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Emitters have beenwidely applied in versatile fields, dependent on their optical properties. Thus, it is of great

importance to explore a quick and accurate prediction method for optical properties. To this end, we have

developed a state-of-the-art deep learning (DL) framework by enhancing chemistry-intuitive subgraph and

edge learning and coupling this with prior domain knowledge for a classic message passing neural network

(MPNN) which can better capture the structural features associated with the optical properties from

a limited dataset. Benefiting from technical advantages, our model significantly outperforms eight

competitive ML models used in five different optical datasets, achieving the highest accuracy to date in

predicting four important optical properties (absorption wavelength, emission wavelength,

photoluminescence quantum yield and full width at half-maximum), showcasing its robustness and

generalization. More importantly, based on our predicted results, one new deep-blue light-emitting

molecule PPI-2TPA was successfully synthesized and characterized, which exhibits close consistency

with our predictions, clearly confirming the application potential of our model as a quick and reliable

prediction tool for the optical properties of diverse emitters in practice.
1 Introduction

Emitters have been widely applied in a variety of elds like
organic light-emitting diodes (OLEDs), organic dyes, organic
solar cells and bio-sensors.1–3 Absorption wavelength, emission
wavelength, photoluminescence quantum yield (PLQY) and full
width at half-maximum (FWHM) are four key optical properties
required by versatile applications. However, it is time-
consuming and complex to conduct experiments to develop
new emitters with desired properties, due to a trial-and-error
strategy.4 The quantum mechanical (QM) method plays
important roles in supplementing experimental research, but
its high requirement in computation resources limits its
application in probing large unknown chemical spaces.5

Furthermore, the computational conditions of QM are hardly
the same as the experimental ones, generally leading to a rela-
tively large difference from the experimental values.

Data-driven machine learning (ML), as a core technique of
articial intelligence, has exhibited great success in various
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elds.6–8 ML can mine the structure–property relationship
underlying complex data, through which it can quickly predict
the properties of unseen compounds. Some attempts have
already utilized ML methods to develop various models for
predicting optical properties, including random forest (RF),
support vector machine (SVM), multi-layer perceptron (MLP),
light gradient boosting machine (LightGBM), and gradient
boost regression tree (GBRT)9,10 models, which present relatively
high accuracy for wavelengths (R2 of ∼0.92) and moderate
accuracy for PLQY (R2 of ∼0.70), but on a small dataset. It is
known that traditional ML algorithms are generally limited in
capturing complex causality due to their relatively simple
architectures and dependence on hand-selected feature engi-
neering.11 Deep learning (DL) shows stronger learning capacity
beneting from its more complicated model architecture, and it
can extract features automatically by an end-to-end learning
method so that it can avoid labor-intensive feature
engineering.11–13 These advantages have driven the wide use of
DLs in practice, including the prediction of optical
properties.13–17 For example, Joung et al. for the rst time con-
structed a DL model based on a message passing neural
network (MPNN).14 Hung et al. used a modied DL framework
to predict absorption wavelength, emission wavelength and
PLQY based on the Deep4Chem database.15,18 Greenman et al.
developed an MPNN-based DL model to predict the absorption
wavelengths of Deep4Chem.13 Shao et al. adopted a fully con-
nected neural network (FCNN) to predict the absorption
Chem. Sci., 2024, 15, 17533–17546 | 17533
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wavelengths of the SMFluo1 database.16 Ksenofontov et al. built
a deep neural network (DNN) to predict the absorption wave-
length of boron-dipyrromethene (BODIPY) dyes.17 Jung et al.
employed deep residual convolutional neural networks (DR-
CNN) to predict the absorption wavelengths of a combined
dataset.19

Collectively, these DL models exhibited relatively high
accuracy for the wavelengths (R2 of ∼0.89–0.95) and moderate
accuracy with R2 of ∼0.71 for PLQY and FWHM on larger
datasets (Deep4chem and BODIPYs). There remains a lot of
room for further improvement to provide a more reliable
prediction tool for developing diverse organic emitters with
desired properties. In addition, it should be noted that most
existing models were tested on only one type of dataset,9,10,14,16

which cannot ensure their generalization and robustness to
diverse optical material elds. However, improvement in
generalization and robustness has been considered to be one of
the most difficult challenges for MLs.20,21

Among various DL algorithms, graph neural networks
(GNNs) have been widely applied in many domains,12,22,23

particularly the MPNN paradigm of GNN, which has been
adopted in previous prediction of optical properties.13,14

