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Photocatalytic deuterocarboxylation of alkynes
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Herein, a catalytic photoredox-neutral strategy for alkyne deuterocarboxylation with tetrabutylammonium
oxalate as the carbonyl source and D,O as the deuteration agent was described. For the first time, the oxalic
salt acted as both the reductant and carbonyl source through single electron transfer and subsequential
homolysis of the C-C bond. The strongly reductive CO, radical anion species in situ generated from
oxalate played significant roles in realizing the global deuterocarboxylation of terminal and internal
alkynes to access various tetra- and tri-deuterated aryl propionic acids with high yields and deuteration
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Introduction

Hydrocarboxylation of unsaturated hydrocarbons, such as C-C
double and triple bonds, to forge thermodynamically and
kinetically stable C-C bonds and yield value-added propionic
acid derivatives is an attractive research topic." Although the
alkene carboxylation reactions were disclosed by many research
groups,” carboxylation of alkynes is rarely reported as the C-C
triple bond is relatively stable and inert.* In addition, intro-
duction of deuterium into pharmaceutical drugs could poten-
tially improve the metabolic stability and pharmacokinetics of
the original molecules.* For example, deutetrabenazine (Aus-
tedo®) was approved as the first deuterium-labeled drug in 2017
by the FDA for the treatment of choreas associated with Hun-
tington's disease.® Recently, d,-butyric acids® and d;-1.-DOPA’
were investigated in clinical trials for treatment of narcolepsy
and Parkinson's disease, respectively (Fig. 1a). The development
of deuterated analogues of the original drugs was proved to be
the effective drug discovery process in medicinal chemistry and
therefore attracted more and more attention in the synthetic
chemistry community.*® For reductive carboxylation of alkynes,
since 2018, a number of examples were reported utilizing
various deuteration reagents, such as C,HsOD, D,O, TfOD, or
deuterated silanes (Fig. 1b).° In 2021, Evano and co-workers
reported an elegant selective deuteration reaction with
electron-poor alkynes as the substrate to access diverse di- and
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tetra-deuterated alkylamines.’* However, development of direct
protocols for alkyne deuterocarboxylation to access multi-
deuterated propionic acid derivatives is challenging yet highly
desired.

Traditional strategies to access d,-propionic acids from
alkynes relied on multi-step manipulations and tedious condi-
tions (Fig. 1c). The terminal alkynes could be carboxylated with
different carbonyl sources, such as CO or CO,, in the presence
of transition metals' or basic conditions,' respectively. After-
ward, the alkynyl carboxylic acids/esters could undergo hydro-
genation with D, (ref. 12) or reductive deuteration with D,0O

(a) representative deuterated pharmaceutical drugs

O
Dp O o Ve
D;0C HO\)S(U\ OH
ONa
b D NH,

D;0C HO
Deutetrabenazine (Austedo®)  d,-Sodium oxybate d3-L-DOPA

Teva Pharmaceuticals (JZP-386) (SD-1077)

Huntington's chorea Narcolepsy Parkinson's disease

- D,
o conditions D. D D_ D
- D J R o

D H H DD

"D"= CyHsOD  D,SO, iPrOD+ TfOD(H) +

+ Dy0; + D,0; DSiMe(OMe),; Et3SiD(H)... etc.

(c) traditional alkynes carboxylation and reductive deuteration (stepwise)
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Fig. 1 (a) Representative deuterated drugs on the market and in

clinical trials. (b) Well developed reductive deuteration of alkynes. (c)
Traditional procedures for alkyne deutero-carboxylation.
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under transition metal mediated" or electrochemical** condi-
tions to access deuterated propionic acids. To date, direct
conversion of either terminal or internal alkynes to the corre-
sponding fully deuterated propionic acids in one step is still not
realized. Development of a new protocol with a new carbonyl
source is crucial to solve the above problem.

Compared with the commonly used carbon dioxide as the
carbonyl source under photocatalytic conditions,* the carbon
dioxide radical anion (CO, ~)2***%'¢ with reversed polarity,
was recently developed as a novel carbonyl source for carbox-
ylation of alkenes via Giese radical addition in synthetic organic
chemistry."” Interestingly, in 2023, Yu and co-workers reported
that CO,’~ generated from CO, (Ereq = —2.21 V vs. SCE) via
single electron transfer (SET) was able to undergo radical
addition to the terminal alkynes and install the carboxy group
(Scheme 1a)."** In the presence of aryl thiol, the C-S bond was
formed via radical-radical coupling and the subsequential
cyclization afforded thiochromones as the final products. This
is the first example which showcased the possibility of the
carboxylation of alkynes with CO,’ under photo-induced
conditions, which encouraged us to devote efforts to alkyne
carboxylation reactions under mild reaction conditions. Herein
we disclose our recent discovery of deuterocarboxylation of
various terminal and internal alkynes with tetrabutylammo-
nium oxalate (TBAO) as the CO,"~ precursor under photoredox-
neutral conditions to access diverse aryl d,;-propionic acids
(Scheme 1b).

