3D structure generated by Openbabel91 based on the
SMILES of the substrate. The carbon atoms involved in the
double bond (denoted as C1 or C2) as well as those directly
connected to them were enumerated (denoted as R1 to R4). A
buried volume for all these atoms and sterimol parameters (B1,
Chem. Sci., 2024, 15, 13618–13630 | 13623
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Fig. 5 PCA score plot (A) and cross-sections (C–E) based on binning descriptors into three categories: steric, geometric and electronic. Eight
bisphosphine ligands are included as example (B). Percent of explained variance (EV) is reported in the axis label.
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B5 and L) for each possible C and R pairing were calculated,
resulting in a ngerprint consisting of six buried volumes and
12 sterimol parameters (see our Github repository of the pub-
lished ML pipeline for more details and code).
In/out domain modeling

As previously mentioned, our experimental data exhibits
a bimodal distribution for conversion, biased towards higher
conversion. Consequently, we opted for a classier to model
catalyst activity. The distribution of enantiomeric excesses
(DDG‡) displayed a more normal pattern, rendering it suitable
for regression analysis. Given the dataset encompassing ve
substrates (SM1–SM5) and 192 catalysts, our study presented
a unique opportunity to explore both out-of-domain and in-
domain modeling (see Fig. 6).

In the out-of-domain approach, which would constitute the
most impactful scenario, samples of the target starting material
are excluded from the training dataset to evaluate the model's
ability to predict reactivity and selectivity for starting materials
that it has not encountered. This method involves numerically
encoding both catalysts and substrates, followed by concate-
nating these encoded representations. The theoretically most
informative feature set combines DFT-based descriptors for
ligands with DFT-based steric ngerprints for substrates.
Conversely, the simplest feature combination employs one-hot
encoding for both ligands and substrates. Additionally, we
explored the scenario when only a half of the target starting
material's samples is included in the training set, simulating
the use of rst HTE plate results before running a second plate.
13624 | Chem. Sci., 2024, 15, 13618–13630
This approach is referred to as partially out-of-domain
modeling. For conversion classication, we set a common
threshold of 0.8 as the best balance between class distribution
across substrate data.

During our data analysis, we observed varying levels of
correlation of the results obtained with the ve starting mate-
rials (see Fig. 4). This prompted us to investigate the impact of
training set and target correlations on out-of-domain model
accuracy. We detailed seven specic cases in Fig. 6. Cases 1–3
focused solely on the related starting materials SM1, SM2, and
SM3, using only the two most closely related substrates for
training when predicting the target substrate's behavior. Cases
4–6 were still focused on predicting SM1, SM2, SM3 but with the
inclusion of additional, less related substrates (SM4 and SM5)
into the training set. Here, the goal was to assess the effect of
substrate set diversity on model performance. Case 7 posed
a more complex challenge, aiming to predict reactivity and
selectivity for SM4 using the unrelated substrates SM3 and SM5
for training.

In the in-domain modeling, the objective is to predict cata-
lyst performance for a specic substrate, employing a portion of
the 192 results for model training and the remainder for eval-
uation. The conversion classier's threshold is set based on the
median conversion specic to each substrate.

The efficacy of both out-of-domain and in-domain modeling
approaches signicantly depends on the choice of catalysts
included in the training set. To mitigate this dependency and
ensure the robustness of our ndings, we tested three distinct
random splits of the train/test set for each case. Hyper-
parameter tuning via a grid search within a predened
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Schematic representation of themachine learning workflow. In both fully and partially out-of-domainmodeling scenarios, for each target
startingmaterial (SM), themodel is trained on data from at least two additional SMs in accordance with seven specific cases. The featurematrix, is
formed by concatenating descriptors of both catalyst and startingmaterial. In partially out-of-domainmodeling, half of the target SM samples are
included in the training set. For in-domain tasks, each SMmodel undergoes training with an 80 : 20 training-test split, focusing solely on catalyst
descriptors. We use of random forest for classification (reactivity) and regression (selectivity).
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parameter space and k-fold cross-validation were performed for
each split (see ESI Section S8† for more details on our ML
pipeline).