However, conventional MPNN only updates the state of node
features representing atoms in the molecular graph, but
ignored the updating of edge features that represent chemical
bond features.24 Furthermore, the semantic information in the
molecular structure associated with functional groups and the
long-range interaction at the intramolecular level are over-
looked.22 The limitations existing in the classic MPNN paradigm
weaken the learning capacity of MPNN in extracting chemical
structure features from the molecular graph.22,24,25 In addition,
despite the theoretical advantage that DL can avoid hand-
engineering, it needs sufficient data to support the feature of
self-learning.26 However, in the real world, the data are generally
limited, especially for material science.27 In this case, coupling
prior knowledge from domains into the end-to-end learning will
be benecial to improving feature representation for DLs.12,28

Motivated by urgent need and technical challenges, we
explored a novel GNN-based deep learning framework to
improve performance in predicting optical properties, which is
named Subgraph Optical Graph (SubOptGraph). To address the
limitations of conventional MPNN architecture, we improved
the feature learning on the molecular graph by adding edge and
subgraph learning. In addition, for limited optical data, we
further integrated empirical knowledge closely associated with
optical properties into the molecular graph learning to further
enhance its feature representation. To sufficiently validate the
technical advantages of our model, eight competitive models
were adopted for comparison: two traditional ML models and
six DL models. In addition, unlike previous ML work that used
a single dataset to test their performance, the generalization of
SubOptGraph is strongly validated against ve different data-
sets (Deep4Chem,18 BODIPYs database,17 ChemFluor,10

SMFluo1,16 JCIM_Abs19). Our model signicantly outperforms
all the competitive models in the ve different datasets. To
further test the generalization of our model to unseen
compounds, we applied the model to emitters of OLEDs by
17534 | Chem. Sci., 2024, 15, 17533–17546
a transfer learning strategy, given the importance of OLED in
commercial application while the current optical databases
rarely include the emitters of OLED. Based on the prediction
results, we designed and synthesized a new deep-blue emitter
PPI-2TPA. The experimental characterization exhibits close
consistency with our prediction results, strongly validating the
application potential of our model in practice.
2 Data and model construction
2.1 Data collection and sample representation

Deep4Chem is the current largest experimental optical database
established by Joung et al.,18 including 17 295 absorption
wavelengths, 18 142 emission wavelengths, 13 837 PLQY and
7198 FWHM. As shown in Fig. 1a, we extracted the simplied
molecular input line entry system (SMILES) and labels of
emitters in different solvents from Deep4Chem. All the prop-
erties were normalized to follow the standard normal
distribution.

It is accepted that feature representation is a key factor for
ML performance. According to some previous GNN
studies,12,29,30 we used 37 atom features and 6 bond features to
characterize the molecular graph, as listed in Table 1. Unlike
a conventional MPNN that characterizes the samples only by the
molecular graph, we coupled prior domain knowledge as a state
feature into the molecular graph, in order to alleviate the
limitation in the feature mining of DL from a small-size dataset.
Experimental ndings revealed that a spiral structure, aroma-
ticity and molecular rings are highly related to optical
properties.31–33 Herein, we selected ve molecular descriptors
associated with spiral structures (RotatableBond), aromaticity
(Fr_NO and Fr_AromAtoms), and molecular rings (Aliphati-
cRings and AromaticRings) as the state features (Table 2).
Thus, these state features are inferred from the prior
domain knowledge. All the features were calculated with RDKit
(https://rdkit.org/docs/index.html). In addition, unlike existing
MPNN-based DL models that separately conduct message
passing for the emitter and solvent,13,14 we fused the molecular
graphs of the emitter and solvent through vertical concatena-
tion to become a full one that can feed the features into the
model more conveniently and more quickly (as depicted in
Fig. 1b).
2.2 Modication of the MPNN architecture by enhancing
feature learning on the subgraph and edge as well as coupling
prior domain knowledge

