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of Chemistry lon drift velocities in response to electric fields are a critical attribute of battery electrolytes. Accurately
predicting species mobilities in such systems is an important challenge for atomistic simulations. In this
work, we investigate two organic liquid electrolytes: LiPFg dissolved in (a) dimethyl carbonate (DMC) and
(b) @ mixture of DMC and ethylene carbonate (EC). We compare two approaches to measure mobilities:
observing center of mass diffusion with no forces applied, and observing species drift in response to

external forces. The two approaches are related by the fluctuation—dissipation theorem, but they are not
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Accepted 3rd September 2024 equally efficient computationally. We argue that statistical errors of the two methods scale differently
with system size and simulation run time. In a head-to-head test, we apply both methods to LiPF¢ in

DOI: 10.1039/d4sc03325¢ DMC in multiple simulations with the same size and run time. The drift method gives a much smaller
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Introduction

Electrolytes mediate ion transport between the electrodes in
electric cells. A good electrolyte dissolves ions easily and readily
allows solvated ions to move in response to an electric field,
resulting in high conductivity and rapid charging and dis-
charging of the battery. A good electrolyte should also exhibit
a high transference number, ie., cations carry most of the
current, which reduces concentration polarization during
battery operation and increases the power density of the
battery."

Lithium-ion batteries have high energy density because of
their high electrode potential and lightweight cations. However,
lithium ions are small, and tend to stick to solvent molecules
and counterions because of strong Coulomb interactions. These
interactions result in ion clusters, which impede cation motion.
Therefore, many experiments and simulations have been
devised to study the interactions and mobility of ions and
solvents in lithium-ion batteries.

Impedance spectroscopy has been widely used to charac-
terize battery electrolytes. Alternating current is passed through
the electrolyte, and the corresponding voltage drop and phase
difference are measured over a range of frequency. The results
are analyzed in terms of an equivalent circuit, which primarily
provides information about the electrode/electrolyte interface,
while treating the bulk electrolyte as a continuum.>® Impedance
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variance in repeated measurements than the diffusion method, and should be preferred in practice.

spectroscopy can measure conductivity;® but high conductivity
may arise from current carried by anions rather than cations.” ™

Experimental methods that characterize the motion of
cations and anions separately are needed to provide a compre-
hensive picture of electrolyte transport. Pulsed-field gradient
nuclear magnetic resonance'* can measure the self-diffusion
coefficients of individual electrolyte species.”>® However, self-
diffusion alone only suffices to predict the mobility of electro-
Iyte species in the dilute limit, in which the motions of anions
and cations are uncorrelated.”” However, practical lithium-ion
battery electrolytes are far from dilute.

More recently, pulsed-field gradient NMR has been applied
to electrolytes in an electric field by an approach called elec-
trophoretic nuclear magnetic resonance (ENMR), which can
separately measure the drift velocities of cations, anions and
solvents.'® Separate drift velocities of cations and anions suffice
to determine the conductivity and the transference number."”*
This method has been used in multiple studies on ionic liquid
electrolytes containing lithium salts,”*>* solid polymer
electrolytes*” and organic solvents.”**°

Overall, these experiments show that the motion of Li* is
strongly correlated with anions and solvent molecules. The
correlated drift of species and their response to external forces
are described by the linear response relation:

vi =) MyF, 1)
7

which, relates the drift velocity v; of species i to the force F;
applied to species j. The mobility matrix M;; is symmetric and
positive definite. The off-diagonal terms of M, describe the
correlated motion of different species: a force on one species
can result in the drift of another.®*
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As a consequence of the fluctuation-dissipation theorem,
the mobility matrix M;; also describes the correlated diffusion of
species with no forces applied:

1 . d

where ri(t) is the displacement of the center of mass of i
species with respect to the center of mass of the system at time ¢,
kgT is the thermal energy and V is the system volume. Intui-
tively, drift in response to applied forces proceeds by biased
diffusion. The more readily a species diffuses, the faster it drifts
in response to a force. Likewise, if two species tend to diffuse
together, a force on one will cause the other to drift as well.

