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etic algorithms with machine
learning for inverse molecular design

Hannes Kneiding and David Balcells *

Evolutionary and machine learning methods have been successfully applied to the generation of molecules

andmaterials exhibiting desired properties. The combination of these two paradigms in inverse design tasks

can yield powerful methods that explore massive chemical spaces more efficiently, improving the quality of

the generated compounds. However, such synergistic approaches are still an incipient area of research and

appear underexplored in the literature. This perspective covers different ways of incorporating machine

learning approaches into evolutionary learning frameworks, with the overall goal of increasing the

optimization efficiency of genetic algorithms. In particular, machine learning surrogate models for faster

fitness function evaluation, discriminator models to control population diversity on-the-fly, machine

learning based crossover operations, and evolution in latent space are discussed. The further potential of

these synergistic approaches in generative tasks is also assessed, outlining promising directions for future

developments.
Introduction

One of the main goals in materials science is the discovery of
new chemical compounds that exhibit certain properties that
make them optimal for specic applications. There is a constant
demand for such new and improvedmaterials in many different
research areas and examples include the elds of drug design,1–4

catalysis,5–10 and battery research.11–13 The virtually innite size
of the chemical space however, makes an exhaustive search
impossible and dictates the use of efficient optimization
methods that suggest candidate compounds by leveraging
existing knowledge about the domain of interest. These gener-
ative models tackle the inverse design problem, where the
objective is to nd solutions that optimally satisfy a set of
requirements imposed by a given specication.14 Evolutionary
approaches in particular, are inspired by Darwinian evolution
and operate on a population of solutions that is evolved in order
to incrementally produce solutions that better t these
requirements. In chemistry and materials science, evolutionary
approaches have been adopted already early in the 1990s,15 for
example in the de novo design of polymers,16 proteins17 and
refrigerants.18 With the explosion of (deep) machine learning in
the 2010s, these endeavors have somewhat been neglected in
favor of other generative methods based on articial neural
networks (ANNs) such as recurrent neural networks,19–21 varia-
tional autoencoders,22–24 normalizing ows,25–27 and diffusion
models.28–30 Nonetheless, these models oen times fall short in
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5539
real world applications because they do not include relevant
constraints like limited training data and computational
resources or the synthetic accessibility of the generated mole-
cules.31 Evolutionary approaches, on the other hand, require
only little initial data, exhibit higher computational efficiency32

and their optimization aim can be easily modulated to incor-
porate additional constraints. They furthermore have the ability
to explore truly new regions of chemical space whereas ANN-
based approaches tend to be limited to molecules that are
similar to the training set. There recently has been an uptake in
interest for evolutionary optimization in chemistry, with
successful applications to diverse problems including the
design of mechanosensitive conductors,33 organic emitters,34

polymers,35–37 drug-like molecules,38–41 and catalysts.42–46

Given the success of both evolutionary andmachine learning
in materials science, it is natural to investigate the combination
of both approaches. While being an incipient area of research
still in its infancy, efforts have been made to explore the
synergies and some very promising advances have already been
achieved.

In this perspective we will rst give a brief introduction to
evolutionary learning (EL) and in particular genetic algorithms
(GAs). Next, we will review a series of studies on materials
optimization using hybrid approaches that utilize techniques
from evolutionary and machine learning. Finally, we conclude
with a short summary and discuss opportunities for further
developments and applications.

GAs, rst popularized by Holland in the 1970s,47 are one of
many different types of EL algorithms and are commonly used
in materials science for the de novo design of materials and
molecules.48 Like all other types of EL approaches, they are
© 2024 The Author(s). Published by the Royal Society of Chemistry
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generic and heuristic optimization algorithms that make no
prior assumptions about the solution domain. GAs are inspired
by Darwinian evolution and draw concepts from evolutionary
biology such as mutation, recombination, and selection. The
underlying key idea of GAs is that evolution is dictated by two
competing forces: variation, which pushes the population
towards novelty, and selection, which pushes the population
towards quality. Combining both forces in an iterative optimi-
zation scheme leads to an efficient search strategy that balances
exploration and exploitation in solution space. The efficiency of
GAs is due to the heuristic nature of selection and recombina-
tion operations, that leverage the best partial solutions to
construct better solutions. This makes them ideal for exploring
chemical spaces that are usually large and diverse. On the ip
side however, this also means that GAs are non-deterministic,
meaning that they are not guaranteed to converge to the
global optimum.

In the following, the basic building blocks of GAs are briey
described. The literature provides comprehensive overviews
and discussions on the essential building blocks of GAs49 and
their applications to chemistry and materials science.48

GAs operate on a set of solutions called the population, that
is iteratively optimized to yield higher quality solutions over the
course of multiple generations. Following the language of
evolutionary biology, the solutions are also called individuals,
which in chemistry and related elds usually represent mole-
cules or materials.48 In each generation, new offspring solutions
are created by applying genetic operations that combine infor-
mation of the currently best performing solutions (exploitation)
and introduce random mutations (exploration). The newly
generated offspring solutions then compete against the solu-
tions of the previous population, and only the best performing
solutions are carried over to the next generation. This process is
repeated until some sort of convergence criterion is met (oen
times simply a maximal number of iterations).49,50 There are
four main building blocks to any GA that can be adapted in
order to modify the evolution behavior in terms of the search
space, optimization target, selection pressure, and diversity
control:

� Chromosome: denes the representation of the solutions.
� Fitness: measures the quality of the solutions.
� Genetic operations: create new solutions from existing

ones.
� Selection: selects individuals of the population based on

their tness.
This modular nature makes GAs ideal for applications in

chemistry and materials science where optimization tasks are
usually problem specic and diverse.48 All solutions in a GA
share a common, underlying structure that completely denes
their traits. In technical terms, this is represented as an array
where each cell corresponds to a different property of the
solution. These cells are referred to as the genes, which in the
array, form the chromosome, expressing properties of
a problem-dependent nature. The chromosome usually has
a xed length and its cell values can be of different data types
(e.g. boolean, integer or oat). During evolution, new offspring
solutions will be created by applying genetic operations to the
© 2024 The Author(s). Published by the Royal Society of Chemistry
chromosome. Therefore, all chromosome values are usually
constrained to be of the same data type so that meaningful
recombination operations between them can be dened.49,50 In
applications to chemistry andmaterial science the chromosome
is the molecular representation.48 Most commonly used are line
notations such as SMILES51 that represent molecules using
a single cell of data type string.

