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master equations offer an
efficient route to predict and interpret polaron
transport†

Srijan Bhattacharyya, Thomas Sayer and Andrés Montoya-Castillo *

Predicting how a material's microscopic structure and dynamics determine its transport properties remains

a fundamental challenge. To alleviate this task's often prohibitive computational expense, we propose

a Mori-based generalized quantum master equation (GQME) to predict the frequency-resolved

conductivity of small-polaron forming systems described by the dispersive Holstein model. Unlike

previous GQME-based approaches to transport that scale with the system size and only give access to

the DC conductivity, our method requires only one calculation and yields both the DC and AC mobilities.

We further show how to easily augment our GQME with numerically accessible derivatives of the current

to increase computational efficiency, collectively offering computational cost reductions of up to 90%,

depending on the transport regime. Finally, we leverage our exact simulations to demonstrate the limited

applicability of the celebrated and widely invoked Drude–Smith model in small-polaron forming systems.

We instead introduce a cumulant-based analysis of experimentally accessible frequency data to infer the

microscopic Hamiltonian parameters. This approach promises to provide valuable insights into material

properties and facilitate guided design by linking macroscopic terahertz measurements to the

microscopic details of small polaron-forming systems.
Introduction

Prediction of a material's intrinsic charge transport rate is
a fundamental goal of theoretical chemistry and materials
science, with a direct impact on energy and electronics
research.1,2 While an atomistically faithful (twin) model of
materials encodes all desired response coefficients, solving the
requisite quantum statistical dynamics of such constructions is
infeasible in all but the smallest, homogeneous systems.
Instead, a minimal but physically motivated model that
discards unimportant degrees of freedom, uctuations, and
couplings has become the standard tool for calculating quan-
tities like the macroscopic transport coefficient. This is the
source of the celebrated spin-boson,3,4 Holstein,5,6 Anderson,7

and Hubbard8,9 models, which have been critical in under-
standing processes ranging from charge transfer reactions in
solution10,11 to conductivity in polymers12,13 and through
nanojunctions,14–16 and even magnetism17,18 and superconduc-
tivity.19,20 Aer this ‘downfolding’ of atomistic complexity, one
needs to solve for the dynamics of a sufficiently large model over
appropriately long times to enable extraction of macroscopic
observables free from nite-size artifacts. Yet, this is generally
orado Boulder, Boulder, CO 80309, USA.

du

tion (ESI) available. See DOI:

the Royal Society of Chemistry
difficult or even computationally impossible with the available
resources. What is more, to unlock general, microscopic insight
from the dynamics of the model, one needs a physically trans-
parent interpretation of its dening parameters and how these
ultimately determine experimental observables.

Even when one knows how to map an atomistic system to
a physically transparent model, its large, potentially innite-
dimensional Hilbert space makes solving its quantum
dynamics a signicant challenge. For example, recent work
using the Holstein model to understand transport properties in
covalent organic frameworks resorted to employing a nite
vibrational basis in order to afford their targeted system size.21

Alternatively, an exact, systematically adjustable, and oen
advantageous solution is to employ projection operator tech-
niques22,23 to reduce the dimensionality and predict only the
evolution of particular observables of interest, CðtÞ. While per-
forming a projection sacrices access to arbitrary observables of
the full system, one gains a low-dimensional framework to
predict the dynamics of the observables of interest via the Mori–
Nakajima–Zwanzig (MNZ) equation24–26

C
�

ðtÞ ¼ C
�

ð0ÞCðtÞ �
ðt
0

dsKðsÞCðt� sÞ þ IðtÞ: (1)

In this generalized quantum master equation (GQME), the
evolution of the projected variables in CðtÞ requires knowledge
of the inhomogeneous term, IðtÞ—which can be removed via
Chem. Sci., 2024, 15, 16715–16723 | 16715
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the proper choice of a projection operator and is zero for us—
and the memory kernel, Kðt\sKÞ, where sK is the time aer
which KðtÞ ¼ 0. By writing the projected dynamics in terms of
this memory kernel, both the complex (non-Markovian) short-
time behavior and the detailed balance of the long-time pop-
ulations can be captured using only short-time data. A recent
example of this principle is the computation of mean rst
passage times in the folding of large biomolecules, where only
25 ps of reference simulation data contain the information
needed to model events over tens of ms, i.e., three orders of
magnitude longer.27 This also shows that the GQME is a refor-
mulation of the dynamics problem that shis the target of
dynamical computation to the memory kernel and, as such, is
compatible with any dynamical method the user may wish to
adopt,27–29 including approximate techniques such as surface-
hopping30–32 and Ehrenfest dynamics.33,34 Yet, the cost savings of
this dimensionality reduction procedure rely upon a separation
of timescales between the variables of interest and those whose
dynamics one does not explicitly track. Indeed, the memory
kernel remains as long-lived as the slowest variables excluded
from the projected space. It is thus crucial to put all the slowest
degrees of freedom in the projected space, even if they are not
required for the nal calculation of, say, a transport coefficient.