In recent years, Fong et al. have characterized polymerized
ionic liquid electrolytes using Onsager transport coefficients
obtained from correlated diffusion of species.**?* Recently,
Fang et al. adapted this formulation for binary solvents evalu-
ating transport properties with respect to the center of mass
frame of both solvents.*

In simulations, nonequilibrium methods with external
forces have been used to evaluate transport properties.**® The
theoretical basis for these simulations was formalized through
linear and nonlinear response theory.***”-** These simulation
algorithms were used to evaluate transport of gases in zeolite
pores.*>*'  Subsequently, Wheeler and Newman adapted
a similar approach for salt solutions.*

Thus there are two ways to measure mobility matrices:
observing drift of species in response to forces, or observing the
diffusion of the center of mass of species. Both methods incur
statistical error, but is one approach more efficient than the
other? This question has received scant attention in previous
work.

Recently, Shen et al. concluded that measuring conductivity
by observing ion drift under an electric field is more efficient
and accurate than characterizing the mobility matrix using the
diffusion approach.*® However, observing drift under an electric
field does not determine the entire mobility matrix, therefore
the two measurements by Shen et al. are not equivalent to each
other.

In this work, we compare the two methods of measuring
mobility matrices. Lithium-ion battery electrolytes are ideal for
this comparison because they are concentrated multi-
component mixtures with substantial interactions between
different species. We chose two well-studied liquid electrolytes:
lithium hexafluorophosphate (LiPFs) dissolved in dimethyl
carbonate (DMC), and LiPF¢ dissolved in equal parts by weight
of dimethyl carbonate and ethylene carbonate (DMC/EC).

For simulations to reflect experimental reality, interaction
potential must be realistic. Because lithium ions stick to anions
and polar moieties, tuning and validating these interactions is
essential. We tune and validate the non-bonded force field
parameters of LiPFs in DMC by matching the experimental
osmotic pressure versus salt concentration to simulation
results.** The strength of lithium ion attraction to anions and
solvent strongly affects ion clustering, which strongly affects the
osmotic pressure. We study LiPF4 solvation and perform cluster
analysis in both systems.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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We compare the computational efficiency of the two
methods of measuring mobility matrices in two ways. First, we
construct scaling arguments for both methods, predicting how
statistical error depends on system size and simulation run
time. Then, we directly compare the errors in practice in terms
of conductivity and transference numbers, by applying both
methods to multiple instances of the same system with the
same total run time.

Calibrating force fields with osmotic
pressure

Force field parameters that accurately represent the intermo-
lecular interactions are crucial for getting realistic ion transport
predictions. Force field parameters are usually validated by
comparing simulated properties to experimental results for
boiling point, vapor pressure and density. For electrolytes,
interactions of cations with anions and polar solvents are
particularly important, so we choose osmotic pressure of LiPFg
dissolved in dimethyl carbonate (DMC) at a range of concen-
trations to validate the force field parameters.

Osmotic pressure is well suited for calibrating force field
parameters in liquid electrolytes when available, because it
depends sensitively on the size of ion clusters, which also affects
the number of available charge carriers and hence the
conductivity. When ions cluster, the osmotic pressure drops,
because the ions no longer move independently to explore the
solution volume. We measure osmotic pressure over a range of
concentrations in a single molecular dynamics simulation
using a method developed in our group,** and compare it with
the experimental osmotic equation of state for LiPF, dissolved
in DMC® as a check on our non-bonded force field parameters.

A set of force field parameters for LiPF4 solvated in ethylene-
carbonate (EC) were obtained by Kumar et al. with partial
charges obtained from density functional theory by electrostatic
fitting.*® Because molecular structures of DMC and EC are
similar, we adapted the Lennard-Jones parameters from EC for
DMC, and obtained partial charges for DMC by electrostatic
fitting (see Table 1). However, equilibration of LiPF, dissolved

Table 1 Optimized Lennard-Jones force field parameters (g, ¢) and
partial charges (g) used for LiPFg in DMC. Changes made over Kumar
et al.*® are shown in boldface type

Atom/pair o (nm) & (k] mol™) q(e)

O, 0.296 0.87864 —0.430
Cy 0.375 0.43932 0.590
Oy 0.300 0.71128 —0.330
C 0.350 0.27614 0.160
H 0.250 0.12552 0.030
Li 0.14424 0.43154 1.000
P 0.36950 0.55099 1.070
F 0.29347 0.12015 —0.345
Li-O, 0.213 0.51314

Li-P 0.3007 0.05871

Li-O; 0.20217 0.87600

F-H 0.23951 0.86023

F-C, 0.29381 0.27388

Chem. Sci., 2024, 15, 16176-16185 | 16177


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sc03325f

Open Access Article. Published on 13 September 2024. Downloaded on 1/31/2026 2:09:50 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

Fig. 1 Li* and PFs™ ions form long ion strings when equilibrated with
non-bonded force field parameters from Kumar et al.*®

in DMC using these partial charges gives long string-like ion
aggregates (see Fig. 1), and a simulated osmotic pressure much
smaller than experiments (see Fig. 2a). The long ion strings and
low osmotic pressure result from poor solvation with these non-
bonded potential parameters.