The quality of a solution is measured in terms of a so-called
tness that reects how well it satises a specied set of
requirements. Thereby, it essentially denes the optimization
objective and is determined by the specic problem to be
solved. The tness is a real valued function of the chromosome
that can be thought of as a hyper-surface on which the GA tries
to nd (local) optima. In multi-objective optimization
settings52–61 it is a vector, where each dimension corresponds to
a different property of interest. Calculation of the tness is
usually the computational bottleneck of GAs and since it is
evaluated multiple times per generation, its choice has signi-
cant implications on the overall computational cost and
performance.49,50

Genetic operations are used to generate new offspring solu-
tions in each generation and push the population towards
novelty. They can be subdivided into two groups, crossover and
mutation, which are usually performed in sequence. First, the
genomes of two parent solutions are recombined in a crossover
operation to form an offspring solution that then is further
modied by a random mutation. However, there also exist
variations to this process in which either crossover or mutation
operations alone are used in order to obtain offspring solu-
tions.49,50 The crossover propagates characteristics of the parent
solutions to the offspring. Together with parent selection, it
ensures that genetic information of well performing solutions is
carried over to the next generations. There exist different
implementations, such as the single point crossover in which
the two parent chromosomes are split at a random position and
then exchange genes.49,50 Mutations, on the other hand, usually
introduce completely new genetic information in a random
fashion, which ensures diversity in the explored solutions.
There are many different implementations for such mutation
operations, one example is the single point mutation that
randomly changes a single gene in a solution's chromosome.
Mutations can also be dened according to a predened rule,
for example the swap mutation switches the values of two
genes.49,50

Selection pushes the population towards quality by dis-
carding badly performing solutions. Selection is performed
twice in each generation, once to determine which solutions are
recombined to create new offspring (parent selection), and once
to determine which solutions proceed to the next generation
(survivor selection). The selection rules are usually stochastic
and dependent on the solutions tnesses so that the ttest are
more likely to be selected. This ensures that the population
evolves towards better performing solutions while maintaining
some level of diversity.49,50

In chemistry and materials science, GAs are known to be
efficient optimization tools, aiding the exploration of large
chemical spaces of diverse nature.57,62–66 An important
Chem. Sci., 2024, 15, 15522–15539 | 15523
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contribution to the eld is the graph-based GA (GB-GA)67 that
utilizes the graph representations of molecules to dene cross-
over and mutation operations offering an alternative to the more
common string based SMILES representation.51 Recent advances
include the PL-MOGA61 that facilitates the directed, multi-
objective optimization of transition metal complexes, and
GAMaterial68 which enables the machine learning (ML) acceler-
ated optimization of materials and others.34,55,69–71 Furthermore,
GAs have been used for the optimization of molecular structures
and conformer search. For example in the automated interaction
site screening (aISS)72 approach, that nds accurate aggregate
geometries, such as dimers, at low computational cost.
Surrogate fitness functions

When evolving molecules and materials, the tness function is
oen times expensive and difficult to evaluate. This can be due
to the fact that values have to be determined experimentally,
which can be challenging in computational approaches, or
require doing calculations at an expensive level of theory, such
as density functional theory. Therefore, an obvious remedy is to
replace the tness function with a cheaper machine learning
model that is tted to previously existing data. These surrogate
models of the tness73 have the ability to drastically reduce the
computational cost. Examples of appropriate machine learning
methods include but are not limited to linear regression,
support vector machines, random forests, and ANNs. The
applicability of surrogate models is contingent upon on their
predictive accuracy because unreliable tness values impede
the evolutionary optimization progress. Especially for large
chemical spaces it can be difficult if not impossible to build
a surrogate model with general applicability and sufficient
accuracy. This highlights the importance of careful model
selection and validation.

Janet and co-workers demonstrated the efficiency of an ANN-
based tness function in the evolutionary optimization of spin-
crossover complexes with a characteristic near-zero free energy
difference between high (H) and low (L) spin states (i.e. the spin
splitting energy).74 In previous work,75 the authors had trained
an ANN for predicting spin splitting energies on 2690 relaxed
transitionmetal complexes achieving a root mean squared error
of 3 kcal mol−1. This prompted the use of these models as
a surrogate function in an EL framework for the discovery of
spin-crossover complexes. The authors adapted a GA proposed
by Shu and co-workers76 that models molecules as hierarchical
trees where each node represents a molecular fragment and the
edges are the chemical bonds connecting them. With a specic
set of connection rules, a chemical space of 5664 single-center
transition metal complexes could be represented, using 32
diverse, organic ligands. The tness was modeled with the
exponential function

F ¼ exp

 
�
�
DEH�L

DwH�L

�2
!

(1)

where DEH−L denotes the spin splitting energy, and DwH−L

denotes a control parameter used to regulate how strongly the
15524 | Chem. Sci., 2024, 15, 15522–15539
tness decreases for increasing values of DEH−L. Instead of
relying on expensive DFT calculations, the spin splitting ener-
gies were predicted using the previously trained ANN.75 In each
generation, parents were chosen by roulette wheel selection
with selection probabilities proportional to the absolute tness
values. Crossover operations were dened by an edge breaking
operation in the parents and a subsequent exchange of the
resulting subtrees. In each generation, ve of these crossovers
were performed before randomly mutating each tree fragment
with a probability of 0.15. The mutation operation replaced the
respective fragment with randomly selected fragments that lead
to a valid tree according to the connection rules. Survivor
selection was done deterministically by choosing the complexes
with the highest tness values from the combined pool of
current and new offspring individuals.

The authors further proposed two additions to this standard
GA framework: a diversity control mechanism to prevent evolu-
tionary stagnation and a distance penalty to account for low
prediction condence of the ANN for data points very different
from the training data. Their proposed diversity control mecha-
nism increases the mutation probability to 0.5 if the ratio of
unique complexes in the current generation falls below 25%. The
increased mutation rate pushes the GA to explore new regions in
the chemical space and thereby prevents the GA from getting
stuck in a local optimum. The distance penalty is motivated by
the observation that ML prediction results tend to become
unreliable for data points very different from the training data. In
a GA where the tness is based on surrogate predictions, poor
predictive performance can hinder evolution and lead to poor
nal results. Therefore, using model uncertainty to estimate the
surrogate accuracy can be useful to avoid basing evolution on
overcondent tness predictions.77 In previous work,75 the
authors showed that a large distance in feature space is a potent
indicator of model accuracy (Fig. 1) and successfully used it with
a set of features that emphasizes metal-proximal properties.

This approach was employed here: in order to discourage
sampling of candidates with large distances to the training
data, the authors introduced a modied tness function

F ¼ exp

 
�
�
DEH�L

DwH�L

�2
!
exp

 
�
�

d

dopt

�2
!

(2)

where, the second term is an exponential penalty term with
d denoting the candidates average distance to the training data
points in the MCDL-25 descriptor space,75 and dopt denoting
a control parameter used to scale the distance penalty. In later
works,78 the authors propose an alternative approach that
utilizes the distance in latent space (Fig. 1) instead of feature
space, which has the advantage of being less sensitive to feature
selection.