Following preliminary screening with automated machine
learning tools such as Auto-Sklearn92 and TPOT,93 we chose
Sklearn's random forest implementation as our study's algo-
rithm.94,95 Random forest, an ensemble learning algorithm,
harnesses multiple decision trees and randomness to construct
a predictive model capable of handling diverse data types and
excelling in classication and regression tasks.67,96

Furthermore, correlation analysis (see Excel le with exper-
imental data and descriptors in the ESI†), revealed a limited
univariate linear correlation (maximum absolute Spearman
correlation coefficient of 0.58) between conversion and the DFT-
based descriptors. The correlation of these descriptors with
enantioselectivity was generally weaker (maximum absolute
Spearman correlation coefficient of 0.15). A preliminary in-
domain linear regression modeling (see ESI Jupyter notebooks
and pickle les with the nal results in the ESI†) failed to
accurately predict conversion and DDG‡, further justifying the
selection of the Random forest algorithm.

Considering four possible representations for the ve starting
materials, three ligand representations, seven cases and the
prediction of both conversion and enantioselectivity, we trained
in total over 700models including 168models for the fully out-of-
domain task, 504 for the partially out-of-domain task (across
three different training-test splits), and 90 for the in-domain
task. To evaluate the predictive performance of our classiers
and regressors, we calculated the balanced accuracy (BA) and the
coefficient of determination (R2 score), respectively. BA is the
average of recall obtained on each class and it ranges between
© 2024 The Author(s). Published by the Royal Society of Chemistry
0 and 1 with 1 being the desired outcome (see the Data avail-
ability statement for more information on all code and data).
Results and discussion
Machine learning predictions

Out-of-domain approaches. The performance metrics of the
models for the out-of-domain task are presented in Fig. 7A and
C. For reactivity modeling, we observed a BA ranging from 0.58
(case 7) to 0.85 (case 1, modeling SM3) with DFT-based
descriptors for the catalysts, indicating that the models are
able to estimate the experimental results with reasonable
accuracy. Notably, SM3 modeling, when incorporating non-
correlated substrates in case four, resulted in a marked
decrease in performance (from 0.85 case 1 to 0.73 case 4),
whereas this impact was minimal for other substrates (SM2,
from 0.78 case 2 to 0.74 case 5; SM1, from 0.74 case 3 to 0.72
case 6). For the selectivity modeling using DFT-based descrip-
tors for the catalysts, the highest R2 score of 0.68, was observed
in case 3.

In this scenario, the target substrate SM1 exhibited a strong
experimental correlation (DDG‡) with SM2 and SM3, as indi-
cated by Spearman correlation scores of 0.82 and 0.83 respec-
tively. Conversely, the performance of the model declined when
introducing unrelated substrate in the training set (case 6: R2

score of 0.53) and was very poor when trying to estimate the
unrelated substrate SM4 (case 7: R2 score of −0.3). Incorpo-
rating half of the catalyst set for the target substrate (partially
out-of-domain task) generally did not signicantly impact the
balanced accuracy or the R2 score (see Fig. 7A and C, box plots).
Indeed, the box plots obtained from random splits of the
Chem. Sci., 2024, 15, 13618–13630 | 13625
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Fig. 7 Performance metrics for out-of-domain and in-domain modeling. Panel A and C display the balanced accuracy and R2 score for out-of-
domain modeling (A: Conversion; C: DDG‡), while Panel B and D illustrate the same for in-domainmodeling (B: Conversion; D: DDG‡). In A and C
the starting material's representation is one-hot encoded. Fully out-of-domain results for DFT-based descriptors are represented by red dots. E:
Gini feature importance for RF in-domain classifiers trained on DFT-based descriptors to model conversion.
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training set in the partially out-of-domain task almost always
contain the red dots of the fully out-of-domain tasks.