To improve the agreement of simulations with the experi-
mental osmotic pressure, the ions need to form smaller clus-
ters, which can be achieved through better solvation of the ions.
To achieve this, we reduce the short-range repulsive Lennard-
Jones interactions between the Li* ions and the carbonyl
oxygen of the solvent molecules (O,), to which the cations are
most strongly attracted, following the method described by
Gillespie et al.** We change both ¢ and ¢ such that the only the
repulsion factor (4ec'?) reduces, keeping the attraction factor
(—4&0®) unchanged. This reduction in repulsion makes the Li*
more likely to associate with the solvent molecules instead of
clustering with anions.

Additionally, lithium ions polarize neighboring molecules,
which causes dielectric screening of Coulomb interactions.*” To
account for this dielectric screening, charges are often scaled by
a factor ranging from 0.75 to 0.85 in molecular simulations
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containing lithium ions.*”** Instead of this ad hoc charge
scaling for ions, we use a background dielectric constant of ¢ =
2, which corresponds to scaling by a factor of 1/2 = 0.71 all
partial charges (not just ions). This approach is physically
motivated, insofar as Coulomb interactions between all charges
would be screened by the electronic polarizability of the liquid,
which typically contributes a dielectric constant of about ¢ = 2
for organic liquids.

The combination of these two changes improves ion solva-
tion in simulations; as a result, we achieve good agreement with
the experimental osmotic pressure (see Fig. 2b). The final non-
bonded Lennard-Jones parameters and partial charges use the
OPLS-AA force field and are given in Table 1 with changes made
from Kumar et al. parameters in boldface type.

Lithium solvation

Having settled on force field parameters, we begin by exploring
the equilibrated structure of solvated ions. We examine two
different systems relevant to the contemporary lithium-ion
batteries with organic liquid electrolytes: (a) 0.75 M LiPF, dis-
solved in dimethyl carbonate (DMC) and (b) 0.75 M LiPF, dis-
solved in equal parts by mass of dimethyl carbonate (DMC) and
ethylene carbonate (EC).

We construct the equilibrated solutions as follows: all
molecules were initially inserted randomly into an 8 nm cube
with periodic boundary conditions. After energy minimization,
the solution was relaxed for 4 ns in an NVT simulation followed
by 10 ns of NPT simulation. After achieving a constant equi-
librium density, the solution was simulated under NVT condi-
tions for 500 ns at 300 K to give the ions time to diffuse across
the simulation box and form equilibrated clusters. Cluster
analysis was performed on the final 200 ns of the simulation
trajectory.

To identify ion clusters, we define a cutoff radius R, below
which a Li* cation is considered to be in close contact with PF
anion. The cutoff radius R is taken from the radial distribution
function of Li" with phosphorous atom of PF, "~ as the location
of the first minimum, R = 0.4 nm.
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Fig. 2 Simulated and experimental osmotic pressures (a) before and (b) after optimizing the force field parameters.
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Fig.3 Histograms of sizes of randomly picked clusters in LiPFg in DMC
(left) and LiPFg in DMC/EC (right). The inlaid images show an arbitrary
snapshot of ion clusters.

Fig. 3 displays a histogram of cluster size for both systems.
Clusters with even numbers of ions are evidently neutral. In the
first system, almost half of the clusters are neutral pairs, and
their motion does not directly contribute to the conductivity of
the electrolyte. A small fraction of ions form single dissociated
ions, and a large number of ion clusters have even more than
two ions. In contrast, in the second system, a majority of ions
are present as dissociated single ions and only a small fraction
of the clusters are neutral pairs.

The enhanced availability of charge carriers in the presence
of EC in the solvent mixture reflects the excellent solvation of
lithium ions in EC. EC has a large dipole moment compared to
DMC, which helps solvate ions like lithium efficiently.*® Fig. 4
presents the radial distribution functions of the carboxyl oxygen
in solvent molecules (DMC and EC) in the mixed solvent system
with respect to Li'. A lithium ion is approximately three times
more likely to be near EC than near DMC. As the solvent mixture
is nearly equimolar, the affinity of Li* for EC is evidently much
stronger than DMC.