At the practical level, the choice of the projection operator
has signicant consequences on computational feasibility. This
is because constructing KðtÞ, a dynamical N × N matrix, typi-
cally requires at least N distinct simulations. For example,
previous work pursued a nonequilibrium strategy of projecting
onto the populations of localized electronic states to calculate
polaronic transport coefficients along a model one-dimensional
chain.35 This GQME formally scales with the number of sites,
N.36 Here, we pursue a different strategy via the Kubo formula
that relates a material's frequency-resolved conductivity to the
equilibrium uctuations of the current. This relation suggests
adopting a Mori-type projection operator26 with the current
operator as the only observable of interest. A remarkable
consequence of this choice is that one needs only one equilibrium
calculation to construct the GQME, making the method's scaling
independent of system size. Our work shows that this strategy
offers a compact and efficient route to encode the current
response and frequency-resolved conductivity.

Why has it taken until now to bridge the Kubo formalism
withMori–Zwanzig theory for electrical conductivity predictions
in polaron-forming materials? While path integral simulations
on the ground electronic state have become mainstream,37–43

calculating equilibrium time correlation functions of quantum
mechanical systems with nonadiabatic effects remains
a fundamental challenge. The challenge can be broken down
into two problems. The rst centers on obtaining a sufficiently
accurate representation of the correlated canonical density of
the system, and the second lies in generating the subsequent
dynamics. A variety of schemes have emerged to tackle these
problems, including path integrals,44–47 semiclassics,48–51 and
density matrix renormalization group.52–54 We exploit recent
algorithmic advances55,56 that have enabled the calculation of
these correlation functions using the hierarchical equations of
motion (HEOM).57
16716 | Chem. Sci., 2024, 15, 16715–16723
The benets of using the current as the sole projected
quantity surpass merely practical considerations. Although
non-equilibrium approaches, like population relaxation, are
popular and can offer a view of the full relaxation to equilib-
rium,35,58 they are limited to the zero frequency component of
the transport coefficient (i.e., the DC mobility). In contrast, the
current autocorrelation function, CJJ, encodes the full dynam-
ical conductivity,

ℝesðuÞ ¼ 1� e�bu

2uV

ðN
�N

dte�iutCJJðtÞ (2)

sðuÞ ¼ b

V

ðN
0

dte�iutCKubo
JJ ðtÞ; (3)

encompassing the system's response to static and alternating
elds. Here, CKubo

JJ (t) is the Kubo-transformed correlation
function,59 b= [kBT]

−1 is the inverse thermal energy, and V is the
volume. Furthermore, the structure of the correlation function
itself is of fundamental importance as it facilitates the inter-
pretation of the underlying transport mechanism. For example,
the phenomenological Drude–Smith model60 is commonly used
to map the experimentally measurable conductivity, s(u), onto
a mean collision time, s, and the strength of those collisions, c.
In this way, the two-parameter Drude–Smith t is thought to
capture much of the behavior observed in experimental ter-
ahertz spectra.61–65

To investigate the advantages of the Mori approach, we
employ HEOM to generate numerically exact dynamics of
a physically transparent model of polaron formation and
transport: the dispersive Holstein Hamiltonian. With our CJJ

simulations, which determine s(u), we also test the applicability
of the Drude–Smith model to small polaron-forming materials
and nd that it does not offer a satisfying t. As an alternative,
we introduce a frequency-space analysis that reveals a simple
relationship between the cumulants of memory function and
the parameters of the Hamiltonian that generated it, offering
a route to map experimental results directly onto a microscopic
Hamiltonian. While we focus on exact quantum dynamics as
a means to illustrate our approach for predicting and eluci-
dating polaron transport, our ndings are broadly applicable
and stand to benet the calculation of general transport coef-
cients and systems, whether using quantum or classical
dynamics, including ab initio molecular dynamics.
Theory and method

The Holstein Hamiltonian has been extensively used to predict
transport in materials spanning organic crystals and poly-
mers,13,66,67 covalent organic frameworks,68 and nanomaterials.69