As outlined above, a conventional MPNN does not update the
edge feature and neglects the semantic information involving
functional groups in its learning process.22,34 To address these
limitations, we modied the MPNN framework by updating the
edge feature, and incorporating subgraph learning and prior
knowledge to enhance feature extraction.24 As shown in Fig. 1c,
our SubOptGraph includes mainly the message passing phase
and the readout phase. To conduct the above modications,
SubOptGraph uses three MPNNs in the message passing phase,
namely Subgraph MPNN, node-centered MPNN and edge-
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Overview of SubOptGraph framework. (a) The collection of samples from Deep4Chem. The gas-phase samples were removed. (b)
Representation of the emitter and solvent, including node features V (i.e., N atoms with C-dimensional atom features), edge features A (i.e., E
edges with A-dimensional bond features) and state features U representing the prior domain knowledge. (c) The framework of SubOptGraph.
SubConv (light green) is themessage passing phase. Readout (light blue) is the readout phase. Full-connect (light grey) is a multi-layer perceptron
(MLP) used to predict optical properties. (d) Themessage passing phase of SubOptGraph, including threeMPNNs, i.e., SubgraphMPNN (to extract
subgraph features), node-centered MPNN (to extract node features) and edge-centered MPNN (to extract edge features). The original features,
U, A and V are transformed to U0, A0 and V0 in this stage. (e) Readout phase. The updated features are transformed to be embeddings by the
method of global attention in order to make predictions. vi and ei denote the node and edge features, respectively. ai is the attention coefficient
for each node and edge.
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centered MPNN to extract features, as shown in Fig. 1d.
Accordingly, the message passing phase includes three kinds of
feature updating: subgraph feature, node feature and edge
© 2024 The Author(s). Published by the Royal Society of Chemistry
feature, through which U, V and A are transformed to U0, V0 and
A0. In the V transformation, the state feature representing prior
knowledge is incorporated.
Chem. Sci., 2024, 15, 17533–17546 | 17535
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Table 1 Molecular graph features used in the work

Features Description

Atom
Atom type The type of the atom (one-hot)
Hydrogens The number of hydrogens (integer)
Hybridization The types of hybridization (one-hot)
ElectroNegativity Pauling electronegativity (oating)
Donor Accepts electron (binary)
Acceptor Donates electron (binary)
Is in a ring Atom in a ring (binary)
Is aromatic Atom is aromatic (binary)
Atomic number The atomic number (integer)
Vdw radius Van der Waals radius (oating)
Formal charge Formal charge (integer)
ExplicitValence The explicit valence (integer)
ImplicitValence The implicit valence (integer)
ExplicitHs Number of explicit Hs (integer)
RadicalElectrons Number of radical electrons (integer)

Bond
Bond type The hybridization type (one-hot)
Is in a ring Bond is in a ring (binary)
Is conjugated Bond is conjugated (binary)

Table 2 Five important molecular descriptors inferred from prior
knowledge as state features in the models

Descriptors Description

Fr_NO (n_N + n_O)/n_heavy (oating)
Fr_AromAtoms n_aromatic/n_heavy (oating)
RotatableBond Number of rotatable bonds (integer)
AliphaticRings Number of aliphatic rings (integer)
AromaticRings Number of aromatic rings (integer)
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In the readout phase, we adopt the global attention method
to read out V0 and A0.35 As illustrated by Fig. 1e, the feature
vectors of every node and edge would be multiplied by the
attention coefficient instead of simply summing or averaging;
this assigns different scores to each node and edge in order to
further optimize hidden embedding. Consequently, two
embeddings from the node feature and edge feature are ob-
tained, and then we concatenate them to become the nal
embedding. Finally, the full-connect layers are applied to
predict different optical properties, as highlighted in grey in
Fig. 1c.

To more clearly exhibit key techniques in the architecture
modication, Fig. 2 further illustrates subgraph and edge
feature extraction as well as the complementary feature we have
proposed. As shown in Fig. 2a, Subgraph MPNN includes three
stages: subgraph extraction, subgraph embedding and
subgraph aggregation. Subgraphs H[Nk(v)] are extracted from
the original molecular graph. And then a function Fsub is used to
describe the embedding and aggregation of the subgraph
features (see Methods for more details). Aer iterating the
process L times, the aggregated feature is obtained, which is
called the graph embedding. Herein, L is determined by
hyperparameter optimization. To update the node and edge
17536 | Chem. Sci., 2024, 15, 17533–17546
features, three trainable nonlinear functions, namely Fu, Fv, and
Fe, are adopted, as shown in Fig. 2b. Fu represents an MLP that
is used to compute the hidden representation of the state
feature U derived from prior knowledge to become U0. Then U0 is
fused with the node features V through a concatenation oper-
ation. Fv and Fe act as graph convolutional functions that
propagate and update information from neighbouring nodes/
edges to the central nodes/edges. Aer that, the graph embed-
ding is fused with the node features V0 through element-wise
addition, ready for the next updating. Aer updating the node
and edge features M times in both the node-centered MPNN
and the edge-centered MPNN, the nal node and edge features
V0 and A0 are read out by the global attention method to obtain
the nal embedding, which will be used to predict the optical
properties. The details regarding the subgraph function, state
feature fusion, graph convolutional functions, and global
attention readout function are described in Methods.