Mobility in electrolytes

The linear response formulation of transport properties
assumes a reference frame in which the center of mass (COM) is
at rest. As we intend to study the system under external forces,
we adopt the following convention: for any explicit force applied
to species 7, an implicit equal and opposite force is applied to
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Fig. 4 Radial distribution functions of carboxyl oxygens of solvent
molecules with respect to Li* ion in LiPFg in DMC/EC system.

© 2024 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Chemical Science

the whole system. Thus the total applied force will always be
zero and the COM of the system will remain at rest. The implicit
force is distributed over the species proportional to their mass
fraction pg; thus, it has no effect on the drift of species with
respect to the COM. Therefore, the mobility matrix must anni-
hilate the mass fraction vector:*

M:-p=0 (3)

If two species interact in a mixture, they exert intermolecular
forces on each other. Consequently, motion of one of the
species affects the motion of other species. These interactions
are expressed by the off-diagonal elements of the mobility
matrix. For example, the element M, , expresses the drift velocity
of the first species when a unit force per volume is applied to the
second species and all other explicit forces are zero. Onsager
reciprocity dictates that the effect of species i on j equals the
effect of species j on 7, expressed as M;; = Mj;.

We demonstrate the linear response measurement of
mobility matrices and prediction of transport properties for
electrolytes using the two previously equilibrated systems: LiPF¢
dissolved in DMC and LiPF dissolved in equal parts by weight
of DMC/EC. The first system has three species: cations, anions
and solvent molecules; the second has four species, with two
types of solvent molecules.

In simulations, we can apply constant forces to any species
we choose. The drift velocities in response to these forces can be
measured to determine the mobility matrix. We apply a force on
the COM of one species (and an equal and opposite force on the
system COM) and measure the drift velocity of the species in the
direction of the applied force.

The applied forces must be small enough to be in the linear
response regime, i.e., the drift velocities should be proportional
to the force. We verify this by applying forces of the order of kT/A
per particle on one of the species and measuring the resulting
drift velocities. We find that forces of 0.25kT/A per particle lie
comfortably in the linear response regime. This magnitude is
used in all further simulations with applied forces.

For a system with n components, n simulations suffice to
determine all the elements of the mobility matrix. For a three-
component system we perform three simulations, in which
forces are applied to the cations, anions, and solvent. For
example, when we apply an explicit force f;; on the cations with
implicit equal and opposite force on the system COM, we
measure the drift velocities v, for species i. Combining the
results of these three simulations, we have

Vir Viz Vi3 My My M Ju 0 0
Vai Vo V3| = | My My My 0 f ) 0 (4)
Vi Vi V33 M3 Mz Mz 0 0 fi
which can be solved for M as
M=vF! (5)

Actually, n — 1 simulations are enough if we enforce the
requirement that mobility matrix must be orthogonal to the

Chem. Sci., 2024, 15, 16176-16185 | 16179
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Fig.5 Drift plots of species in LiPFg in DMC (top) and LiPFg in DMC/EC
(bottom) with forces on Li* (left) and PFe~ (right).

mass fraction vector (see eqn (3)). In this work, we choose to run
n simulations to treat all species equally, and obtain a check on
our results by verifying that M satisfies eqn (3).

Fig. 5 depicts the drift versus time of species obtained by
applying forces (f; = 0.25kT/A per particle) to both DMC and
DMC/EC systems. With only DMC as a solvent for LiPF,, the
cations and anions follow each other very closely. With a force
on only one ion species, its counterions also move in the same
direction at nearly the same drift velocity (see Fig. 5(a) and (b)).
This observation confirms strongly coupled motion of Li* and
PFs  in DMC; moving ions drag the counterions with them. In
the DMC/EC mixture, the motion of ions is less correlated; ions
still follow each other but not as closely as in DMC. Additionally,
ions in DMC/EC drift a lot slower than in DMC.

The measured drift velocities with forces applied to each
species in the electrolytes were used to calculate the mobility
matrices for both systems. M; and M, correspond respectively
to the pure DMC and mixed DMC/EC systems:

0.52 046 —0.054
M, =| 046 0.56  —0.065 (6)
—0.053 —0.062 0.007
0.33 0.12  0.010 -0.039
M, — 0.12 034 —0.017 -0.052 @)
2 0.009 -0.018 0.049 —0.048
—0.035 —0.048 -0.046 0.058

The units of the mobility matrices are of nm ns*

per k] mol™! nm ™' nm™3, which is just velocity over force per
unit volume in Gromacs units.