It describes carriers (excitons, electrons, or holes) that move on
a lattice of N sites and interact locally with their nuclear envi-
ronment to form a small polaron consisting of the original
electronic excitation and the material deformation it causes in
its immediate environment. While the classic Holstein model
assumes localized coupling to a single optical phonon
mode,5,6,70 we focus on the dispersive Holstein model, which
couples to a continuum of phononmodes of varying frequencies
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Convergence of m with system size for the three methods
considered and h/v = 6.26 and uc/v = 0.82. We take the converged
value to be given by the current-based Mori GQME for N = 20, and
allow±0.002 precision error (green shaded region). Wemark the point
where each method enters—and stays within—this region with circles.
The populationmethods have no data for lowN since finite size effects
preclude a plateau in dMSD(t)/dt used to identify diffusive motion (see
ref. 58 for a full discussion).
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and more faithfully describes organic crystals and disordered
polymers.71,72 To connect with previous studies focusing on
transport in organic semiconductors,13,35,58,73 we adopt the dilute
limit (one electron or hole) in a homogeneous lattice with
degenerate lattice sites and only nearest-neighbor hopping, v =

50 cm−1, at a temperature of 300 K. We investigate the behavior
that the model displays as one varies the strength of carrier-lattice
coupling (encoded by the reorganization energy, h) and the
characteristic speed at which the local lattice relaxes, encoded by
frequency uc. For additional details, see the ESI.†

Our Mori-type projector focuses on the current operator, Ĵ,
yielding a GQME for the current autocorrelation function (see
the ESI†) in the Kubo formula, eqn (2),

CJJðtÞ ¼ 1

Z
Tr

h
e�bĤ ĴeiL tĴ

i
; (4)

where Z = Tr[e−bĤ] is the partition function of the full system.
The current operator,

Ĵ ¼ �id
X
hmni

vmn

�
â†mân � â†nâm

�
; (5)

is exclusively an electronic operator and thus accessible from
a solver like HEOM. Although Ĵ sums over hopping terms con-
necting neighboring sites hmni spaced d = 5 Å apart, the
resulting correlation matrix, C(t), is of size 1 × 1. This means
that the GQME requires only a single initial condition for its
construction and hence does not scale with system size. The
complicating factor is the correlated initial condition, e−bĤ/Z.
To calculate the equilibrium correlation function,73 one
performs an ‘equilibration’ HEOM calculation starting from an
arbitrary condition74 and converges the auxiliary density
matrices to their equilibrium values; one then multiplies the
current operator, Ĵ, to generate a new initial condition, r̃0 h
e−bĤĴ, that one can then evolve and use to measure Ĵ at time t.
See the ESI† for computational details. Despite requiring this
equilibration step, we show that the protocol offers efficiency
gains.
Results

We illustrate the performance of the Mori-type GQME for
a dispersive Holstein ring. To compare fairly across methods,
we converge each protocol to the macroscopic size limit with the
same parameters h/v = 6.26, uc/v = 0.82, which we choose to
align with previous work on organic semiconductors.58,73 Fig. 1
shows the size dependence of the DC mobility given by

m ¼ V lim
u/0

sðuÞ: (6)

For this parameter regime, the Mori GQME requires only N=

6 sites compared to N = 18 and N = 28 for the population-based
methods shown below, consistent with our previous ndings.58

Fig. 2–le displays the real and imaginary parts of the
current autocorrelation function. Although, graphically, CJJ /

0 within 150 fs, Fig. 2–right shows that convergence of m to three
signicant gures takes 269 fs, almost twice as long. Fig. 2–
middle illustrates the memory kernel associated with these
© 2024 The Author(s). Published by the Royal Society of Chemistry
dynamics. The inset of Fig. 2–right shows m obtained from the
dynamics generated from KJJ truncated at time s, demon-
strating that m can be computed with only sK ¼ 235 fs of data,
slightly reducing the cost of the simulation: that is, one needs
only 235/269 = 87% of the original simulation time.

Since the computational saving is a property of the system
parameters, we quantify the effort reductions over a grid of 20
different instances of the model parameters in Fig. 3–le. The
dark portion of Fig. 3–le shows the region with sK=teq . 0:85,
where the brute force calculation and the Mori GQME incur
comparable computational costs; the parameters we used in
Fig. 2 lie in this region. The light blue region, where
0:66\sK=teq # 0:85, offers modest computational savings. The
light green region has sK=teq � 0:1 in many places, enabling
signicant savings with an order-of-magnitude reduction in the
required effort. See the ESI† for the current correlation func-
tions, memory kernels, and conductance of the dispersive
Holstein model over the parameter space. Hence, the GQME
truncation offers maximal efficiency gains when a material
displays relatively low charge-lattice coupling (small h) and fast
decorrelating environments (large uc). Still, the Mori-type
approach can yield additional routes to efficiency, to which we
now turn.

