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Selective activation of the benzylic C(sp®)—H bond is pivotal for the construction of complex organic
frameworks. Achieving precise selectivity among C—H bonds with comparable energetic and steric profiles
remains a profound synthetic challenge. Herein, we unveil a site- and stereoselective benzylic C(sp®)-H
alkenylation utilizing metallaphotoredox catalysis. Various linear and cyclic (2)-all-carbon tri- and
tetrasubstituted olefins can be smoothly obtained. This strategy can be applied to complex substrates with
multiple benzylic sites, previously deemed unsuitable due to the uncontrollable site-selectivity. In addition,
sensitive functional groups such as terminal alkenyl and TMS groups are compatible under the mild
conditions. The exceptional site-selectivity and broad substrate compatibility are attributed to the visible-

Received 29th April 2024 light catalyzed relay electron transfer—proton transfer process. More importantly, we have extended this
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methodology to achieve enantioselective benzylic C(sp®)—H alkenylation, producing highly enantioenriched
DOI: 10.1039/d4sc02830a products. The applicability and scalability of our protocol are further validated through late-stage

rsc.li/chemical-science functionalization of complex structures and gram-scale operations, underscoring its practicality and robustness.

Introduction bf:nzylic C(sp®)-H functionalization. However, the reliance.on

diverse HAT reagents (e.g., NSFI, DTBP, TBADT, and thiol)
Arene derivatives bearing the benzylic stereogenic center are presents a challenge in achieving regioselectivity, particularly
one of the most prevalent functional motifs among pharma-
ceuticals," and consequently, considerable efforts have been
dedicated to developing highly direct and efficient synthetic
methods (Scheme 1a). In this context, transformations of native
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for substrates with intricate structures. Very recently, the elec-
tron transfer-proton transfer (ET/PT) strategy has gained
increasing attention and offers a promising way to address the
C-H selectivity issue (Scheme 1b).* With this strategy, copper-
catalyzed selective C-C bond formation has been realized
directly from benzylic C-H bonds." Despite these efforts,
photo/nickel-catalyzed carbofunctionalization with the ET/PT
process of toluene derivatives has not been disclosed. The
main challenges might stem from the mismatched reaction
rate, owing to the rapid oxidation addition process of organo-
halides to the nickel catalyst while relatively slow rate to give
rise to benzylic radicals.

On the other hand, all-carbon tetrasubstituted olefins have
attracted enormous attention, since the structural motifs widely
exist in a broad spectrum of significant biologically active
compounds** and versatile organic intermediates.” The tradi-
tional double bond-forming methods," including Wittig olefi-
nation, Peterson olefination, and olefin metathesis are effective,
but the Z/E stereoselectivity remains a great challenge. Difunc-
tionalization of alkyne and cross-coupling reactions usually
cannot avoid the involvement of the organometallic reagents.*
Despite recent efforts, the development of efficient methods to
construct all-carbon tetrasubstituted olefins in a stereoselective
manner is synthetically challenging. With our continual work in
photo/metal synergistic catalysis,'® we questioned if we could
realize stereoselective alkenylation of benzylic C(sp*)-H bonds
in a series of readily available alkylarenes (Scheme 1c). The
electron transfer-proton transfer pathway can avoid other side
reactions with interfering C(sp’)-H bonds. By employing
a chiral bisoxazoline ligand, enantioselective benzylic C(sp*)-H
alkenylation has also been achieved. Notably, in this catalytic
system, we are able to overcome the significant challenge of
steric hindrance posed by the synthesis of specific (Z)-all-carbon
tetrasubstituted alkenes.

The radical inhibition experiments with TEMPO indicated
the reaction probably proceeded via a radical process. In some
examples, homocoupling of substrate 1 (toluene derivatives)
could also be detected. The luminescence quenching experi-
ment shows that [Ir(dF(CF;)ppy).(4,4-dCF;bpy)]PFs* can be
quenched by 1a. Based on our mechanistic experiments (see
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Scheme 2 Mechanistic studies of benzylic C(sp®)—H alkenylation
reaction.
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details in the ESIt) and previous work,'” a possible mechanism
was proposed in Scheme 2. The electronic-rich arene (1) is first
oxidized by the excited-state photocatalyst [Ir'"]*, experiencing
the key electron transfer-deprotonation process, to finally
produce radical 8 and simultaneously the [Ir'] complex. Then,
oxidation addition of substrate 2 to Ni° leads to intermediate 9,
which can be captured by 8' through radical addition to produce
10 species. Next, this Ni"" complex would undergo reductive
elimination to deliver the final product 3 and Ni'-complex.
Finally, [Ir""] complex can donate one electron to Ni' to generate
Ir'™™ and Ni°, completing two catalytic cycles, respectively.