Both M; and M, are symmetric within computational error,
following Onsager symmetry. In our chosen convention, the
first and second rows and columns represent the cations and
anions; the third row and column represent the solvent in M;.
For M,, the third and fourth rows and columns correspond to
EC and DMC. Note that some of the off-diagonal elements of M,

16180 | Chem. Sci, 2024, 15, 16176-16185
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and M, are negative, which means the corresponding species
are anti-correlated in their drift. The solvent moves opposite to
the explicit force on the ions because of the implicit force,
which keeps the system COM stationary.

The first system (M,) has higher mobility values than the
second (M), because the ions stick more to each other and less
to DMC. For the ions, the diagonal (M;; and M,,) and off-
diagonal (M;,) values are very close, which corresponds to
strongly correlated motion of cations and anions. In contrast,
the ions in mixed DMC/EC have lower mobility, because cations
stick more strongly to EC. Likewise, the off-diagonal ion
mobilities in M, are much lower than ion diagonal terms,
because the motion of cations and anions are not so correlated.

The ionic conductivity (k) and transference number (¢,") for
an electrolyte can be measured by ENMR. We calculate « and ¢,"
by two methods. First, we apply a constant electric field, in
which the ions experience equal and opposite forces and drift in
opposite directions. The resulting drift velocities can be used to
calculate k and ¢," using the following relations:

en
K= ﬁ(h +v-) (8)
o
th" = i 9)

where v, and v_ are the magnitudes of cation and anion drift
. . en .
velocities with respect to the system COM, v 1s the charge

density of the system, and E is the electric field strength.

Alternatively, we take the dot product of the mobility matrix
of the electrolyte with the force vector representing an electric
field to get ion velocities. The forces per unit volume resulting
from a field E acting on the electrolyte are given by Fg:

1
Fg =neE | -1
0

(10)

where n is the number of salt molecules dissolved in the elec-
trolyte and e is the electronic charge. The elements of this vector
represent the forces on cations, anions, and solvent respec-
tively. The dot product M-Fy, gives the drift velocities, which can
be used to calculate conductivity (kpreq) and transference
number (¢ pred’) from eqn (8) and (9).

Table 2 presents results for conductivity and transference
number for both systems, obtained from M and directly from

Table 2 lonic conductivity (k) and transference number (t,*) for both
systems measured directly by applying electric field (direct) and pre-
dicted by mobility matrix (pred). Experimentally measured conductivity
(expt) is also included for reference

Property System 1 System 2
Kdirect (ms Cm_l) 4.97 12.64

Kprea (MS em ™) 4.74 12.72

Kexpt (MS cm ™) 5.16 (ref. 51) 12.08 (ref. 52)
tO,direct+ 0.41 0.49

tO,predJr 0.38 0.49

© 2024 The Author(s). Published by the Royal Society of Chemistry
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simulations in an electric field. The close agreement between
the two approaches confirms that simulated transport proper-
ties of electrolytes in electric field are well predicted by our
mobility matrix results.

Experimental measurement of transference numbers is
more involved than conductivity. Researchers have used many
methods to determine transference numbers of electrolytes,
which often depend on questionable assumptions, and yield
varying results.”® To avoid these complications, instead of
comparing simulated transference numbers with experiments,
we choose to compare self-diffusion coefficients of the ions in
a 1 M solution of LiPFg in DMC/EC at 300 K. Self-diffusion
coefficients of Li" and PFs~ from simulations are 3.64 x 10~ *°
m® s~ " and 3.62 x 10~ " m” s~ respectively. The corresponding
experimental values are 2.52 x 10~"* m* s~ " and 3.86 x 10~ "°
m?> s "5

Comparing methods to measure M;;

Because of the fluctuation-dissipation theorem and the result-
ing Green-Kubo relation, the mobility matrix M;; can be ob-
tained from simulations in two ways: (a) by applying a force F; to
species i and measuring the drift velocity v; of species j, and (b)
by measuring the time correlation between the COM displace-
ments of species i and j as they diffuse in the absence of applied
forces. Both approaches determine M;; from averaged quantities
(the average drift velocity, and the time correlation of COM
displacements), and both averages necessarily incur statistical
errors. The question arises: given finite computational
resources, which approach is more efficient in terms of statis-
tical error for a given total computational time? Although these
approaches are formally equivalent by the fluctuation-dissipa-
tion theorem, it turns out they are not equivalent in terms of
efficiency.