3 Results and discussion
3.1 Ablation experiments

In order to evaluate the effectiveness of the proposed modi-
cations, we conducted a series of ablation experiments for the
model architecture and the complementary feature based on
the Deep4Chem dataset, including edge feature updating
(labelledMPNN-Edge), subgraph learning (labelledMPNN-Sub),
and state feature coupling (labelled MPNN-State). Table 3 shows
results of the ablation experiments. In this work, we use three
main metrics to evaluate the model performance: coefficient of
determination (R2), mean absolute error (MAE) and root mean
square error (RMSE). Details of their calculation are described
in ESI.†

It can be seen from Table 3 that MPNN-Edge, MPNN-Sub and
MPNN-State achieve better performance than the conventional
MPNN, supporting their effectiveness. In addition, given that
the state function includes ve state features, we also conducted
an ablation experiment for each state feature and the results
demonstrate the effectiveness of each state feature in improving
the model prediction performance (Table S1†). Aer fusing all
ve state features into the MPNN, the model achieves the best
performance with respect to any single state feature (Table S1†),
showcasing the necessity of simultaneously considering the ve
state features. In all four tasks, MPNN-Sub exhibits greater
improvement than MPNN-Edge or MPNN-State, indicating that
the subgraph feature can more effectively enhance feature
learning. When our SubOptGraph integrates the edge-updating,
subgraph learning and the state feature into the MPNN, the best
performance across all the four tasks is achieved (Table 3), in
which the improvement is relatively slight for wavelength
prediction while the improvement is relatively larger for PLQY
and FWHM. Signicant improvements can be observed when
we compare the conventional MPNN with only molecular graph
representation to our SubOptGraph. For example, the absorp-
tion wavelength prediction exhibits an obvious increase in R2

from 0.957 to 0.977, a drop in MAE from 13.641 nm to 8.343 nm
and a drop in RMSE from 21.943 nm to 15.872 nm. For the
emission wavelength, the prediction presents an increase in R2
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Key details of SubOptGraph's message passing phase. (a) The message passing of Subgraph MPNN. The model extracts k-hop graphs as
subgraphs first (i.e., H[Nk(v)], see Methods for details), and then obtains three kinds of embedding from every subgraph. After L updates, the three
kinds of embedding will be aggregated to become the graph embedding. (b) The message passing of node-centered MPNN and edge-centered
MPNN. Fu is the state function realized by an MLP to calculate U0 while Fv and Fe are convolution functions to propagate and update neighboring
node/edge features to the central node/edge. U0 is fused with V through a concatenation operation. In the node-centered MPNN, graph
embedding from subgraph features is fused with V0 through an addition operation. Thus, after M updates, the original V fused with U0 and A are
transformed to V0 and A0. After the readout phase, the final embedding is sent to the MLP to make predictions.
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from 0.916 to 0.948, a drop in MAE from 17.968 nm to
12.609 nm and a drop in RMSE from 27.213 nm to 21.435 nm.
The PLQY prediction exhibits an increase in R2 from 0.658 to
0.734, a drop in MAE from 0.125 to 0.105 and a drop in RMSE
from 0.180 to 0.159. Similar improvements are observed for the
FWHM prediction, as reected in Table 3. These ablation
experiments clearly conrm the effectiveness of our proposed
improvement strategy in enhancing the edge and subgraph
feature learning and coupling the prior domain knowledge.
3.2 Performance of SubOptGraph and comparison with
competitive models on ve different datasets

Unlike previous work that tested performance by using only
a single dataset, we tested SubOptGraph against ve datasets:
Deep4Chem, JCIM_Abs, ChemFluor, SMFluo1, and BODIPYs.
As evidenced by ESI Table S2,† the ve datasets are signicantly
© 2024 The Author(s). Published by the Royal Society of Chemistry
different. Meanwhile, in order to verify the advantages of our
model, our SubOptGraph was compared with existing ML and
DLmodels applied to the ve datasets. We also selected random
forest (RF) as a representative traditional machine learning
algorithm for comparison, as it has been widely used in
molecular property prediction with good performance.36–38

Sufficient comparisons and verications can effectively
demonstrate the robustness and generalization of our Sub-
OptGraph. All the results are presented in Table 4.