There are a couple of obstacles to overcome for regio- and
chemoselective deuterocarboxylation of alkynes with D,O as the
cheapest deuteration agent. Existence of any protonic agents,
solvents, or hydrogen atom transfer process could decrease the
deuteration ratio. In addition, realizing the high a- or B-selec-
tivity of the carboxylation step is also challenging.*

We noticed that TBAO, previously exploited as a co-reductant
in electrogenerated chemiluminescence (ECL),* could be used
as a new CO,"~ precursor for carboxylation under mild reaction
conditions.”® The reaction mechanism involves the single-
electron-oxidation of the oxalic dianion (E,x = 0.06 V vs. SCE)

(a) thio-carboxylation of alkynes with CO, as C1 source (Yu )
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Scheme 1 Reported carboxylation of terminal alkynes and the reac-
tion design for this study.
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by the oxidant or photocatalyst, followed by the subsequential
homolytic C-C bond cleavage to produce CO, ~.>> Neither the
protonic agent nor HAT process is involved during the genera-
tion of CO,’~ from TBAO. Therefore, the deuterocarboxylation
of terminal alkyne 1a with TBAO and D,O was used as
a template reaction and initially investigated.

Results and discussion

After careful screening of various reaction parameters (see the
ESIT for details), the best reaction conditions are showcased in
Table 1, entry 1, namely, the treatment of the terminal alkyne 1-
ethynyl-4-methylbenzene (1a) with 3 equivalents of TBAO and
15 equivalents of D,0O in the presence of 2 mol% 2,4,5,6-tetra-
kis(diphenylamino)isophthalonitrile (4DPAIPN) in DMF under
450 nm blue LED irradiation yielded d,-propionic acid 2a in
85% isolated yield. The counter cations of the ammonium salt,
such as NH," and Na*, were tested and no conversion of the
substrate was observed due to the poor solubility of these salts
in organic solvent (Table 1, entries 2 and 3). Amounts of D,O
were also screened and the results showed that 15 equivalents
of D,O was optimal (Table 1, entries 4 and 5). Reactions con-
ducted in DMSO provided product 2a in slightly decreased yield
and deuteration ratios at both the a- and B-positions (Table 1,
entry 6). When DMA was used as the solvent, the reaction yield
was increased to 96%; however the deuteration ratios dropped
at each position (Table 1, entry 7). Without visible-light irradi-
ation or a photocatalyst, the reaction did not occur and only the
starting material 1a was recovered (Table 1, entries 8 and 9). No
reaction was observed in the absence of TBAO under a CO,
atmosphere (Table 1, entry 10).

With the optimized reaction conditions in hand, the
substrate scope of this novel deuterocarboxylation process of
alkynes was investigated as shown in Table 2. Various terminal

Table 1 Variation of the standard reaction conditions®

H D D
Z 4DPAIPN (2 mol%)
+ (1BugN)y + D0 B Ko OH
DMF, r,, 450 nm LED D D
Me’ Me’

(3 equiv) (15 equiv) 2a

1a

Deuteration
Entry Variations Yield of 2a” (%) ratio (a/B)
1 None 91 (85)° 89%/94%
2 (NH4),C,04 0 -
3 Na,C,0, 0 —
4 D,0 (8 equiv.) 91 75%/86%
5 D,0 (20 equiv.) 94 85%/92%
6 Anhydrous DMSO 85 82%/78%
7 Anhydrous DMA 96 85%/89%
8 In dark 0 —
9 W/o 4DPAIPN 0 —
107 W/o TBAO 0 —

¢ Reaction conditions: 1a (0.2 mmol), 4DPAIPN (2 mol%), TBAO (3
equiv.), in anhydrous DMF (0.1 M), r.t.,, 12 h under a N, atmosphere.
b Crude "H NMR yield. ° Isolated yield.  Under a CO, atmosphere.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Substrate scope of various N-aryl acrylamides 1°
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R
=z

4DPAIPN (2 mol%)