Results and discussion

We initiated our investigation by achieving benzylic C(sp®)-H
alkenylation of 1-ethyl-4-methoxybenzene (1a) with ethyl (Z)-2-
benzyl-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate (2a)
(Table 1). Several allylic or benzylic C(sp®)-H bonds in the
model substrates (1a and 2a) make it generally challenging to
differentiate through the HAT manner. The optimized reaction
conditions include 2 mol% [Ir(dF(CF;)ppy).(4,4’-d(CF;)bpy)|PFs
(V2E eq(*1r™/1r'") = +1.65 V vs. SCE) as a photocatalyst, which is
sufficiently positive to oxidize 1a (Y?E = +1.52 V vs. SCE),
10% mol NiCl,-6H,0 as the transition metal catalyst, Li,CO; as
the base and DMF as the solvent under blue LED radiation at rt
for 24 h. The desired product (3a) was obtained in 85% isolated

Table 1 Optimization of the reaction conditions®

86.2 kcal/mol 84CC7) ké:ta\/mo] Me
N r—D pea@mot) - pyp COEt
)\ - z NiCl,*6H,0 (10 mol%) /2
PMP™ "Me Ph Li,CO3(2equv)DMF 2ml)  md  Bn
ool Klat/mol Blue LEDs, rt, 24 h .
1a 2a
Entry Variation of standard conditions Yield” [%)]
1 None 85°¢
2 PC-2 instead of PC-1 62
3 Ni(acac), instead of NiCl,-6H,0 22
4 NiBr, instead of NiCl,-6H,0 0
5 MeCN as solvent 6
6 DCM as the solvent ND
7 THF as the solvent 20
8 Cs,CO; as base 79
9 Without PC-1 or [Ni] or base or light ND

“ Standard conditions: PC-1 (2 mol%), NiCl,-6H,0 (10 mol%), 1a (0.4
mmol) 2a (0.2 mmol), Li,CO; (0.4 mmol), DMF (2 mL), blue LEDs,
24 h. ’ Isolated yields. DMF = N,N-dimethylformamide; ND = not
detected. PMP = p-methoxyphenyl. BDE results were calculated using
DFT calculations. ¢ 79% yield on a 3 mmol scale.
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yield (entry 1). When PC-1 was replaced with PC-2 (Y2E,cq(*Ir™Y
Ir') = +1.21 V vs. SCE), 62% of 3a was obtained (entry 2).
Although PC-2 holds lower oxidation potential, the potential
overlap between the excited PC-2 and 1a could promote the
single electron oxidation process for fast deprotonation and
benzylic radical generation as the driving force. Other nickel
sources like Ni(acac), or NiBr, could lead to a diminished yield
(entries 3 and 4). The screening of other solvents revealed that
DMF led to the best reaction efficiency (entries 5-7). The use of
Cs,CO; leads to a slightly decreased yield of 79% (entry 8). The
control experiments suggested that PC-1, [Ni], base, and light
were necessary factors to deliver product 3a (entry 9).

With the optimized benzylic C(sp®)-H alkenylation condi-
tions in hands, the scope of the alkylarenes was first deter-
mined, and the results are shown in Scheme 3. This method
enabled selective C-H alkenylation of both primary and
secondary benzylic C(sp®)-H bonds, providing the desired
products in good yields (3b-3d). Interestingly, when several
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Scheme 3 Substrate scope of toluene derivatives. Standard condi-
tions: PC-1 (2 mol%), NiCl,-6H,O (10 mol%), 1 (0.4 mmol), 2 (0.2
mmol), Li,COz (0.4 mmol), DMF (2 mL), blue LEDs, 24 h. The Z/E ratios
of 2a were determined by 'H NMR as >20/1.
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methyl and methylene groups were in the same aromatic ring,
they could be differentiated well with excellent selectivity (3f, 3g,
and 3h). In this case, it is found that the para-position is rela-
tively more reactive, exhibiting superiority during the electron
transfer-proton transfer strategy. When the methoxy group was
adjacent, the yield of benzylic C-H alkenylation slightly
decreased (3e and 3i), while adding another methoxy group in
the 4-position promoted the transformation (3j). Importantly,
the presence of weaker C-H bonds in the substrate did not
significantly impact reaction efficiency (3m and 3n). In addi-
tion, the electric-rich heteroaromatics could also successfully
deliver the desired product in acceptable yields (30 and 3p). A
noteworthy observation was the regioselectivity displayed in
substrates containing two comparable benzylic C-H bonds. As
evidenced by products 3q-3x, the reaction preferentially tar-
geted the C-H bond directly connected to the more electron-
rich aromatic rings. We envisioned that an electron-rich
aromatic ring would undergo single electron oxidation more
rapidly and then proceed deprotonation to produce a benzylic
radical intermediate.'**®