First, we consider the fluctuation approach (method B). The
COM displacement r(t) of species j executes a Gaussian random
walk, with some effective step size a and step time 7. Irrespective
of the system size, r(t) is a single random walk; as a result, the
average (r{t)-rj(t)) benefits only from time averaging and not
from a large system size.

Fig. 6 illustrates the behavior of the time-averaged mean-
square displacement of 256 instances of random walks, each
consisting of 128 Gaussian-distributed steps of unit mean-
square length (colored curves), compared to the true mean-
square displacement (black), which is given by:

(r’(t)) = 6Dt (11)
with D = 1/2 for a random walk with Gaussian distributed steps
of unit variance (see Appendix). The individual curves deviate
smoothly from the true result, with an error that grows faster
than linearly with the number of steps. As a result, taking the
slope of an individual curve to measure the corresponding
coefficient in the mobility matrix is plagued with statistical
error. In fact, the relative error Ez: in the mean-square
displacement grows with number of steps, according to eqn
(12):

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Time-averaged square displacements ({r(t))) for 256 different
random walks, each of 128 steps (colored curves), compared to the
true mean-square displacement (black line).

or(t) 2 |t
Ep = m =3 \/; (12)
where og(t) is the root mean squared error in the mean-square
displacement, and T the total number of steps in the random
walk. A detailed explanation for this result is presented in the
Appendix. If k different walks are averaged, the relative error is
reduced by a factor k=, which is same as the error in a single
random walk of Tk total steps used to evaluate the correlation
function. In terms of total computational time, there is no
benefit to averaging over multiple runs as opposed to using
a single long run.

Therefore, for the correlation method, it is recommended to
use the smallest practical time delay ¢ to define the diffusive
slope, and to use the smallest practical system size, since there
is no benefit from averaging over different molecules. However,
the time delay must be greater than the velocity autocorrelation
time 7, below which the COM displacements do not behave as
Gaussian random walks. Likewise, the system must be suffi-
ciently larger than the correlation length of the solution, below
which the simulation does not behave like a representative
sample of a large system. Correspondingly, there must be
a minimum number of particles N* >> 1 in any reasonable
simulation.

In contrast, measuring the drift velocity v; (method A)
benefits from averaging over the molecules of component i as
well as averaging over time. The statistical error in the drift
velocity arises from simultaneous diffusive motion of the
molecules as they drift along in response to the applied force. In
measuring the drift velocity, we typically apply the largest force
within the limits of linear response. On physical grounds, linear
response should begin to fail when the drift velocity is of order
a/t, where 7 is the velocity autocorrelation time and a is the
diffusive mean-squared displacement of a molecule on the
timescale 7. The relative error Ep, in the total drift displacement
of the set of N molecules then scales as:

Ey— 2 V/N&*(T/7) \/—_
" N(a/0)T

i (13)
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We can now compare the relative errors Ex: and Ep for
equivalent computational resources C. In molecular dynamics
simulations, the computational resources scale linearly with the
number of particles N and the computational time 7. So we can
replace NT = C in the eqn (12) and (13), arriving at the final
result:

B

~ N—I/Z
ERZ

(14)

The relative error in measuring the drift velocity is smaller
than the error in COM mean-squared displacements by a factor
of the square root of the number of molecules N, because the
drift velocity measurement benefits from averaging over mole-
cules whereas the COM diffusion measurement does not.

To conduct a fair comparison between method A and B, we
calculate the mobility matrices by both methods on the same
equilibrated system of 0.75 M LiPFs in DMC, containing 240
ions of each type at 300 K. We ran six replicates of 120 ns
simulations for each method using the same computational
resources to calculate the mobility matrices, which were used to
calculate the key transport properties of the electrolyte:
conductivity () and transference number (¢,"). Table 3 presents
the results along with the standard errors. The transport prop-
erties are compared against reference values derived from
simulations with an electric field.

For method A, we run six sets of drift simulations as
described in the previous section, with forces applied for 40 ns
each to cations, anions and solvent, totaling to 120 ns per
measurement. For method B, we run six 120 ns simulations in
which ions and solvent diffuse freely. We extract the COM
trajectories of each species, and calculate self and cross mean-
squared displacements up to a time delay of one-tenth of the
simulation time (12 ns). Increasing time delay beyond a small
fraction of the simulation will increase the error drastically as
justified by the scaling argument (see Appendix). Fig. 7 shows
the self and cross mean-squared displacement curves (blue) and
best linear fits passing through the origin (red). The fitted
slopes are used to calculate the mobility matrices, using eqn (2).