B Db

op § ¢
+ (MBUN)C.O, + D,0 TOH  or TOH
DMF, r.t., 450 nm LEDs D b O alkyl/aryl
(3 or 4 equiv.) (15 equiv.)
1, R=H, alkyl, aryl 2 3
terminal alky
® =CD,
94% 93% 92% 2% O Me 979 92%
89% 87% 89% 88% 89% 88%
Me’ Ph MeO Me’ Me NC
2a, 85% 2b, 80% 2c, 88% 2d, 74% 2e,57% 2f, 52%
95% ¢ 93% 86% 88% 91%
C 94% 9
HO,C K : ;
H H ‘Me H H Y 7 “OH
92% 84% Me., 78% 82% 84%
MeO,C ° e” ° NHBn NHPh s 92%
2g, 76% 2h, 64% 2i, 44%", from 4-ethynylaniline 2j, 82% 2k, 66% 21, 14%
Me
85% 93% 8% i 92%
/ “SoH . g iy Q 93%
4 H o 91%
" 79% s 90% O Ak 91% Y o & H
: v 5 92% Me™ Me >
2m, 35% 2n, 88% 20, 78% 2p, 21% 2q,60%
internal alky
95%
"OH 93% 96% 96% O 96% 95%
o) 90% | I . A o
3 5 n
><j\‘° Me D 87% Cy D 92% "Bu D 91% Ph Me. D'96% - Bu D 96%
2r, 82% 3a, 36% 3b, 57% 3c, 64% 3d, 96% 3e, 97%
99% 97% Bn 93% OH 94% CN 9% 98%
L )s )3 “OH
4 e D CO,H D CO,H D CO,H "Bu D 95% "By 4
i Bu D 98% PH et P 9% Ph s NC RSEE D 90%
3f, 47% 39, 66% 3h, 77% 3i,37% 3j, 56% 3k, 65%
(3F, 38%, 94% D)°
OEt(Me)
Me CO,Et
Fog5% O 06% O 95% O 97% O 92% O
L Il £
m 4 i O O Yo.H
"Bu D 90% D 959 D D H 9
Hid ) 90% Ph D 95% i gui A Et0,C 97% (E1O)Me 95%
31,70% 3m, 61% 3n, 58% 30, 33% (30" 32%, 97% D)° 3p, 79% (1:1.3)¢

“ Reaction conditions: 1 (0.2 mmol), 4CzIPN (2 mol%), TBAO (3 or 4 equiv.), anhydrous DMF (0.1 M), r.t., 12-48 h, under a N, atmosphere. > MeI was
added after completion of the reaction. ¢ Reductive deuteration product was isolated. ¢ Two regioisomers were isolated as an inseparable mixture.

aryl alkynes were first investigated. Ethynylbenzene (1b) gave d,-
propionic acid 2b smoothly in 80% yield. The ratios of 87% and
93% for deuteration at the a- and B-positions, respectively, were
obtained. The terminal aryl alkynes tethering electron-donating
groups, such as Ph and MeO groups, delivered the desired
product 2¢ and 2d in good yields and deuteration ratios. Alkyne
1e with two methyl substitutions at the ortho position provided
d,-propionic acid 2e with a decreased yield of 57% due to the
steric hindrance. The CN group could also be tolerated to give
product 2f in moderate yield and no decrease in the deuterium
ratio at both o- and B-positions was detected. The ester moiety,
which is vulnerable under reductive conditions, was also
tolerated during the transformation to give product 2g in 76%
yield and high deuteration ratios up to 95%. Interestingly,
substrate 1h with a carboxy group on the aryl ring also worked
well to give the corresponding product 2h in 64% yield. 4-
ethynylaniline (1i) was converted to the corresponding methyl-
ated propionic acid product 2i in 44% yield after treatment with
Mel before workup of the reaction, although the reaction yield

© 2024 The Author(s). Published by the Royal Society of Chemistry

and deuteration ratios were moderate. Ortho-N-benzyl substi-
tution (1j) improved both the reaction yield and the deuteration
ratios (2j). The more sterically hindered ortho-N-phenyl group
led to better deuteration ratios with moderate yield (2k). After-
ward, the sensitive heteroarene thiophene was examined.
Although the reaction generated the desired product 21 in only
14% yield, an average deuteration ratio of 93% was obtained.
The instability of the thiophene ring under our reaction
conditions caused the low yield. The other indole substituted
alkynes also worked well to give moderate to good yields and
deuteration ratios (2m, 2n). The polyaromatic substrate 9-
ethynylphenanthrene was converted to the corresponding aryl
d,-propionic acid 20 in 78% yield and 90% average deuteration
ratio. When 1,4-diethynylbenzene with two symmetric C-C
triple bonds was employed under the reaction conditions, the
dg-diacid 2p was isolated in high deuteration ratios, although
a low yield was obtained. The alkynyl substrates derived from
natural products, such as menthol and borneol, were investi-
gated next and the corresponding d,-propionic acids were

Chem. Sci., 2024, 15, 13041-13048 | 13043


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc03586k

Open Access Article. Published on 15 July 2024. Downloaded on 1/20/2026 4:29:58 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chemical Science

produced in good yields and high deuteration ratios over 90%
(2q and 2r).