We commenced the assessment of electron-poor alkenyl
triflates bearing diverse substitutions (Scheme 4). The examples
in this article included various active C-H bonds. They
remained unchanged after experiencing the unique ET/PT
process. It was envisioned that the ester group on the side
chain could play a role in the stabilization of the transition state
in coordination with the nickel center.'* In all examples,
excellent stereoselectivity was observed with the ratio exceeding
20:1 (regioselectivity and Z/E selectivity). This protocol per-
formed well with the hindered tetrasubstituted acyclic triflates.
Substrates containing methyl, alkenyl, and TMS groups
produced the desired products (3y-3aa) in 89%, 85% and 86%
yield, respectively. The reaction was also suitable for the
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Scheme 4 Scope of alkenyl triflates. Standard conditions: PC-1
(2 mol%), NiCl,-6H,0 (10 mol%), 1b (0.4 mmol), 2 (0.2 mmol), Li,COs
(0.4 mmol), DMF (2 mL), blue LEDs, 24 h. The Z/E ratios of 2 were
determined by *H NMR as >20/1.
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synthesis of trisubstituted alkenes with good yields and definite
configuration (3bb-3dd). The cyclic six-membered alkenyl tri-
flates, including those with substituents at 4-positions, afforded
products (3ee-3ii) in yields of 70-79%. Additionally, the cyclic
vinyl triflates, derived from 7-, 8-, 12-, or 15-membered rings,
could couple with 1b efficiently to furnish the target products
(3jj-3mm) in moderate to good yields.

To further demonstrate the synthetic value of this method-
ology, the strategy was applied for late-stage modification of
a number of complex molecules. Several molecules from bio-
logically important natural products, pharmaceuticals, or
complex carbohydrates were successfully applied in this
benzylic C-H alkenylation and are shown in Scheme 5. The
derivatives from naproxen (4a), probenecid (4b), ibuprofen (4c),
and adapalene (4d) underwent this transformation smoothly.
Moreover, complex natural products bearing several reactive C-
H sites could also be modified, affording the desired products
(4e, 4f, and 4i) in moderate yields. Additionally, the protected
carbohydrates underwent this C-H alkenylation reaction well in
satisfactory yields of 44-49% under standard conditions (4g
and 4h).

The enantioselective benzylic C(sp®)-H alkenylation was
then explored. With the chiral bisoxazoline ligand and a low
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Scheme 5 Late-stage functionalization of complex molecules. Stan-
dard conditions: PC-1 (2 mol%), NiCl,-6H,0O (10 mol%), 1 (0.4 mmol),
2a (0.2 mmol), Li,CO3 (0.4 mmol), DMF (2 mL), blue LEDs, 24 h. The Z/E
ratios of 2 were determined by *H NMR as >20/1.
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Scheme 6 Enantioselective benzylic C(sp®)—H alkenylation by dual
photoredox/nickel catalysis. Standard conditions: PC-1 (2 mol%),
NiBr,-dme (15 mol%), L* (20 mol%), 1 (0.2 mmol), 2 (0.1 mmol),
K3PO4-H,0 (0.1 mmol), DMPA/DCM (v/v=1:1, 1 mL), blue LEDs, —40
°C, 36 h. DMPA = N,N-dimethylpropionamide; PMP, p-methox-
yphenyl; enantioselectivities were determined by chiral HPLC analysis;
the definition of the absolute configuration was assigned by X-ray
analysis of its derivative 7 (CCDC 23121377).*° The Z/E ratios of 2 were
determined by *H NMR as >20/1.

temperature of —40 °C, the expected products could be ob-
tained in moderate yields with high enantiomeric excess
(Scheme 6). The function of the ester part installed in the
alkenyl triflates was first explored, which showed that either
multiple isopropyl, propyl or ethyl groups could result in
a relatively high ee value (5a-5d). After careful investigation, 3-
ethylpentan-3-yl ester was finally chosen to investigate alkenyl
triflate substrates. Trisubstituted alkene can be obtained with
a slightly lower ee value (85% ee, 5e). Changing substituents on
the aromatic ring showed that substrates with either electron-
deficient or electron-rich groups can uniformly undergo enan-
tioselective C-H alkenylation with high ee values (5f-5j).
Notably, the installation of the octyl group hardly influenced the
ee value, although the yield decreased to 50% (5k). Substrates
like 1-ethoxy-4-ethylbenzene or 1-methoxy-4-propylbenzene
were also suitable to deliver products (51-5m) with moderate
yields and good ee value.

Conclusions

In conclusion, we have developed synergistic photoredox/nickel
catalysis for selective benzylic C(sp*)-H alkenylation under mild

© 2024 The Author(s). Published by the Royal Society of Chemistry
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reaction conditions. This method can precisely target benzylic
C-H bonds of substrates. The versatility of our approach is
demonstrated through the synthesis of an extensive suite of
both linear and cyclic (Z)-all-carbon tri- and tetrasubstituted
olefins, showcasing an exceptional breadth of functional group
compatibility. A crucial factor contributing to the excellent site-
selectivity and compatibility is the implementation of a visible-
light catalyzed relay electron transfer-proton transfer process,
a novel mechanism in the context of photoredox/nickel catalysis
applied to the functionalization of toluene derivatives. More
importantly, an enantioselective benzylic C(sp®)-H alkenylation
has also been achieved with the chiral bisoxazoline ligand,
providing the products in good yield and enantioselectivity.
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