They benchmarked four different variants of the GA: (1) the
standard GA, (2) GA with diversity control, (3) GA with distance
penalty, and (4) GA with both diversity control and distance
penalty. In all cases, the GA was initialized with a random
selection of 20 complexes and run for a total of 21 generations.
The standard GA quickly converged due to a single candidate
completely dominating the solution. The GA with diversity
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 ANN-based surrogate function using the distance in latent space as a measure for uncertainty. Points that are close in feature spacemight
not necessarily be close in latent space.
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control exhibited a slightly higher diversity in the nal pop-
ulation while approaching tness values to those of the stan-
dard GA. However, both the standard GA and the diversity-
controlled GA converged towards candidates with on average
large distances to the training data and therefore low prediction
condence. Introducing the distance penalty term in the tness
function lead to candidates with 50% lower mean distances to
the training data at the cost of a 25% reduction of the mean
population tness. With this approach, the authors could ach-
ieve both higher diversity in the nal candidates as well as fairly
small mean distances to the training data. With ∼50 repeats of
the GA, roughly half of the design space could be sampled using
the standard and diversity-controlled approach. With the
combined control strategy, 80% of the lead compounds could
be identied, which constitutes an increase of ∼30% compared
to the standard GA. The majority of missed lead compounds
had large distances to the training data, indicating that the
distance penalty term works as intended and discourages
exploration in areas of low condence, which nonetheless
contain a small proportion of the leads.

In order to estimate the robustness of the ANN-based tness,
the authors determined the accuracy of the surrogate model for
a subset of lead compounds identied by the GA. Relative to
DFT, they obtained an average test error of 4.5 kcal mol−1,
which is moderately higher than the model baseline error of
3.0 kcal mol−1. For complexes that were very similar to the
training data, the observed mean error was 1.5 kcal mol−1.
Furthermore, two thirds of the ANN lead compounds could be
validated by DFT optimization, though including solvent effects
and thermodynamic corrections reduced this ratio to one half.
According to the authors, these ndings demonstrated
© 2024 The Author(s). Published by the Royal Society of Chemistry
sufficient predictive performance of the ANN tness for its use
in evolutionary design applications.

In their conclusion, the authors emphasized the massive
gains in terms of computational efficiency compared to
a traditional GA with a DFT-based tness function that would
require up to 30 days of computing walltime. However, the
computational cost associated with acquiring the training data
(here roughly 50% of the investigated space) remains a signi-
cant contribution. They furthermore noted that the observed
ANN errors in the nal populations could be reduced by
decreasing dopt and discussed options for leveraging low-
condence candidates to retrain the surrogate model on-the-
y, in order to improve the predictive accuracy of the model
in subsequent generations.

Forrest and co-worker79 made use of similar concepts for the
evolutionary optimization of alloy compositions with respect to
their glass forming ability. Instead of a single ANN, they used an
ensemble of ANNs as a surrogate tness function in order to
facilitate predictions of relevant properties such as the
temperature of the crystallization onset. Further, Kwon and co-
workers80 utilized a surrogate model in an evolutionary
approach to optimize the maximum light-absorbing wave-
lengths in organic molecules. Since their evolutionary algo-
rithm operated directly on bit-string ngerprint vectors81 they
furthermore used a separate RNN to decode them into chemi-
cally valid molecular structures.
Bayesian surrogate models

A common issue with machine learning surrogate tness
functions is that the initial data that the model is trained on,
Chem. Sci., 2024, 15, 15522–15539 | 15525
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might not cover the whole chemical space the GA tries to
explore. This will lead to low predictive quality which, in turn,
hinders the evolutionary progress and causes overall poor
results. As in Janet and co-workers work74,75 this can be
accounted for in the tness function by discouraging explora-
tion of solutions that are very different from the corresponding
training data. An alternative approach to this problem is the so-
called active learning framework in which new training data is
acquired on-the-y from a reference function in order to
subsequently ret the surrogate model to this extended dataset.
In order to minimize the number of times the expensive refer-
ence function has to be evaluated, the data points to be
acquired should be selected with care. One possible approach
for this is to use a Bayesian machine learning model that
additionally gives an uncertainty estimate, quantifying the trust
the model has in its prediction. If the uncertainty for a given
data point is higher than a specied threshold, it should be
acquired with the reference function and added to the training
data. This ensures that no unnecessary reference function
evaluations are performed and efficiently generates a dataset
that covers the chemical space of interest. While Bayesian
learningmethods are the most straightforward way of obtaining
uncertainties other approaches for uncertainty estimation exist
and oen times bear the advantage of lower computational
cost.78 The general active learning workow in the context of
evolutionary learning is illustrated in Fig. 2. While the active
learning framework has been thoroughly explored for applica-
tions in chemistry and materials science,82–86 its combination
with GAs is still a fairly new and unexplored area of research.

In their 2019 study,87 Jennings and co-workers showcased
such a model by investigating the atom ordering of a 147-atom
Mackay icosahedral structure.88 They considered all possible
compositions PtxAu147−x for all x ˛ [1, 146]. The optimization
goal was to locate the hull of minimum excess energy
Fig. 2 Conceptual workflow of a Bayesian surrogate fitness functions. D
fidelity reference method and added to the training dataset.

15526 | Chem. Sci., 2024, 15, 15522–15539
congurations for all compositions as calculated by the Effec-
tive Medium Potential (EMT) potential,89 which served as the
tness. The authors dened a traditional GA that operates on
the conguration of Pt and Au atoms. Cut and splice crossover
functions90 as well as random permutation and swapping
mutations were used to create new offspring congurations.
The crossover and mutation operations were set up to be
mutually exclusive, meaning that offspring was created using
either one or the other method. Parents were selected with
a roulette wheel selection scheme based on the tness values. In
order to ensure that all compositions were searched, the
authors furthermore employed a niching scheme in which
solutions are grouped according to their composition. Their
tness was then determined per niche and the best congura-
tions per composition niche were given equal tness.

For the surrogate model they employed Gaussian process
(GP) regression, the most commonly used method in Bayesian
optimization. They employed the squared exponential kernel
dened as

k
�
x; x

0
�
¼ exp

�
� 1

2w2
kx� x

0 k2
�

(3)

where x and x0 denote the feature vectors to compare, ‖$‖2

denotes the Euclidean distance, and w is a hyperparameter
dening the kernel width. The inputs to the model were
numerical ngerprints that described the chemical ordering
within a composition based on the number of nearest neigh-
bors. In particular the feature vector for each conguration was
given by

f d ¼
�
NXX

N
;
NXY

N
;
NYY

N
;M

�
(4)

where N denotes the number of atoms, M denotes the overall
mass, and NXY denotes the number of bonds between atom
ata points with high prediction uncertainties are acquired using a high

© 2024 The Author(s). Published by the Royal Society of Chemistry
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types X and Y. The model was trained on relaxed structures even
though predictions used the unrelaxed structures. The authors
justied this by the fact that their set of descriptors is invariant
to small changes in the geometries.