Surprisingly, the more straightforwardly computed ECFP
and trivial OHE exhibited BAs for conversion that were largely
consistent with those of the more costly DFT-based descriptors
both for the fully and partially out-of-domain tasks. For case 2
and 3 only, the performance of OHE was notably inferior, sug-
gesting that these models are inuenced by the selection of
training sets and hyperparameters. To mitigate overtting, we
restricted the maximum depth of the trees. This constraint,
however, can be a bottleneck for OHE, adversely affecting its
effectiveness, therefore for OHE only we let the model expand
nodes until all leaves are pure. Models built on ECFP and OHE
features, demonstrated performance that was for most cases
comparable to DFT-based descriptors. To further examine the
inuence of catalyst featurization, we introduced a new set of
ligand descriptors consisting of 34 randomly generated values
ranging from−100 to +100 for each ligand. A total of 192 vectors
of random descriptors were generated and assigned to each
ligand. In the out-of-domain modeling where multiple
substrates are considered, a single ligand appears multiple
times and was consistently represented by the same random
vector. Interestingly, these random descriptors achieved the
same performance as the DFT-based descriptors, with BAs
ranging from 0.59 to 0.78 across the seven cases and R2 score
between 0.37 (case 5) and 0.68 (case 3) for the rst six cases and
a drop in performance for case seven. The maximum disparity
noted in outcomes derived from DFT-based descriptors versus
random descriptors within the fully out-of-domain approach is
0.06, as observed for case 7 for modeling conversion. These data
suggests that our generated DFT-based descriptors were not
13626 | Chem. Sci., 2024, 15, 13618–13630
able to capture the essential chemistry in this dataset as they do
not impart signicant meaning to the model estimates. The
poorer performance demonstrated by OHE in certain cases
suggests that binary descriptors may be less informative or less
prone to chance correlations compared to other descriptor
types. In general, the model's effectiveness varied notably across
different cases. The ability to estimate the experimental values
correctly appears to be more related to the inherent correlation
of catalyst performance across different substrates, rather than
the intrinsic value of the descriptors. For instance, modeling
SM4 using non-correlated substrates (SM3 and SM5) in case 7
proved unsuccessful (Fig. 7A and C), while outcomes based on
correlated substrates (as in case 1) were more accurate (average
BA for conversion of 0.8 and average R2 score for selectivity
prediction of 0.6). This outcome highlights that our machine
learning models primarily estimates based on the principle of
“what works now, will work in other cases” and vice versa (see
ESI Fig. S13†). Adding partial information about the target
substrate to the training set (partially out-of-domain modeling)
did not signicantly enhance the accuracy nor alter the
behavior of the model. In other words, a limited introduction of
target substrate information does not substantially inuence
the performance of our models.

In-domain approach. Confronted with the unsuccessful out-
of-domain modeling task, our focus shied towards in-domain
modeling, i.e., a more manageable, albeit less valuable,
endeavor, in line with recent literature.58,59,68 The objective was
to test whether models constructed within a substrate-specic
context, thus trained solely on catalyst descriptors, could
effectively discern meaningful information. An additional goal
was to assess whether DFT-based descriptors would introduce
© 2024 The Author(s). Published by the Royal Society of Chemistry
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superior chemical information into the model compared to
ECFPs and random descriptors. Results are summarized in
Fig. 7B and D. For reactivity, modeling using random descrip-
tors achieved a BA around 0.5. Models utilizing DFT-based
descriptors and ECFPs exhibited superior performance across
all substrates. Specically, for substrates SM1, SM3, and SM4,
DFT-based descriptors surpassed ECFPs, achieving average BAs
of 0.73, 0.80, and 0.77 on the test set, respectively, compared to
ECFPs average BAs of 0.64, 0.71, and 0.63. For substrates SM2
and SM5, the performance of ECFPs was comparable to DFT-
based descriptors, recording BAs of 0.65 versus 0.66 and 0.67
versus 0.69, respectively.

For SM1, SM3 and SM4, we investigated the feature impor-
tance of the trained models (see Fig. 7E). Roughly, the same
features are present for the related substrates SM1 and SM3
while different features are used by the model for unrelated
SM4. For SM1 and SM3, most of the descriptors are electronic,
for example, E7 (lone pair occupancy of the min donor atom
calculated on free ligand), E5 (NBO charge of metal center) and
E10 (NBO charge of the max donor atom calculated on the free
ligand). The only geometric descriptor present in all four
models is G4 (distance between Rh and the minimum donor).
S15 (buried volume on minimum donor atom) seems to be the
most important steric descriptors. Overall, it is difficult to
derive any meaningful mechanistic considerations from these
observations.