Compared with the terminal alkynes, deuterocarboxylation
of internal alkynes under photocatalysis is also challenging and
has never been reported before.?” With our established protocol,
various internal alkynes were next investigated. As shown in the
second part in Table 2, when the hydrogen on the terminal
alkyne was replaced by alkyl groups such as Me, Cy, n-Bu, and
phenethyl, the corresponding d;-propionic acids 3a-3e and 3g
were obtained, respectively, in up to 96% yield and over 90%
deuteration ratios. Product 3a was obtained in 36% yield, along
with inseparable complex mixtures. When the steric hindered ¢-
Bu group was incorporated, the reaction yield dropped to 47%,
but extremely high deuteration ratios around 99% were
observed (3f). In the meantime, almost equal amounts of
reduction product 3f were isolated with a 94% deuteration ratio
because the steric hindrance of the ¢-Bu group interrupted the
carboxylation step. To further test the functional group toler-
ance of this reaction, the substrates tethering a free hydroxyl or
cyano group on the alkyl chain were examined to give the cor-
responding functionalized ds-propionic acids in moderate to
good yields and high deuteration ratios (3h, 3i). The cyano,
ester, and fluoro substituents on the aryl ring were also inves-
tigated and the desired products 3j-31 were obtained in good
yields and deuteration ratios. Afterward, the 1,2-diaryl
substituted internal alkynes were exploited and the deuter-
ocarboxylation processes proceeded smoothly to give the
desired products 3m and 3n. For an electron deficient substrate
with an ester moiety as the substituent, direct reduction and
deuteration was observed as a side reaction. A synthetically
useful yield and high deuteration ratios were obtained for both
products (30 and 30'). The unsymmetric 1,2-diaryl alkyne
substrate provided the corresponding acid 3p in 79% yield and
high deuteration ratios up to 95% but poor regioselectivity was
observed.

Interestingly, under our reaction conditions, the TMS pro-
tected alkyne 4 could be converted to the d,-propionic acid 2¢/
in even higher yield and deuteration ratios compared with the
corresponding free terminal alkyne 1c. The thiol ether substrate
5 underwent deutero-carboxylation smoothly to give acid 6 in
92% yield and 96% average deuteration ratio (Scheme 2a).
Furthermore, the deuterium-labeled analogue of nandrolone
phenylpropionate was synthesized in good yield and stable
deuteration ratios from d,-propionic acid 2b’ synthesized from
a scaled-up reaction with increased deuteration ratios, proving
it to be a practical method for synthesis of the deuterated
version of biologically active molecules (Scheme 2b).

To gain further insights into the reaction mechanism,
several control experiments were conducted as shown in
Scheme 3. Firstly, the unactivated alkyne 9 was utilized as the
substrate to probe any possible intermediate during the Giese
radical addition of CO,"~ to the alkyne. When unactivated
alkyne 9 was treated under the standard reaction conditions,
the B-deuterated vinyl carboxylic acid 10 was observed in only
8% isolated yield with a very high deuteration ratio of 99%,
along with inseparable complex mixtures (Scheme 3a). This
result indicated that the alkenyl radical generated via Giese

13044 | Chem. Sci, 2024, 15, 13041-13048
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(a) TMS-protected alkynes

— T™MS 97%
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Mes 5 92% yield Mes 7

(b) large scale reaction and synthesis of the deuterated analogue of Nandrolone phenylpropionate
y 95%
©/ standard conditions ©/.\./ H
o
71% yield 90%

DCC (2 equiv.)
DMAP (10 mol%)

CH,Cly, rt. 16 h

8, 82% vyield
d4-Nandrolone phenylpropionate

Scheme 2 (a) Further application of the protocol. (b) Synthesis of the
deuterated analogue of nandrolone phenylpropionate.

radical addition of CO,"~ was reduced to the anion form and
subsequently deuterated in the presence of excess amounts of
D,O. However, lack of a conjugated m-system caused low

(a) unactivated alkynes

standard conditions N oH
8% H

(b) under CO, atmosphere with H,O

ADPAIPN (2 mol%)
("BugN),C,04 (3 equiv)
H,0 (15 equiv)