3.2.1 Comparisons with competitive models on Deep4-
Chem. Joung et al.14 rst used a conventional MPNN framework
to construct their optical property prediction models based on
Deep4Chem, which separately conducted the message passing
for the chromophore and solvent. Unfortunately, they did not
give the model code. To perform the comparison, we estab-
lished a GNN model following the main parameters provided in
Chem. Sci., 2024, 15, 17533–17546 | 17537
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Table 3 Results of ablation experiments for the model architecture and the state featurea

Property Models R2 MAE RMSE

lAbs SubOptGraph 0.977 � 0.004 8.343 � 0.334 15.872 � 1.471
MPNN-State 0.961 � 0.007 12.709 � 1.010 20.809 � 1.776
MPNN-Sub 0.970 � 0.010 10.006 � 0.808 18.058 � 2.931
MPNN-Edge 0.965 � 0.004 12.020 � 0.506 19.761 � 1.131
MPNN 0.957 � 0.008 13.641 � 0.768 21.943 � 2.122

lEmi SubOptGraph 0.948 � 0.005 12.609 � 0.415 21.435 � 1.057
MPNN-State 0.923 � 0.004 17.253 � 0.294 26.197 � 0.630
MPNN-Sub 0.940 � 0.007 14.548 � 0.403 22.853 � 1.036
MPNN-Edge 0.926 � 0.005 16.362 � 0.343 25.528 � 0.959
MPNN 0.916 � 0.006 17.968 � 0.432 27.213 � 0.900

PLQY SubOptGraph 0.734 � 0.019 0.105 � 0.003 0.159 � 0.006
MPNN-State 0.671 � 0.017 0.121 � 0.003 0.175 � 0.005
MPNN-Sub 0.683 � 0.062 0.120 � 0.012 0.172 � 0.016
MPNN-Edge 0.669 � 0.023 0.121 � 0.004 0.177 � 0.006
MPNN 0.658 � 0.022 0.125 � 0.005 0.180 � 0.006

FWHM SubOptGraph 0.735 � 0.022 9.614 � 0.380 14.787 � 1.176
MPNN-State 0.685 � 0.025 10.772 � 0.595 16.133 � 1.358
MPNN-Sub 0.699 � 0.043 10.367 � 0.713 15.752 � 1.364
MPNN-Edge 0.682 � 0.023 10.815 � 0.674 16.200 � 1.259
MPNN 0.663 � 0.031 11.368 � 0.609 16.668 � 1.426

a The results are derived from 10-fold validation. For the absorption, emission, and FWHM tasks, the units of MAE and RMSE are nm. The best
results are shown in bold. MPNN-State, MPNN-Sub and MPNN-Edge denote MPNN coupled with the ve state features from the domain
knowledge, subgraph feature learning and edge feature updating, respectively.

Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
Se

pt
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 1

1/
9/

20
25

 2
:2

4:
52

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
their work. We also optimized the GNN model with the
Deep4Chem dataset. To compare them as fairly as possible, we
adopted the same data splitting method as the competitive
work to train and test our model. As shown in Table 4, our
model (SubOptGraph) achieves R2 of 0.983, 0.952, 0.763, and
0.767 for absorption wavelength, emission wavelength, PLQY
and FWHM, respectively, signicantly superior to the GNN
model in Joung's work (0.955, 0.908, 0.650 and 0.672) and the
RF model (0.963, 0.928, 0.730, 0.719). Our SubOptGraph model
also signicantly reduces MAE and RMSE with respect to the
GNN and RF models, as reected in Table 4. Hung et al.15

developed a new DL model called Schnet-bondstep (labelled
Bondstep in Table 4), which exhibited good performance for
predicting three optical properties of Deep4Chem. Their R2

values are 0.946 for absorption wavelength, 0.908 for emission
wavelength and 0.718 for PLQY, also lower than our SubOpt-
Graph, along with signicantly larger MAE and RMSE than ours
(see Table 4). In addition, Greenman et al. developed Chemprop
D-MPNN (labelled Chemprop in Table 4) to predict absorption
wavelength for the Deep4Chem dataset. They rst utilized
computational data from TD-DFT for initial training. Then, the
model was further trained and tested on Deep4Chem to predict
absorption wavelength, which achieved an R2 of 0.90, MAE of
18.72 nm and RMSE of 27.47 nm for the test set. Utilizing the
same training and test dataset as them,13 our SubOptGraph
obtains an R2 of 0.94, MAE of 14.64 nm and RMSE of 23.41 nm
for the test set, also superior to the Chemprop D-MPNN model.