Fig. 7 confirms the correlated motion of Li* and PF¢~ ions.
The motions of ions and solvent are anti-correlated, as expected
from the results of method A. However, the mean-square
displacement curves are not beautifully linear; much longer
simulations are needed to obtain accurate results using method
B. As evident from Table 3, method B incurs larger standard
error in key transport properties than method A. Correspond-
ingly, the average k and ¢," values calculated from method A lie

Table 3 lonic conductivity (k) and transference number (to*) values
predicted by mobility matrices calculated using methods A and B.
These predicted properties are compared to values measured by
applying electric field to the system (reference)

Property Reference Method A Method B
k (mS em™) 4.97 + 0.05 4.76 £ 0.03 3.94 + 0.43
to 0.41 £ 0.01 0.42 £ 0.03 0.56 £+ 0.07
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Fig. 7 Grid of plots of mean squared displacements of center of mass
of species (blue) and their corresponding linear fits to extract slopes.
The on-diagonal and off-diagonal plots represent self and cross
mean-squared displacement vs. time delay respectively.
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Fig. 8 Bar charts of conductivity (top) and transference number
(bottom) calculated using method A (left) and method B (right) for 6
different 120 ns simulations. Red horizontal lines show the reference
values.
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Fig. 9 Relative error versus number of steps t for the mean-square
displacement <d:2(t)> of a single long random walk (here, 1024 steps).

much closer to the reference values obtained from simulations
with electric fields. Fig. 8 shows the run-to-run variation in «
and ¢, among the six replicates calculated by both methods.
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The narrow variance achieved using method A, together with
the close agreement of transport properties with the reference
values, establish it as a more reliable means of characterizing
mobility properties in simulations.

Conclusions

To conduct realistic atomistic simulations, we calibrate LiPFg
and dimethyl carbonate force field parameters by comparing
experimental osmotic pressure with simulations. We also
simulate our electrolytes with a background dielectric constant
of ¢ = 2 to account for dielectric screening of Coulomb inter-
actions from local polarization effects of Li* ions in the solvent.
We further conclude this optimized set of force field parameters
produce realistic simulations to predict dynamic properties of
the chosen lithium-ion electrolytes, based on agreement with
the experimental self-diffusion coefficients of their constituent
species and their ionic conductivity.

We study two lithium-ion electrolytes: LiPFs in DMC, and
LiPFs in DMC/EC (1:1 by weight), evaluating their mobility
matrices by applying forces to electrolyte species and measuring
their drifts. The conductivity and transference numbers pre-
dicted by the mobility matrices agree with experimental studies
and values measured by applying electric fields in the simula-
tions within the computational errors.

Finally, we compare the two methods of evaluating mobility
matrices: (a) by measuring the drift of electrolyte species in
response to forces, and (b) by calculating mean-squared
displacements of the COM of the electrolyte species, by simu-
lating LiPFs in DMC. We present a scaling argument for the
statistical error, demonstrating that the drift method benefits
from a larger number of molecules in the simulation whereas
the COM diffusion method does not, supporting the efficiency
of the drift method over the diffusion method. This argument is
strengthened by much lower variances in six independent
replicates of conductivity and transference numbers calculated
by the drift method compared to the COM diffusion method.

Appendix

The mean-square displacement A7*(t) computed for each of an
ensemble of random walks (see Fig. 6) exhibits a striking
behavior: the variation in the value at a given delay ¢ grows faster
than the average; the “sheaf” of colored curves “fans out” from
the mean value (black line).

Because the relative error grows with the time delay ¢,
measures of the slope of the mean-square displacement Ar*(¢)
computed from a single random walk become increasingly
unreliable for long time delays. In this Appendix, we provide
a scaling argument that explains this behavior, and an analyt-
ical calculation of the leading dependence with prefactor of the
relative error versus delay time.

Qualitatively, the increasing error at long delay times ¢ arises
because a random walk of a given length consists of progressively
fewer independent sequences of length t. We may regard the
average over a single random walk of Ar*(f) as being performed by
moving along the time axis, and computing the square

© 2024 The Author(s). Published by the Royal Society of Chemistry
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displacement for each starting time ¢,. But successive contribu-
tions to the average are correlated, and thus do not improve the
statistical error of the average, until we have moved along the
time axis to an uncorrelated portion of the walk, a time ¢ later.