To investigate if one can obtain even greater efficiency gains,
we adopt the strategy of including derivatives of the observable
in the projector.26,75,76 While HEOM is unable to sample the
current's time derivative explicitly owing to the presence of bath
operators, our C(t) has sufficient temporal resolution to use its
numerical time derivatives to augment the projector (see the
ESI†). The results, displayed in Fig. 3–right, are surprising. It is
indeed possible to decrease the lifetime of the memory kernel
required to predict the transport coefficient via CJJ by simply
augmenting the projector with derivatives of the motion, but
only for particular combinations of the Hamiltonian parame-
ters. Over large regions of the parameter space, such as where h
is large, there is no advantage. However, when uc z h we obtain
Chem. Sci., 2024, 15, 16715–16723 | 16717
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Fig. 2 Dispersive Holstein simulations for h/v = 6.26 and uc/v = 0.82. Left: CJJ(t) converges to zero, as expected in dissipative systems. Middle:
memory kernel for CJJ(t). Right: convergence of m as a function of the integral limit in eqn (6).CJJ takes teq = 269 fs to reach± 0.002 of the long-
time value. The green shaded region is the same as in Fig. 1. Inset: convergence of the GQME estimate of mlong with respect to the cutoff time s.
We find sK ¼ 235 fs\teq.

Fig. 3 Cost reduction from the current and augmented GQMEs for
the dispersive Holstein model. Left: heat map of the ratio sK=teq, i.e.,
the MNZ saving factor with the current-based projector, for 20
different parameter regimes of our dispersive Holstein model, each
denoted by a star. Dashed lines are guides to the eye showing regions
of no (dark blue), minor (light blue), and large (light green) improve-
ment; the arrow shows the direction of increasing efficacy. Right: ratio
of the cutoff time when the projector is augmented to contain zh _J to
just sJK. teq, s

J
K and sJ;zK are all computed as reaching a±1% error of mlong.
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a ∼70% reduction in cost. To our knowledge, this parameter-
dependent benet has not previously been reported and
represents a simple and parsimonious way to potentially further
reduce the computational effort required to capture equilib-
rium time correlation functions.

We are now in a position to contextualize the results from the
Mori approach in terms of the advantages offered by the
nonequilibrium population-based GQME. Unlike the
population-based GQME, which generally requires more simu-
lations to construct its memory kernel, our Mori GQME requires
only one, and converges signicantly faster with system size, as
Fig. 1 demonstrates. However, the population-based GQMEmay
still offer a competitive advantage if its memory kernel lifetime,
sK, is sufficiently short. To test this, we consider two different
population-based initializations: one corresponding to an
instantaneous Franck–Condon excitation and the other to
a Marcus-like description of equilibrium charge transfer. Note
that the generation of the Marcus-like initial condition in
HEOM requires a pre-production simulation (see the ESI†).
Table 1 summarizes the results.
16718 | Chem. Sci., 2024, 15, 16715–16723
The computational savings of the Mori GQME are vast: it is
more than 20 times cheaper than the pre-equilibrated
population-based method, and over two orders of magnitude
for the non-equilibrated alternative. What is most impressive is
that these are the savings one would obtain for the set of
parameters investigated in Fig. 2, which lead to the smallest
efficiency gains. For this parameter regime, the computational
saving arises mainly due to the single entry in the projector, and
not from the reduction in cost due to the memory kernel
method. Hence, especially in systems with static disorder that
require N simulations for the parameterization of the
population-based GQME, the Mori GQME stands to yield
signicant efficiency gains, particularly for systems with small
reorganization energies dominated by charge coupling to high-
frequency, optical phonon modes.
Drude–Smith equation and backmapping