The authors began by setting up a baseline run using
a traditional GA using the EMT potential as a tness function
and no surrogate model. With roughly 16 000 tness evalua-
tions the GA was able to locate the convex hull, which is already
a massive improvement compared to the brute-force approach
that would require 1.78 × 1044 energy evaluations. They
continued by setting up an ML accelerated approach based on
a nested GA in which the GP-based surrogate tness function is
used. In each iteration the current population in the main GA
was passed to the nested GA in which solutions were evolved
solely based on the prediction of the GP model trained on the
current data. Aer a number of iterations the evolved pop-
ulation was passed back to the main GA where the true tness of
candidates is calculated with the EMT potential before applying
recombination and selection as in the traditional GA. The
calculated EMT tness was furthermore used to retrain the GP
model improving its predictive accuracy for the next run of the
nested GA. Aer survivor selection, the population from the
main GA was again passed to the nested GA for evolution. The
algorithm was terminated when the nested GA did not nd any
candidates that improved the population. With the ML accel-
erated GA the authors reported to nd the convex hull within
1200 energy evaluations, which constituted about 7.5% of the
amount needed in the traditional GA. While in total more
structures were checked, most of them were only evaluated
using the cheap GPmodel and only few were calculated with the
expensive EMT potential.

The authors furthermore presented this alternative tness
function based on a candidates probability of improving upon
the currently best known solution:

PðEx\EbestÞ ¼ 1ffiffiffiffiffiffi
2p

p
ð0
�N

exp

 
�

~Ex � Ebest

~sx
2

!
dx (5)

Here, Ex and Ebest denote the EMT energies of the candidate x
and the currently best known solution respectively, and ~Ex and
s̃x

2 denote the GP-predicted energy and variance, respectively.
In this way, the uncertainty of the prediction is included in the
tness function, which encourages the nested GA to also
explore unknown regions of the search space. This denition of
the tness is akin to acquisition functions in active learning
frameworks, such as the expected improvement score.91 Using
this approach, the authors reported to nd the convex hull with
only 280 required energy calculations indicating its superior
ability to efficiently sample the solution space.

Finally, the authors replaced the EMT potential with a more
accurate DFT calculation and repeated the experiments in order
to prove that the obtained results were not an artifact of the
EMT potential. The results showed that a performance similar
to that observed with the EMT potential could be achieved,
requiring ∼700 DFT evaluations.

Overall, this work demonstrated a signicant speed-up with
their ML accelerated GA and motivated further improvements
© 2024 The Author(s). Published by the Royal Society of Chemistry
by proposing a way of including geometry optimization with
additional genetic operators acting on the atomic coordinates.
Ensuring population diversity

Sufficient exploration of the chemical search space is a key
challenge when employing GAs for the de novo design of
molecules and materials. Oen times the optimization can get
stuck in local optima due to low diversity in the population of
solutions, which prevents the GA from exploring all relevant
regions in the search space. This leads to slow convergence and
overall poor results. Therefore, an efficient, on-the-y manage-
ment of the population diversity is essential in order to ensure
comprehensive sampling of the chemical space.

To tackle this problem with an ML approach, Nigam and co-
workers proposed an augmented GA architecture that includes
an ANN with the explicit task of increasing the populations
diversity.92 They modeled the tness as a linear combination of
the molecular property to optimize (J) and a discriminator score
(D) that measures the novelty of the molecule m:

F(m) = J(m) + b × D(m) (6)

where b denotes a hyperparameter that is used to control the
weight of the discriminator score and J was chosen to be the
penalized logarithm of the water–octanol partition coefficient
dened as

J(m) = logP(m) − SA(m) − RP(m) (7)

where log P denotes the logarithm of the water–octanol parti-
tion coefficient, which is the actual target, SA denotes
a synthetic accessibility penalty,93 and RP denotes a penalty for
rings with more than 6 atoms. The GA operates directly on the
so-called SELFIES94,95 strings that represent the different mole-
cules. Compared to the more traditional SMILES strings,51

SELFIES are dened in terms of a formal grammar comprising
a set of derivation rules. With these, SELFIES can be translated
into SMILES character-by-character akin to a state machine,
where the next output character depends on the current state of
the machine and the input. The set of derivation rules is craed
so that all SELFIES correspond to a valid molecule, making
them an extremely robust molecular representation. The
authors restricted the search space to solutions that produce
SMILES strings with up to 81 characters. The robustness of this
representation allowed for specifying random insertion and
replacement mutations directly on the SELFIES character level.
In contrast to the standard GA setup, they did not use any
crossover operations, meaning that offspring solutions were
created by only applying these mutations to the parents.
Survivor selection at the end of each generation was performed
stochastically, where selection probabilities were calculated
using a logistic function based on the tness rankings of
solutions.

The discriminator D($) is a dense ANN with ReLU activations
and a sigmoid output layer that distinguishes molecules
generated by the GA from molecules of a reference dataset. In
Chem. Sci., 2024, 15, 15522–15539 | 15527
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each generation it is trained for 10 epochs on the molecules of
the current population and an equal amount of molecules
randomly drawn from the reference dataset, using chemical and
geometrical properties as features. In the next generation, this
model is then used to assign novelty scores to the newly
generated molecules. Molecules that are similar to the mole-
cules of the previous generation will receive low scores, whereas
molecules that are more similar to structures of the reference
dataset will receive high scores. Because the discriminator score
enters the tness function, the novelty of proposed molecules
directly inuences their chance of survival. This effect is illus-
trated in Fig. 3 displaying the workow of the discriminator
ANN. A nice property of this approach is that the discriminator
ANN will become very good at identifying long-surviving mole-
cules, assigning low novelty scores, and therefore making it less
likely that they will proceed to the next generation. This
discourages the survival of already explored solutions and
forces the GA to explore regions of the chemical space that are
similar to the reference dataset. The authors conrmed this in
an investigative study showing that the higher the value of b, the
more similar to the reference dataset are the proposed
molecules.

The authors further rened their approach with an adaptive
discriminator scheme that introduces a time-dependence for
the b parameter. In this setting, b is set to zero and only if the
optimization stagnates its value is increased to 1000, in order to
encourage exploration. Once stagnation is overcome, b will be
set to zero again.

In their experiments, the authors used a subselection of 250k
commercially available molecules from the ZINC dataset96 as
the reference dataset and benchmarked their architecture with
(b = 10) and without (b = 0) the discriminator module. The
results showed an increase in the maximum, achieved, penal-
ized log P values of roughly 5% by using the discriminator. The
best log P values were achieved with the time-dependent
Fig. 3 Workflow of the discriminator ANN. The overall fitness F is calculat
ANN novelty score D. The fitness of long-surviving candidates with low

15528 | Chem. Sci., 2024, 15, 15522–15539
discriminator, giving a 55% performance increase compared
to the regular discriminator. The authors claimed to outper-
form the highest literature values by a factor of more than 2.
With a principal component analysis and clustering of all
generated molecules, the authors furthermore showed that, in
the time-dependent approach, the population never stagnated
in one chemical family, sequentially moving towards different
regions in the chemical space. The study also focused on the
simultaneous optimization of log P and drug-likeness by
incorporating the QED score97 in the tness function. Their
benchmark results on the ZINC96 and GuacaMol98 datasets
suggested that their GA is able to efficiently sample the Pareto
front spanned by the two properties.