For a walk of total length T, we have S = T/t independent
random walk segments. The mean-square displacement Ar*(¢)
is effectively an average over S independent experiments. The
error bar for Ar*(¢) for a single random walk of length ¢ is as big
as the average itself, which scales with t. Averaging together S
uncorrelated instances reduces the error bar in the usual way,
proportional to 1/+/S. Hence the error bar for Ar*(f) computed
for a single random walk of length T scales as ¢/+/S, or t*/%/T"2.

We verify this scaling argument (and determine the pre-
factor) by explicit calculation, as follows. Consider a three-
dimensional random walk of N uncorrelated steps {a;}, which
consist of components {x;, y;, z;}, each of which are Gaussian
distributed with zero mean and unit variance.

n
The displacement r(n) after n steps is given by r(n) = Y a;.
i=1
The mean-square displacement Ar*(n) after n steps, averaged
over different starting points & in the walk, is

| N[ ke 2
=13 (550)
=1 \ =

(15)

In writing eqn (15), we have averaged over the single random
walk {a;}, but have yet not averaged over the ensemble of different
random walks. We want to know the error in computing Ar*(n)
this way, ie.,, how much Ar*(n) varies when computed for
different random walks. To achieve this, we compute the average
(A7*(n)) and variance ((Ar*(n))*) — (Ar*(n))* over the ensemble of
random walks.

The walk-averaged mean-square displacement can be written
as

==

(AP () = = > (@ + oo+ @)@ + - + ) (16)
k=1

Different steps in the walk are uncorrelated, different
components of each step are uncorrelated, and the x, y, z
components all have the same distribution, so the average of
a term (a;-aj) is

(ar-a;) = 3{xp0e) = 30, (17)

Thus only “diagonal” (k =) terms in the expansion of the

summand contribute, which results in
(AP (n)) = 3n (18)

(Equating the walk-averaged mean-square displacement to
6Dn, we see that D = 1/2 for this choice of step size and
statistics.)

Now we evaluate the average over walks of (Ar*(n))*, which
can be written as
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1 N N
k=1 =

<(Ar2(n))2> = 5 D20 D@t e @) (@ e+ )@+t ) (@ )

1 1

The intervals of steps that appear in the summand, k...k + n
and [...I + n, may either be disjoint (if X and [/ are far apart
compared to 1) or overlap (if |k — [| is less than n). If the intervals
are disjoint, the only surviving contributions to the average are
the same as appear in the “factored” average (Ar*(n))?, so these
contributions cancel in computing the variance. So we focus on
the contributions in which the intervals overlap, over a number
of sites L=n — |k — 1.

Examining eqn (19), there are L terms in which all four
indices are the same, of the form ((a,,”)(a,,”)); and there are L’
terms in which identical indices occur in pairs, of the form
((am-an)(am-ay)) and ((an-a,)(a," @,)) with m # n. These more
numerous terms give the leading contribution to the average, so
we focus on them. We compute the contribution of each such
term as

<(am : an)(am : an)> =3 <xm2> <xn2> =3 (20)

The number of such terms L depends on the overlap. As k-
ranges from —n to n, L ranges from 0 to n and back to 0. In eqn
(19), we change summation variables in the outer sums to

N n
> 5> , whereupon we can perform the sum over k — j. So the
k=1k—j=-n

total number of contributing terms T at each & (i.e., as we move
along the random-walk trajectory), is
n 2}’13

r=3% <nf|kfj|>2zj rar =2

k—j=-n

(21)

Thus the leading contribution to the variance of the mean-
square displacement is

3 3

1 2n 4n

<(Ar2(n))2> - <Ar2(n)>2 =y X 73X 2x3=

N (22

Here the factor of 1/N comes from the original sum normali-

zation, the second from the number of contributing terms, the

factor of 2 from the two orders of paired indices ({(a," a,)(@n" @)

Y and ((a-a,)(a,"an))), and the factor of 3 from eqn (20).
Finally, we compute the relative error as

<(Ar2(n))2> - (Arz(n))2 2 <£>1/2 3)

Ep = . =z
(AP(n)) 3\

The final result eqn (23) has been verified quantitatively, by
generating 4096 instances of a random walk of 1024 steps, and
explicitly computing the walk-averaged mean-square displace-
ment and its variance, as a function of the delay n. Fig. 9
presents a log-log plot of the resulting relative error (points)
versus the prediction eqn (23).
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