Beyond efficiency gains, our approach also yields accurate
current autocorrelation functions, which we now employ to
analyze the applicability of the frequently invoked phenome-
nological Drude and Drude–Smith theories. Fig. 2 shows that
the real part of CJJ becomes negative. This behavior does not
arise in the charge transport of normal metals, where the
dynamics is well-described by a decaying exponential77 with
kDrude = 1/s before the onset of interband transitions.
Describing this negative region, or ‘cage effect’, necessitates
a functional formmore complex than a simple exponential. The
Smith reformulation of this process assigns these additional
terms to Poisson distributed collisions (characterized by
constant s) of the charge carriers with their lattice ions.60 The
coefficients cn of these terms represent what fraction of the
initial velocity is retained aer the nth collision. The Fourier
transform of this current autocorrelation function, i.e., the
conductivity in eqn (2), then takes the form60

sðuÞ ¼ s
1� ius

"
1þ

XN
n¼1

cn

ð1� iusÞn
#
: (7)
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Computational cost for the three different routes to calculate m for h/v = 6.26 and uc/v = 0.82. (1) The number of sites required to
converge m (see Fig. 1). (2) The total core time is njob × tjob × ncore, where njob = N for the first two methods, but only 1 for ‘current’. (3) Time
required for the pre-production step; for the ‘pop. eq.’ method this time is independent of N, but increases with N for ‘current’

Method N(1)

Sim. time [fs]

tjob [hours] ncore t(2)tot [days] Mem. [GB]Pre(3) Prod. sK

Pop. 28 — 3288 981 1.85 64 137.3 4.73
Pop. eq. 18 775 1081 655 0.42 64 20.14 2.14
Current 6 725 269 235 0.30 64 0.82 1.39

Fig. 4 Drude–Smith fit (orange) to the CKubo
JJ obtained with HEOM

(black) for h/v = 2.0 and uc/v = 1.0. The orange dotted lines are the
contributions from the pure exponential and exponential-times-linear
‘c term’ respectively. The fit gives c = −0.58 and kDrude = 0.0161 fs−1.
Inset: CKubo

JJ at the early time has clear concave curvature which the
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The standard approximation truncates the sum at the rst
term, with −1 # c # 0, which has been shown to describe
experimental data well over the limited frequency range that is
normally accessible.61–64 How well does it capture our exact
response over the full dynamical range?

To perform this analysis, we consider how to connect the
Drude–Smith analysis to our quantum mechanically exact
response. The quantummechanical CJJ is complex and gives the
transport coefficient via the linear response relation, eqn (2),
but the Drude and Drude–Smith expressions consider only
classical and real current autocorrelation functions. Thus, to
compare to eqn (7), we replace the classical function with the
Kubo-transformed correlation function, CKubo

JJ , which displays
the same symmetries as classical correlation functions (i.e., it is
real and symmetric about t)42,59 and is used to derive the
harmonic correction factor to approximate quantum correla-
tion functions by using their classical counterparts.78,79

We can now assess the applicability of a Drude–Smith
decomposition of our CKubo

JJ (t). Performing the inverse trans-
form to eqn (7) truncated at n = 1 yields80

CKubo
JJ ðtÞ�CKubo

JJ ð0Þ ¼ ð1þ ckDrudetÞe�kDrudet: (8)

Focusing rst on h/v = 2 and uc/v = 1, Fig. 4 shows that the
form of eqn (8) cannot capture the qualitative shape of
CKubo
JJ (t), missing the curvature near t= 0. This functional form can

correctly capture the long-time decay for some parameter regimes
but not for this example, remaining above zero for too long.
Finally, although the depth of the negative well is reasonable, the
position of its minimum is incorrect. This qualitative description
of the mismatch applies across the parameter space, even as the
negative region becomes less pronounced.

This is not unexpected since the Drude–Smith form implies
the memory kernel decays as a single exponential (see the ESI†).
Fig. 5(a) and (b) show that the normalized real part
~KðuÞ ¼ ℝe½KKuboðuÞ�=ℝe½Ð duKKuboðuÞ� is a complicated func-
tion of frequency. Here, the simplest curve shown (h/v = 2 and
uc/v = 3) has an approximately Gaussian shape—not Lor-
entzian, as expected for a single exponential—and as h

increases the distribution becomes broader and more struc-
tured. The complexity of these curves shows that prescribing
a simple, few-parameter form for the memory kernel is overly
optimistic. What is more, even if one obtained a better t to the
Drude–Smith model in eqn (7) by considering n > 1, it would be
difficult to interpret the coefficients of higher-order collisions in
© 2024 The Author(s). Published by the Royal Society of Chemistry
terms of a microscopic picture of polaron formation and
transport.