In-domain modeling for enantioselectivity was unsuccessful,
as evidenced by R2 scores not exceeding 0.2 on the test set. DFT-
based descriptors for substrates SM1, SM2, and SM3 showed
marginally better results than other descriptors. To investigate
whether best-performing models for enantioselectivity could
reside within smaller subsets of related catalysts, we imple-
mented a Monte-Carlo data selection approach. This involved
testing 1000 random splits for each catalyst fraction, ranging
from 90% to 10% of the entire catalyst set in decrements of 10%.
Each subset was divided into an 80 : 20 training-test ratio, and RF
models were trained exclusively using DFT-based descriptors.
Our ndings indicate the feasibility of derivingmodels with high
R2 scores (up to 0.98) on sets comprising merely 10% of the
catalysts (only 25 and 4 data points in training and test set,
respectively, see ESI Fig. S14†). However, the lack of discernible
pattern differentiating these catalysts from others, e.g. by ligand
family or class, suggests that such high scores are solely due to
chance correlation and test overtting. This approach, deviating
from standard machine learning practices, was employed to
demonstrate the potential pitfalls when working with small
datasets in machine learning pipelines, highlighting the risk of
uncovering spurious, albeit appealing, correlations.

Conclusions

Using our high throughput experimentation workow, we have
generated and made available a large and reliable dataset of
asymmetric hydrogenation results, encompassing most of the
commercially available chiral ligands. Our experimental results
align well with existing literature, affirming their validity but
substantially exceed those in uniformity and comprehensiveness.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Discrepancies observed were meticulously analysed and satis-
factorily accounted for, ensuring the robustness of our dataset.

We proved that the application of machine learning
modeling to estimate the reactivity of an unseen substrate relies
solely on ligand differentiation with only a marginal improve-
ment in performance observed for our set of DFT-based
descriptors in the fully out-of-domain task for three out of
seven cases. Several factors may contribute to this outcome. The
dataset encompasses a limited range of substrates (ve) and
catalyst variability (192). This constraint hinders the models'
ability to effectively interpret and differentiate features based on
meaningful chemical properties. Instead, the models tend to
rely on mere object differentiation, which explains why random
descriptors exhibit performance levels comparable to those of
more expensive DFT-based descriptors. The outcomes of our
models can be explained by the fact that we derived our
descriptors from the precatalyst with the goal to produce
models with broad applicability. However, the combination of
the reaction constituents, i.e., [Rh(L)(NBD)]+ and substrate, may
not be descriptive of reactivity-/stereo determining steps in the
reaction mechanism. Given the current dataset, considering
a transition state of catalysts with a specic substrate might be
a more accurate alternative for modeling, albeit more compu-
tationally intensive and lacking the desired generality.

The “in-domain” strategy, while successful to some degree in
modeling conversion, did not perform as well as anticipated.
For certain substrates, we observed that ECFPs descriptors
performed similarly to our DFT-based descriptors, indicating
that our generated DFT-based descriptors might not signi-
cantly impact the model's effectiveness in certain scenarios. We
acknowledge that our general, but still computationally inten-
sive descriptors do not automatically outperform descriptors
computed through more simplistic, näıve methods. This
observation underscores the necessity for both a critical evalu-
ation of the computational cost–benet ratio and a tailored
approach in the selection and engineering of descriptors for
specic applications.

Enantioselectivity modeling remains a considerable chal-
lenge. We found no discernible correlations between our DFT-
based descriptors and DDG‡, especially when working with
small datasets (fewer than 20 data points). In such datasets, any
strong correlations observed are likely due to chance, under-
scoring the necessity for cautious interpretation of results.

The insights garnered from our study highlight the impor-
tance of dataset diversity and mechanistic insights. Our nd-
ings suggest that expanding the dataset to include a broader
range of substrates and ligands and applying an ad hoc DFT-
based feature engineering process could potentially enhance
model performance, particularly in out-of-domain scenarios.
The library of 192 Rh catalysts is regularly being tested for new
substrates of our development pipeline. The generated data are
used to augment the dataset of the model with more diverse
chemical entities. In addition, we are exploring alternative
modeling approaches and new descriptors that might better
capture the complexities of reactivity and selectivity modeling.
Once our model will exhibit a high level of accuracy, we will
include the screening of virtual ligands generated via in silico
Chem. Sci., 2024, 15, 13618–13630 | 13627
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modication of the existing ones44 with the ambition to discover
entirely new asymmetric hydrogenation catalysts.