DMF, COy, r.t. 450 nm LEDs

=
[

=
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\ N\
o
g
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§ o
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11:8%

(c) TEMPO trapping experiment

(d) cinnamic acid 14 as the possible intermediate

D
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2¢', 43%
+ complex mixture
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full conversion 2c
(trace)

Q 88% D H Q
N ™
OH standard conditions OH
H D72%
14 15, 28%
(e) Stern-Volmer quenching experiment
8004 = Substrate
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5.0x10-4M 20
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Scheme 3 Mechanistic studies.
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reactivity and poor mass balance. Secondly, the template reac-
tion of 1la was investigated with normal H,O under a CO,
atmosphere (Scheme 3b). In the presence of CO,, the reaction
was disturbed and a complex mixture was observed. After
careful investigation, byproducts 11, 12, and 13 were isolated
and each of them was characterized by using NMR spectra and
HRMS analysis.

Formation of 11 clearly showed that the alkyne 1a underwent
deprotonation under basic conditions and the anion form of 1a
trapped CO, to form the carboxylic acid. Therefore, under a N,
atmosphere, proton-deuterium exchange occurred first in the
presence of excess amounts of D,O in our reaction to give the
deuterated 1a, which could accept the attack by CO,"” to
establish the first carboxy group. Product 12 could be derived
from either 11 or the cinnamic acid intermediate. For product
13, incorporation of the second carboxy group at the benzyl
position indicated formation of the benzyl anion intermediate
during the transformation. When 3 equivalents of TEMPO were
added to the reaction mixture, full conversion could be
observed, but only trace amounts of the desired product 2c were
detected, along with H-D exchanged product 2¢’ in 43% iso-
lated yield. This result indicates that the formation of radical
species during the transformation and the deuterocarbox-
ylation process was disturbed (Schemes 3c). To determine if
cinnamic acid was one of the intermediates, 14 was treated
under standard reaction conditions and the desired product 15
was obtained in 28% yield and good deuteration ratios (Scheme
3d). Next, the Stern-Volmer quenching analysis was conducted
with substrate 1a and TBAO; the results showed that the excited
state of photocatalyst 4DPAIPN was quenched by TBAO effec-
tively (Scheme 3e, see the ESI{ for more details).

As shown in Scheme 4, on the basis of the control experi-
ments and reported literature,”*>> we proposed that the reaction
was first initiated by photo-exciting 4DPAIPN to form 4DPAIPN*
(E;oq = 1.53 V vs. SCE) that could oxidize TBAO (Eoy = 0.06 V vs.
SCE) and generate the oxalic radical anion (C,O, "), which
subsequently underwent homolysis of the C-C bond to give
CO,"" and CO,. Under basic conditions, alkyne 1b was depro-
tonated and deuterated rapidly to give 1b’ and underwent the
Giese radical addition of CO,"~ to give intermediate I. The vinyl

H D —
Pz D,O N
Z 2 Z N PC N
Ph/ L Z Ph PhNY
D D
1b 1b' 1 I
SET D,0
+
pCr -
PC D
hv . - D _
N
PC Ph)}( Ph)\(
5 D,0 !
v n
D _ DD D D
- D,O -
ph)y 2 on )S( HCl Ph& H
DD 0 b acidic DD
workup
v \Y| 2b

Scheme 4 Proposed mechanism for deuterocarboxylation of alkyne
1b.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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radical I was reduced by 4DPAIPN" "~ (E;;,, = —1.52 Vvs. SCE) to
produce anion intermediate II, which was deuterated by D,O to
yield intermediate III. Afterward, the anion form of vinyl acid III
could be further reduced by CO,"~ (or 4DPAIPN' ") to generate
the benzyl radical species IV, which could be reduced by
4DPAIPN"™ (or CO,'"), producing intermediate V. Finally,
deuteration of intermediate V provided d,-propionic anion VI
that could be protonated upon acidic workup to give the desired
product 2b.

Conclusions

In summary, a visible-light-induced photoredox-neutral alkyne
deuterocarboxylation reaction using TBAO as both the C1
source and reductant was developed. This study provides
a novel approach for d,;;-propionic acid synthesis with super
stoichiometric D,O as the cheapest deuteration agent. The
reaction is mild, clean, and sustainable, with broad substrate
scope and a novel reaction mechanism. Most of the deuteration
ratios are over 90%, which is close to the requirement of
pharmaceutical drugs, indicating the application potential of
our synthetic method. Further applications of TBAO as the
CO,"~ precursor in synthetic organic chemistry under sustain-
able reaction conditions are currently under investigation.
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