The authors concluded by highlighting the domain indepen-
dence of their approach, making it interesting also for applica-
tions outside the eld of chemistry and discussed possible
improvements using another ANN for tness evaluation.
Balancing exploration and exploitation

While broad exploration of the chemical search space is
important for sampling from a variety of different molecular
families, effective exploitation for nding the best solutions
within these local regions is equally important in order to
obtain optimal results. However, increasing selection pressure
in order to promote solutions of higher quality oen times
compromises a GA's explorative ability because suboptimal
steps that might be necessary to escape local optima are
strongly discouraged. Finding a good balance between explo-
ration and exploitation is crucial in order to maximize the
quality of the nal population and increase the GAs efficiency.

To that end, Nigam and co-workers improved on their
previous ANN-augmented GA92 by proposing JANUS,99 a parallel
GA guided by ANNs. JANUS maintains two distinct and inde-
pendent, xed size populations as they are separately evolved.
ed as a weighted sum of the optimization target J and the discriminator
novelty will gradually decrease making their survival less likely.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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With this two-pronged approach, one population is responsible
for exploration while the other takes care of exploitation. At the
beginning of each generation, the populations can furthermore
exchange individuals in order to combine the benets of both
approaches. A schematic description of the JANUS architecture
is shown in Fig. 4.

Analogous to their previous work, JANUS operates directly on
SELFIES strings that represent molecules and, as in any other
GA, the quality of an individual is measured using a tness
function. Selection of survivors is performed deterministically,
meaning that only the best solutions proceed to the next
generation. The genetic operators employed differ for the two
different populations in order to promote either exploration or
exploitation. The exploitative population uses the same inser-
tion and replacement mutations excluding crossovers, as in
their previous work,92 and applies them to the n currently best
solutions. In addition to these mutations, the explorative pop-
ulation uses an interpolation crossover that generates paths
between two parents through matching and replacing charac-
ters until both are equal. For all intermediates along these
paths, the joint similarity100 to both parents in terms of the
Tanimoto score is calculated and the molecule with the highest
score is selected as the nal offspring resulting from crossover.
Parents are selected according to a simulated annealing strategy
that allows badly performing individuals to be selected with low
probabilities which allows the population to escape local
optima.

Additional selection pressure is applied to lter the offspring
individuals before survivor selection. In the exploitative
Fig. 4 Schematic depiction of the JANUS architecture. Two separate pop
order to promote exploration in one, and exploitation in the other. An
populations to mix.

© 2024 The Author(s). Published by the Royal Society of Chemistry
population only molecules that are similar to the parents are
propagated further. In the explorative population an ANN is
used to predict tness values and, based on its predictions, the
highest scoring individuals are added to the population. Alter-
natively, a classier ANN can be used which directly sorts the
offspring individuals into either “good” or “bad”, only allowing
“good” molecules to enter the population. Either approach
effectively constitutes a pre-selection of the most promising
solutions at a low computational cost. The ANN is trained in
each generation with all molecules for which the tness is
known. This implies that the ANNs predictive accuracy becomes
better over the course of multiple generations as more data is
added to the training set. For the classier ANN, a %-threshold
is used to identify which molecules belong to the “good” and
“bad” classes. In their study, the authors experimented with the
top 50% and 20%.

The authors tested their architecture on common molecular
design benchmarks. As in their previous work,92 they rst
investigated the optimization of the penalized log P value as
dened in eqn (7), modeling molecules using the robust
SELFIES representation with a maximum character limit of 81.
In total, four different variations of JANUS were tested: plain
without additional selection pressure added in the explorative
population, modied with the tness ANN predictor, and
modied with the ANN classier with thresholds of 50% and
20%. All variants outperformed other approaches from the
literature in terms of the single best molecule. On average only
one model (genetic expert-guided learning101) performed better
than JANUS. The authors' previous GA discriminator approach92
ulations are propagated in parallel using different genetic operations in
exchange of individuals at the end of each generation allows the two

Chem. Sci., 2024, 15, 15522–15539 | 15529
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could achieve results of similar quality only aer 10 times the
number of generations. Using the tness ANN predictor
increased the median population tness compared to the plain
model without additional selection pressure. Similar trends
could be observed for the ANN classiers, all converging into
the same local optimum within 100 generations. The conver-
gence rate however, showed a signicant dependence on the
thresholds. With the 20% threshold, the local optimum was
reached already aer less than 20 generations, whereas with the
50% threshold, almost 100 generations were required. At the
same time, the 20% threshold limited the exploration of the
chemical space as indicated by the smaller tness ranges
spanned in the generations. With the 50% threshold, these
ranges were much larger even surpassing those obtained with
the ANN predictor. Finally, the authors compared the number
of evaluations needed in order to reach certain tness values
(J(m) = {10, 15, 20}) for all four variants. The model using the
ANN classier with a threshold of 20% needed the smallest
number of evaluations, and the model using the ANN predictor
needed the second smallest. The largest number of evaluations
was required by the plain model, highlighting the benet of the
additional selection pressure introduced by the ANNs.

JANUS was furthermore tested on two more molecular
benchmarks: the imitated protein inhibition task,102 in which
the objective is to generate 5000 molecules that inhibit two
different proteins (either one or both) while exhibiting high
drug-likeness as measured by the QED score97 and low synthetic
accessibility penalty as measured by the SA score,93 and
a docking task103 considering four different protein targets with
the goal of nding molecules that minimize the respective
docking scores. In both benchmarks the authors found JANUS
to outperform other approaches from the literature and achieve
state-of-the-art results in terms of the tness objective. The
diversity of generated molecules however was reduced
compared to results from the literature. The authors proposed
that the incorporation of a discriminator92 may promote pop-
ulation diversity and alleviate this shortcoming.

The authors concluded their work by discussing the low
synthetic accessibility of most of the generated compounds in
all investigated benchmarks and proposed ways of directly
accounting for synthesizability in the molecular design process,
either during structure generation or tness evaluation, and
using multi-objective GAs104 that do not make use of the naive
weighted sum approach. In this regard, there are now powerful
alternatives like stability lters34 and the PL-MOGA,61 respec-
tively. The authors furthermore discussed plans for incorpo-
rating their previously developed discriminator for population
diversity92 into the JANUS framework in order to improve the
GAs ability to escape local optima.

A combination of the JANUS workow and discriminator
ANNs has been implemented by Nigam and co-workers34 for the
discovery of organic emitters with inverted singlet-triplet gaps.
The discriminator ANNs were trained to identify promising
candidates and used as lters to reduce the number of expen-
sive DFT-based tness evaluations. Furthermore, lters
informed by expert opinion were used to remove infeasible
structures from the proposed molecules during each
15530 | Chem. Sci., 2024, 15, 15522–15539
generation. With their approach the authors could investigate
more than 800 000 molecules and identify at least 10 000
promising emitter candidates.