Data availability

The used machine learning pipeline can be accessed on the
Github organization page of the ISE group at TU Del: EPiCs-
group (https://github.com/EPiCs-group/obelix-ml-pipeline).
Similarly, the used Python package for featurization of catalyst
structures, OBeLiX, can be accessed on the Github
organization page of the ISE group at TU Del: EPiCs-group
(https://github.com/EPiCs-group/obelix). In addition to this
manuscript, ESI† and all used datasets are available together
with an extensive readme via 4TU.ResearchData at https://
doi.org/10.4121/ecbd4b91-c434-4bdf-a0ed-4e9e005e94:

� List and visualization of ligands (‘ligand_list.pdf’)
� Interactive gures (‘Fig. 2.html’,‘ Fig. 3.html’ and

‘PCA.html’)
�DFT input and output les for metal–ligand complexes and

extracted free ligand structures (‘nbd_metal_li-
gand_d_output.zip’ and
‘free_ligand_extracted_from_d_output.zip’)

� Excel le with experimental data and descriptors (‘C]
C_AH_dataset.xlsx’)

� Excel le with ML results (‘ml_results_tables.xlsx’)
� Jupyter notebooks and pickle les with the nal results

(‘data_analysis.ipynb’, ‘Literature_comparison_Reaxys_SciFinder.-
ipynb’, ‘d_nbd_model_literature_comparison.zip’, ‘view.ipynb’,
‘dict_res_obj1.pkl’, ‘dict_res_obj2.pkl’, ‘dict_res_obj3.pkl’,
‘dict_res_obj4.pkl’).

Author contributions

A. V. Kalikadien and C. Valsecchi contributed equally to this
work. A. V. Kalikadien: conceptualization, methodology, so-
ware, validation, formal analysis, investigation, data curation,
writing – original dra, writing – review & editing, visualization,
project administration C. Valsecchi: conceptualization, meth-
odology, soware, validation, formal analysis, investigation,
data curation, writing – original dra, writing – review & editing,
visualization, project administration R. van Putten: conceptu-
alization, methodology, validation, formal analysis, investiga-
tion, data curation, writing – original dra, writing – review &
editing, visualization T. Maes: conceptualization, writing –

review & editing M. Muuronen: conceptualization, method-
ology, writing – review & editing N. Dyubankova: conceptuali-
zation, writing – review & editing, supervision L. Lefort:
conceptualization, methodology, validation, resources, writing
– original dra, writing – review & editing, visualization,
supervision, project administration, funding acquisition E. A.
Pidko: conceptualization, methodology, validation, resources,
data curation, writing original dra, writing – review & editing,
supervision, project administration, funding acquisition.

Conflicts of interest

There are no conicts to declare.
13628 | Chem. Sci., 2024, 15, 13618–13630
Acknowledgements

The authors acknowledge the nancial support provided by
Janssen Pharmaceutica NV, a Johnson & Johnson company. The
authors thank the NWO Domein Exacte en Natuurweten-
schappen for the use of the national supercomputer, Snellius.
The authors acknowledge the pioneering role of Adrian Mirza in
the development of OBeLiX.
Notes and references

1 L. Horner, H. Siegel and H. Büthe, Angew. Chem., Int. Ed.,
1968, 7, 942.

2 W. S. Knowles and M. J. Sabacky, Chem. Commun., 1968,
1445–1446.

3 W. S. Knowles, Angew. Chem., Int. Ed., 2002, 41, 1998–2007.
4 H. Yang, H. Yu, I. A. Stolarzewicz and W. Tang, Chem. Rev.,
2023, 123, 9397–9446.

5 A. N. Marianov, Y. Jiang, A. Baiker and J. Huang, Chem.
Catal., 2023, 3, 100631.

6 C. S. G. Seo and R. H. Morris, Organometallics, 2019, 38, 47–
65.

7 T. Imamoto, in Rhodium Catalysis in Organic Synthesis:
Methods and Reactions, ed. K. Tanaka, Wiley, 2019, pp. 1–37.

8 J. M. Brown, Organometallics, 2014, 33, 5912–5923.
9 P. Etayo and A. Vidal-Ferran, Chem. Soc. Rev., 2013, 42, 728–
754.

10 M. Biosca, M. Diéguez and A. Zanotti-Gerosa, in Metal-
catalyzed Asymmetric Hydrogenation: Evolution and Prospect,
ed. M. Diéguez and A. Pizzano, Academic Press, 2021, vol.
68, pp. 341–383.