To go beyond the limitations of the Drude–Smith model, we
show that one can infer the parameters of the microscopic
Hamiltonian responsible for the measured signal using only the
frequency-resolved, complex conductivity, s(u) (see ESI Sec.
VI†). Working with the Kubo memory kernel, which has equiv-
alent information via KKuboðuÞ ¼ 1=CKuboðuÞ � iu, we seek
a statistical characterization of ~KðuÞ from the measured data.
We get this from its moments, noting that all frequency
moments of the response function (which is directly related to
the memory kernel) must exist.81 The nth moment takes the
usual form,

huniK ¼
ð
duun ~KðuÞ: (9)

Since we explore a 2D parameter space, we use the mean huiK
and variance sK

2 = hu2iK − huiK2 to characterize our set of [h/v,
uc/v]. The contour plots in Fig. 5(c) and (d) show that the rst
two cumulants have a straightforward, monotonic relationship
with the Hamiltonian parameters. Crucially, the dependences
of panels (c) and (d) are quantitatively different, which means
that together they triangulate the [h/v, uc/v] which give rise to
a particular combination [huiK,sK2]. We illustrate this protocol
using the data in Fig. 2, which are not included in the 16-point
Drude–Smith form fails to capture.
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Fig. 5 Characteristic distributionsKKuboðuÞ varying (a) bath correlation
time uc while keeping reorganization energy h = 100 cm−1; (b) reor-
ganization energy h while keeping bath speed uc = 25 cm−1. How (c)
huKi and (d) s2K vary as a function of Hamiltonian parameters [h/v,
uc/v].

Fig. 6 Demonstration of back-mapping from the memory kernel
cumulants to the dispersive Holstein parameters. Blue contour line:
predicted using huKi = 0.096 fs−1 from Fig. 5(c). Green contour line:
predicted using sK

2 = 0.0057 fs−2 from Fig. 5(d). The intersection of
these two contours suggests the location in Hamiltonian parameter
space, and the black diamond indicates the exact parameters.
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grid in Fig. 5(c) and (d). Fig. 6 successfully extracts the correct
location in parameter space using only the rst two moments of
KðuÞ computed from the measured CðtÞ. To characterize
a higher dimensional space (for example, as a function of
temperature), one would use a simple generalization of this
procedure considering higher moments. Therefore, this
strategy provides a route to obtain corresponding dispersive
Holstein parameters from experimental data, provided suffi-
cient observational range and precision to sample the
moments,82–84 with recent experiments reaching ∼75 THz.85,86
Conclusion

In this paper, we employed a Mori-type GQME approach to
determine transport coefficients in polaron-forming systems by
16720 | Chem. Sci., 2024, 15, 16715–16723
using current as the primary member of the projection operator.
Our approach can offer signicant computational advantages of
up to 90% for regimes dominated by weak charge-lattice
couplings and fast-decorrelating lattices (i.e., those dominated
by coupling to high-frequency optical phonons). In addition, in
contrast to previous GQME-based approaches that project onto
the nonequilibrium site population dynamics and scale with
the size of the system, our approach requires only one calcula-
tion to build the GQME, rendering the construction of the
memory kernel independent of system size. In addition to using
numerically exact methods to obtain the memory kernels, one
can also use the Mori-type GQME as a starting point for
approximate treatments, including perturbation theory.
Furthermore, we introduced a simple protocol to incorporate
derivatives of current into the projection operator, leading to
additional computational savings that vary across parameter
space.

While we showcased the advantages of this methodology
through quantum dynamics simulations of electronic transport
in a 1-dimensional periodic Holstein chain, the Mori approach
for capturing transport phenomena can be applied to diverse
systems and is agnostic to the level of sophistication employed
to describe the many–body interactions (physically transparent
models, ab initio, semiempirical, and empirical) and dynamics
(path integrals, semiclassics, and classical dynamics) of the
system. What is more, this Mori approach can offer signicant
computational savings and be easily adapted to a wide range of
transport calculations.87,88

Beyond computational benets, our approach yields valu-
able insights into the experimental measurements of materials.
For example, we demonstrated the inadequacy of tting the
Drude–Smith equation to our theoretically unambiguous
dynamics of polaron-forming systems, and introduced a cumu-
lant-based method to map experimentally accessible memory
kernels (via conductance measurements) to parameters of the
dispersive Holstein Hamiltonian. This link enables the inter-
pretation of AC measurements of polaron-forming materials in
terms of their underlying Hamiltonian, thereby facilitating
material design modications. While we presented a proof-of-
principle example of this backmapping procedure using our
theoretical dataset, a comprehensive investigation of back-
mapping with experimental data from real materials remains
a focus for future research.
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