Modifying crossover

Constraint handling in GAs is crucial if the design objective
entails certain requirements that have to be satised and
essentially restricts the effective search space by biasing the
search towards specic solutions. One common approach for
this is to explicitly incorporate appropriate rewards or penalties
into the tness function as a weighted sum. As highlighted in
previous works,92,99 an important constraint in the evolutionary
generation of molecules that is commonly handled this way is
the synthetic accessibility accounted for in the penalized log P
score (eqn (7)). This bears multiple issues however, one of which
is the difficulty of choosing appropriate weights to properly
balance the optimization goal with rewards and penalties.
Furthermore, the weighted sum approach dilutes the tness
value of the actual optimization goal by mixing it with reward or
penalty factors. This approach also does not enforce constraints
in a strict manner: solutions with both high tness and low
rewards/high penalties can still perform mediocre even though
the rewards/penalties are above/below a certain cutoff.

Alternatively, Pareto-based multi-objective optimization
techniques can be employed to incorporate the constraints as
separate optimization goals. By using appropriate methods to
guide the search61 effective cutoffs for the constraints can be
implemented. However, if there are many constraints to encode
or other optimization objectives to consider, optimization effi-
ciency and convergence speed will suffer drastically due to the
curse of dimensionality.

An entirely different approach is to modify the genetic
operators so that the generated offspring solutions satisfy the
desired constraints. In this way, the tness function remains
completely independent from the specic constraints while
ensuring that all generated solutions satisfy them intrinsically.
Naively, this can be implemented by preselecting proposed
offspring solutions based on threshold values for the
constraints to be considered.

By introducing ChemistGA (Fig. 5),105 Wang and co-workers
demonstrated the use of an ANN-based crossover operation to
account for synthetic accessibility during offspring generation
in the evolutionary de novo design of drug-like compounds. The
optimization goals were, in different combinations, protein
activities for DRD2, JNK3, and GSK3b, drug-likeness as
measured by the QED score,97 and synthetic accessibility as
measured by the SA score.93 All molecules were represented as
SMILES strings.

As shown in Fig. 5, the rst step in their architecture creates
two separate parent populations by randomly drawing
a number of solutions from the main population. A crossover
operation based on the Molecular Transformer106 (MT) ANN is
applied to all possible pairs of the two parent populations. The
MT is intended to solve the forward problem in synthesis
planning by modeling it as a language translation problem:
based on two given reactant SMILES, it predicts a product
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Schematic workflow of the ChemistGA algorithm. Offspring individuals are obtained using the molecular transformer architecture,
promoting synthesizability. Backcrossing between the parent and offspring individuals prevents the search from getting stuck in local optima.
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SMILES using a multi-head attention mechanism.107 The
authors observed that the predicted product inherits structural
properties from both reactants and therefore the MT could be
implemented as a crossover operation in their GA architecture.
Furthermore, because the MT is trained on a dataset of known
reactions, it implicitly promotes the synthesizability of the
generated molecules. Interesting to note is the fact that the MT
is not just a strict crossover between two input individuals since
it also introduces entirely new information into the output
individuals, by building structures in an autoregressive manner
and can therefore be considered a hybrid crossover-mutation
operation. The top-50 of all solutions generated in this way
are retained and, with a 1% probability, one of these additional
mutations is applied: append/insert/delete atom, change atom
type/bond order, delete/add ring/bond. These mutations are
implemented with SMARTS strings,108 which specify molecular
substructures using the SMILES line notation. Furthermore,
backcrossing between offspring and parents is employed aer
a certain number of generations by inserting a subset of the
initial population into the current population. The purpose of
this is to prevent the GA from getting stuck in local optima.
Finally, the tness scores for the generated offspring solutions
are calculated and the best performing ones are added to the
main population, which is used in the next iteration to again
create two separate parent populations. Instead of directly using
the continuous tness values, these are discretized into a binary
representation assigning 1 when a prespecied requirement R
(e.g. the SA score93 is above a certain threshold) is met or
0 otherwise. The authors claim that this increases the diversity
in the selection of individuals.
© 2024 The Author(s). Published by the Royal Society of Chemistry
FðmÞ ¼
(
1 if RðmÞ
0 otherwise

(8)

The authors furthermore propose an alternative architec-
ture, R-ChemistGA, that utilizes a random forest surrogate
model for molecular property prediction in order to reduce
computational cost during tness evaluation. Every h
generation the molecular properties are calculated using the
true tness function, and the obtained values are used to retrain
the random forest in order to improve the models predictive
accuracy. While the resulting model adds noise to the evolu-
tionary process, it is also much more appropriate for a real
world application in which property predictions are expensive
and may not necessarily be carried out freely.

In a rst benchmark experiment, the authors tested their
model against GB-GA67 on a task aimed at maximizing activity
for protein targets JNK3 and GSK3b, as well as the QED and SA
scores. Almost 50% of molecules generated by ChemistGA had
high activities for both proteins, whereas GB-GA was not able to
generate any. Looking at the different optimization goals indi-
vidually, ChemistGA outperformed GB-GA with respect to all
but the SA score, for which the two models performed similarly.
Further investigations revealed that ChemistGAs crossover
approach facilitated a more reasonable inheritance of molec-
ular patterns due to the MT preserving the parents substruc-
tures more accurately.

Next, they investigated performance in terms of synthesiz-
ability, novelty, diversity, and the quantity of unique molecular
skeleton types based on the Murcko scaffold109 for 5000 gener-
ated molecules. Two different optimization tasks were assessed:
Chem. Sci., 2024, 15, 15522–15539 | 15531
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(1) one with only DRD2 and (2) one with JNK3 and GSK3b as
protein activity targets in addition to the QED and SA scores.
They benchmarked their results against GB-GA and REIN-
VENT.110 In both tasks, ChemistGA outperformed the other
models in terms of novelty and diversity of generated molecules
while achieving similar synthesizability. In terms of the number
of generated molecular scaffolds, ChemistGA slightly out-
performed REINVENT but was inferior to GB-GA in task (1). In
task (2) however, ChemistGA generated more than four times as
many distinct scaffolds compared to REINVENT. Overall, the
proposed architecture seemed to exhibit higher capabilities of
exploring the chemical search space compared to the bench-
mark models.

Finally, the authors turned their attention to their alternative
proposed architecture R-ChemistGA, which uses a random
forest surrogate to predict tness values and ran it on the same
two tasks. Compared to their baseline model, ChemistGA, the
number of generated molecules with R-ChemistGA exhibiting
desired properties was twice as high per evaluation of the true
tness function. This indicates that a GA utilizing a noisy
surrogate model is still able to guide the optimization into
favorable directions. In terms of synthesizability, diversity, and
number of scaffolds, R-ChemistGA performed slightly worse
compared to the baseline, though the novelty of generated
molecules was the highest of all investigated models. Using a t-
SNE111 plot of the best synthesizable molecules, the authors
furthermore showed that R-ChemistGA explores larger regions
of chemical space and asserted that their architecture produced
more reasonable molecules with higher synthesizability.