11 D. J. Ager, A. H. M. de Vries and J. G. de Vries, Chem. Soc.
Rev., 2012, 41, 3340–3380.

12 D. J. Ager and J. G. de Vries, in Comprehensive Chirality, ed. E.
M. Carreira and H. Yamamoto, Elsevier, 2012, vol. 9, pp. 73–
82.

13 C. A. Busacca, D. R. Fandrick, J. J. Song and
C. H. Senanayake, Adv. Synth. Catal., 2011, 353, 1825–1864.

14 K. Püntener and M. Scalone, in Asymmetric Catalysis on
Industrial Scale: Challenges, Approaches and Solutions, ed.
H.-U. Blaser and H.-J. Federsel, Wiley, 2010, pp. 13–25.

15 H. Shimizu, I. Nagasaki, K. Matsumura, N. Sayo and T. Saito,
Acc. Chem. Res., 2007, 40, 1385–1393.

16 N. B. Johnson, I. C. Lennon, P. H. Moran and J. A. Ramsden,
Acc. Chem. Res., 2007, 40, 1291–1299.

17 C. S. Shultz and S. W. Krska, Acc. Chem. Res., 2007, 40, 1320–
1326.

18 J. Halpern, Science, 1982, 217, 401–407.
19 C. R. Landis and J. Halpern, J. Am. Chem. Soc., 1987, 109,

1746–1754.
20 J. M. Brown and P. A. Chaloner, Tetrahedron Lett., 1978, 19,

1877–1880.
21 J. Daubignard, M. Lutz, R. J. Detz, B. de Bruin and

J. N. H. Reek, ACS Catal., 2019, 9, 7535–7547.
22 I. D. Gridnev, M. Yasutake, N. Higashi and T. Imamoto, J.

Am. Chem. Soc., 2001, 123, 5268–5276.
© 2024 The Author(s). Published by the Royal Society of Chemistry

https://github.com/EPiCs-group/obelix-ml-pipeline
https://github.com/EPiCs-group/obelix
https://doi.org/10.4121/ecbd4b91-c434-4bdf-a0ed-4e9e0fb05e94
https://doi.org/10.4121/ecbd4b91-c434-4bdf-a0ed-4e9e0fb05e94
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sc03647f


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
Ju

ly
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

/2
0/

20
26

 1
2:

26
:1

3 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
23 I. D. Gridnev and T. Imamoto, Acc. Chem. Res., 2004, 37, 633–
644.

24 I. D. Gridnev and T. Imamoto, Chem. Commun., 2009, 7447–
7464.

25 I. D. Gridnev and T. Imamoto, Russ. Chem. Bull., 2016, 65,
1514–1534.

26 T. Imamoto, K. Tamura, Z. Zhang, Y. Horiuchi, M. Sugiya,
K. Yoshida, A. Yanagisawa and I. D. Gridnev, J. Am. Chem.
Soc., 2012, 134, 1754–1769.

27 M. T. Reetz, A. Meiswinkel, G. Mehler, K. Angermund,
M. Graf, W. Thiel, R. Mynott and D. G. Blackmond, J. Am.
Chem. Soc., 2005, 127, 10305–10313.

28 I. D. Gridnev, C. Kohrt and Y. Liu, Dalton Trans., 2014, 43,
1785–1790.

29 M. Besora and F. Maseras, in Metal-catalyzed Asymmetric
Hydrogenation: Evolution and Prospect, ed. M. Diéguez and
A. Pizzano, Academic Press, 2021, vol. 68, pp. 385–426.

30 S. Feldgus and C. R. Landis, in Computational Modeling of
Homogeneous Catalysis, ed. F. Maseras and A. Lledós,
Springer, 2002, pp. 107–135.

31 C. R. Landis, P. Hilfenhaus and S. Feldgus, J. Am. Chem. Soc.,
1999, 121, 8741–8754.

32 D. C. Leitch and J. Becica, in Comprehensive Organometallic
Chemistry IV, ed. G. Parkin, K. Meyer and D. O'hare,
Elsevier, 2022, pp. 502–555.

33 S. M. Mennen, C. Alhambra, C. L. Allen, M. Barberis,
S. Berritt, T. A. Brandt, A. D. Campbell, J. Castañón,
A. H. Cherney, M. Christensen, D. B. Damon, J. E. de
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