Evolution in latent space

In applications to chemistry, a key aspect in the design of
effective GAs is to nd an appropriate chromosomal represen-
tation upon which the genetic operators act (crossover and
mutation). String representations such as SMILES51 and SELF-
IES94,95 are commonly used because they are easy to implement
and offer a high degree of exibility.38,100,112 Alternatively, the
problem can be discretized by starting from some sort of scaf-
fold that in specic places of the structure allows for the
inclusion of molecular fragments chosen from a predened
library.61,113,114 A potential issue with this is that the specic
representations implicitly dene the search space of the EL
algorithm and improper choices can limit the search to only
certain parts of the chemical space. Therefore, users need
domain knowledge in order to make appropriate choices.

In the Deep Evolutionary Learning (DEL)115 framework,
Grantham and co-workers made use of an entirely different way
of representing molecules in terms of latent space representa-
tions learned from autoencoder116 type ANN architectures. In
particular, they employed a modied variant of a variational
autoencoder (VAE)117,118 proposed by Podda and co-workers119

that operates on molecular fragments in terms of SMILES51

strings. Given an input SMILES string, their FragVAE rst
separates it into fragments and embeds them as tokens using
Word2Vec.120 In the encoding step of the VAE, the sequence of
fragment tokens is passed through gated recurrent units,121
15532 | Chem. Sci., 2024, 15, 15522–15539
encoding them into a latent representation for the full mole-
cule. The decoding step operates in a similar fashion, beginning
with a “start of sentence” token and subsequently taking the
predicted fragments as inputs to reconstruct molecules similar
to the initial input. The VAE is pretrained to minimize the
reconstruction loss on an initial training data set, and ne-
tuned during evolution on samples from the population. A
similar use of a simple VAE in an EL framework had been
proposed earlier by Sousa and co-workers.122 Grantham and co-
workers employed a modication of the original VAE model,
rst proposed by Gomez and co-workers,123 that adds an addi-
tional ANN to predict molecular properties from the latent
space, which has the effect of regularizing the representations
with properties of interest. The EL algorithm was initialized
with a random sample from a reference dataset. At the begin-
ning of each generation, the VAE encoder is used to project all
individuals in the current population into latent space repre-
sentations upon which all genetic operators acted directly.
Parents are selected based on non-dominated ranking in
a multi-objective setting, where individuals are sorted into non-
dominated Pareto frontiers. Within each frontier, none of the
individuals is better than any other individual with respect to all
optimization goals.124 Furthermore, the crowding distance, i.e.
a measures of the density around a particular individual, is
employed in order to promote diversity in the population. Two
different crossover operations are used: linear blending and
single-point49,50 crossover. In the former the offspring feature
vectors z1 and z2 are obtained as

z1 ¼ zp1 þ r1
	
zp2 � zp1



z2 ¼ zp1 þ r2

	
zp2 � zp1


 (9)

where zp1 and zp2 denote the latent vector representations of two
parents, and r1 and r2 are dened as

r1 ¼ �d þ a1ð1þ 2dÞ
r2 ¼ �d þ a2ð1þ 2dÞ
a1; a2 � N ð0; 1Þ
d$ 0

(10)

where d is a hyperparameter that controls the trade-off between
exploration and exploitation, which was set to 0.25 following
previous suggestions.125,126 The architecture of the FragVAE
model including the downstream crossover operations is shown
in Fig. 6. Aer crossover, mutation is randomly applied to all
offspring individuals with a probability of 0.01. In the muta-
tions, the representation of offspring individuals is changed in
a random single position by adding a normally distributed
random variable m � N ð0; 1Þ. Next, the decoder part of the
VAE is used to generate actual molecular structures from the
offspring latent space representations that are then used to
determine their tness. The current population and offspring
population are merged together and survivors are subsequently
selected in the same way as parents. The new population,
including the tness values, is used to ne-tune the VAE and the
next generation is started by projecting the new population into
the latent space representations using the VAE encoder. Upon
convergence, the algorithm returns the nal evolved
population.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Schematic workflow of the FragVAE architecture that takes molecules in terms of their constituting fragments as inputs and tries to
reconstruct them with minimal error. Crossover operations in the EL algorithm operate directly on the latent space representations. The ANN is
used to regularize the model with respect to certain properties ŷ.
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The authors benchmarked their method on a subset of the
ZINC96 and PCBA127 datasets, simultaneously optimizing the
drug-likeness in terms of the QED score,97 synthetic accessi-
bility, as measured by the SA score,93 and the logarithm of the
water–octanol partition coefficient log P. Most of the generated
molecules were different from the training set and the ratio of
unique structures in the nal population was high, with values
up to 99%. Furthermore, it was reported that the amount of
high performing individuals per generation increased along the
evolutionary process. By comparing the distributions of the
initial data with the distributions over the generated samples,
the authors also showed that their approach was able to explore
areas of the chemical space beyond the training data. This
property of the DEL approach was furthermore highlighted in
comparisons with models from the MOSES benchmarking
framework,128 which in most cases generated distributions very
closely aligned with the respective training dataset. In bench-
marks against multi-objective Bayesian optimization methods,
it was shown that DEL explored a larger hypervolume in the
chemical space while also generating molecules of higher
performance.

In closing, the authors discussed the scalability and general
applicability of their method and proposed the integration of
geometric deep learning models to better represent molecules
in terms of their 3D structures.

Abouchekeir and co-workers129 adapted this approach by
replacing the VAE with an adversarial autoencoder (AAE)130 that
aims at decoding latent space vectors into molecular structures
© 2024 The Author(s). Published by the Royal Society of Chemistry
indistinguishable from the training data distribution. Bench-
marked on the same datasets and optimization goals, their
method produced better candidates in the nal population and
explored a larger hypervolume in chemical space compared to
the original DEL approach. The authors attributed this to the
more organized latent space produced by the AAE.
Summary and outlook

The combination of ML methods and EL strategies for the de
novo design of molecules and materials is an incipient research
topic. However, the here presented studies show that the
synergistic interplay of the two paradigms can lead to signi-
cant increases in performance. The majority of research in this
eld seems to focus on surrogate tness functions that can
reduce computational costs by employing ML models to predict
tness values instead of utilizing an expensive reference func-
tion. A key technology for the robust exploration of massive
chemical spaces are surrogate tness functions based on
Bayesian ML that can acquire new data points on-the-y. While
most efforts so far have focused on Gaussian process regres-
sion, future work should explore the applicability of other
methods such as Bayesian ANNs.131–133 This will allow the
research community to more efficiently and accurately explore
massive chemical spaces, identifying interesting regions prop-
erty-wise.

Besides the tness function, other uses of ML methods in EL
seem to be less explored in the literature. However, the works
Chem. Sci., 2024, 15, 15522–15539 | 15533

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sc02934h


Chemical Science Perspective

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
Se

pt
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 1

/2
5/

20
26

 4
:1

4:
59

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
reviewed here for maintaining population diversity92 and facil-
itating constrained crossovers105 showed promising results. The
proposed models outperformed the GAs that were not
augmented with ML, indicating their superior efficiency
compared to traditional methods. However, their behavior
needs to be further explored on more diverse benchmarks and
improved architectures should be derived based on the ndings
of these investigations. Another interesting perspective can be
the use of generative models to produce the molecular frag-
ments used as genes by genetic algorithms.

Most works discussed here only consider single-objective
optimization problems or employ some sort of weighted sum
approach to condense different optimization goals into one
objective. Research on multi-objective GAs that make use of ML
surrogate tness functions seems to be largely unexplored.
However, multi-objective evolutionary optimization in chemistry
and materials science has many interesting applications with the
common goal of efficiently sampling the Pareto front spanned by
multiple properties.61 Being able to employ surrogate tness
functions in multi-objective settings will also be crucial for
enabling the ML accelerated study of these problems. A funda-
mental question therein is to dene the way predictions are
facilitated: using a single surrogate model for all objectives or
using separate surrogate models, one for each objective. The
comprehensive benchmarking of their respective performance in
terms of prediction quality and computational cost will contribute
to advancing the eld, providing researchers with guidelines for
choosing themost effective approach to their specic applications.

Another open challenge in this fast evolving eld is the
comprehensive and unbiased benchmarking of proposed
methods across diverse domains. Many of the works reviewed
here report promising performances of their proposed ML-
augmented GA architectures but only partially tested against
classical alternatives. For example, the discriminator ANNs for
ensuring population diversity introduced by Nigam and co-
workers92 was only benchmarked against a standard GA archi-
tecture but not one employing classical techniques for main-
taining diversity such as niching.124,134 Similarly, ChemistGA105

was only benchmarked against a very narrow set of classical GAs
not taking into account a wider range of heuristic crossover
operations and using suboptimal parameters. Future work
should put emphasis on fair and informative benchmarking
comparisons against relevant baselines. Especially when
comparing the computational efficiencies of classical and ML-
augmented GAs, care should be exercised to also take poten-
tial training and evaluation costs of ANNs into account.
Furthermore problematic is the fact that some of the commonly
employed benchmarks such as GuacaMol98 and MOSES128 have
become outdated since modern EL methods are able to
consistently obtain near-perfect scores on them101,112,135 making
it difficult to make substantiated statements about their
respective performances. In this regard, Nigam and co-workers
developed Tartarus,32 a suite of realistic benchmarking sets
entailing molecular design tasks from chemistry and materials
science. In total, the study introduces four novel benchmarks
across diverse domains that each include curated reference
datasets. The authors encourage employing a resource-
15534 | Chem. Sci., 2024, 15, 15522–15539
constrained training approach limiting the overall runtime
and the number of proposed candidates in order to ensure the
meaningful comparison of different methods.

An interesting ML-based modication of GAs that has not
been addressed in the literature, are the so-called D-ML
approaches for tness surrogate functions. In D-ML, instead of
directly trying to predict the ground truth, a correction term to
a cheap approximation to the reference method is learned. The
nal prediction can then be obtained with

yref = yapprox + D (11)

where yref denotes the ground truth as dened by the reference
method, yapprox denotes an approximation to the ground truth,
and D denotes the learned correction between both. Because
this approach requires the additional evaluation of an approx-
imation method, it is has a higher computational cost than
standard ML. However, D-ML approaches bear the advantage
that the features used to predict the correction term can come
from the approximation method. These features might contain
more relevant information that can be leveraged in the ML
model to reduce errors. Overall, research suggests a signicant
increase in predictive performance.136–138

In chemistry and materials science, an interesting application
for D-ML is the prediction of corrections for energies and prop-
erties from semiempirical approximations139–141 such as GFN2-
xTB142 to ab initiomethods such as DFT. In evolutionarymolecule
design, tness functions based on ab initio calculations are oen
times associated with prohibitively high computational costs,
whereas semiempirical approximations are usually feasible. The
use of D-ML in EL applications as a cheap yet accurate tness
function can potentially lead to better convergence properties
and increase the quality of the solutions evolved.

Finally, the complex nature of such synergistic architectures
requires users to have extensive knowledge of evolutionary and
machine learning, rendering them difficult to use by non-
experts. Efforts should go into the development of general
frameworks that make these methods more easily accessible by
a larger community, in order to enable their application to
interesting problems within the elds of chemistry and mate-
rials science. For this, a culture of open code and data is crucial
in which support for command line usage and comprehensive
documentation facilitates the use and adaptation of existing
methods. Furthermore, promoting avid exchange between
method developers and users, as well as between the theoretical
and experimental communities, will help to increase the
scientic impact of these methods.
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86 F. Häse, M. Aldeghi, R. J. Hickman, L. M. Roch and
A. Aspuru-Guzik, Gryffin: an algorithm for Bayesian
optimization of categorical variables informed by expert
knowledge, Applied Physics Reviews, 2021, 8, 031406.

87 P. C. Jennings, S. Lysgaard, J. S. Hummelshøj, T. Vegge and
T. Bligaard, Genetic algorithms for computational
materials discovery accelerated by machine learning, npj
Comput. Mater., 2019, 5, 46.

88 O. Echt, K. Sattler and E. Recknagel, Magic numbers for
sphere packings: experimental verication in free xenon
clusters, Phys. Rev. Lett., 1981, 47, 1121.

89 K. W. Jacobsen, J. Norskov and M. J. Puska, Interatomic
interactions in the effective-medium theory, Phys. Rev. B:
Condens. Matter Mater. Phys., 1987, 35, 7423.

90 D. M. Deaven and K.-M. Ho, Molecular geometry
optimization with a genetic algorithm, Phys. Rev. Lett.,
1995, 75, 288.
Chem. Sci., 2024, 15, 15522–15539 | 15537

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sc02934h


Chemical Science Perspective

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
Se

pt
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 1

/2
5/

20
26

 4
:1

4:
59

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
91 D. R. Jones, M. Schonlau and W. J. Welch, Efficient global
optimization of expensive black-box functions, Journal of
Global Optimization, 1998, 13, 455–492.

92 A. Nigam, P. Friederich, M. Krenn and A. Aspuru-Guzik,
Augmenting genetic algorithms with deep neural
networks for exploring the chemical space, arXiv, 2019,
preprint, arXiv:1909.11655, DOI: 10.48550/
arXiv.1909.11655.

93 P. Ertl and A. Schuffenhauer, Estimation of synthetic
accessibility score of drug-like molecules based on
molecular complexity and fragment contributions, J.
Cheminf., 2009, 1, 1–11.
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