3.2.2 Comparisons with competitive models on four other
optical databases. Besides Deep4Chem, there are other four
datasets: BODIPYs, JCIM_Abs ChemFluor and SMFluo1. The
BODIPYs database curated by Ksenofontov et al., contains 13
339 absorption wavelengths for BODIPY dye molecules.17
17538 | Chem. Sci., 2024, 15, 17533–17546
JCIM_Abs, as named by us, denotes a combined dataset used in
Jung et al.‘s work,19 which contains 26 395 experimentally
measured absorption wavelengths. ChemFluor, constructed by
Ju et al., comprises 4252 absorption wavelengths, 4386 emission
wavelengths, and 3090 PLQY.10 SMFluo1, recently developed by
Shao et al., consists of 1181 small-molecule uorophores
covering the ultraviolet–visible–near-infrared absorption
window.16

For the BODIPYs dataset, Ksenofontov et al. used DNN
coupled with consensus descriptors to predict the adsorption
wavelength and achieved an R2 of 0.95, MAE of 10 nm and RMSE
of 18.4 nm for the 5-fold cross-validation set.17 When applied to
BODIPYs our model exhibits higher performance with an R2 of
0.97, MAE of 7 nm and RMSE of 14.5 nm, also superior to the RF
model with Morgan ngerprints. For the absorption wavelength
of the JCIM_Abs dataset, our SubOptGraph still exhibits better
performance than DR-CNN19 or RF, as evidenced by Table 4. For
the ChemFluor database, Ju et al. adopted the GBRT algorithm
to predict three optical properties, which used a combination
feature of the functionalized structure descriptors and
comprehensive general solvent descriptors collected from the
literature.10 Using the same data splitting method, our model
exhibits higher prediction accuracy than the GBRT or RF
models for wavelength prediction. For example, the R2

comparisons are 0.962 vs. 0.954 for the absorption wavelength,
and 0.938 vs. 0.925 for the emission wavelength. For the PLQY
prediction, our model and GBRT exhibit the same R2. However,
it should be noted that Ju et al.‘s GBRT model needs laborious
feature engineering:10 for example, calculating the descriptors
for the organic uorescent molecule and selecting the solvent
descriptors from the literature. While our SubOptGraph mainly
uses the molecular graph as the input and automatically
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 4 Comparisons of SubOptGraph with competitive models for
five different optical databasesa

Property Methods

Metrics

R2/rb MAE RMSE

Deep4Chem lAbs Ours 0.983 8.9 14.0
GNNc 0.955 13.4 22.3
Bondstep15 0.946 12.3 27.4
RFd 0.963 10.3 20.4

lEmi Ours 0.952 13.2 21.2
GNNc 0.908 17.8 27.5
Bondstep15 0.906 18.2 29.3
RFd 0.928 16.2 24.6

PLQY Ours 0.763 0.106 0.150
GNNc 0.650 0.110 0.179
Bondstep15 0.718 0.263 0.398
RFd 0.730 0.112 0.163

FWHM Ours 0.767 9.3 13.6
GNNc 0.672 10.5 16.0
RFd 0.719 9.9 15.1

lAbs Ours 0.94 14.64 23.41
Chemprop13 0.90 18.72 27.47

BODIPYs lAbs Ours 0.97 7.2 14.6
DNN17 0.95 10.0 18.4
RFd 0.94 9.1 20.0

JCIM_Abs lAbs Ours 0.95 12.7 24.6
DR-CNN19 0.91 14.6 31.3
RFd 0.90 16.6 33.6

ChemFluor lAbs Ours 0.962 10.33 19.34
GBRT10 0.954 10.47 23.18
RFd 0.926 13.77 27.21

lEmi Ours 0.938 13.69 22.44
GBRT10 0.925 14.31 24.77
RFd 0.856 20.99 34.25

PLQY Ours 0.71 0.11 0.16
GBRT10 0.71 0.11 0.16
RFd 0.65 0.13 0.18

SMFluo1 lAbs Ours 0.992 9.23 15.62
FCNN16 0.989 9.54 17.93
RFd 0.978 14.08 25.27

a For absorption, emission and FWHM, the units of MAE and RMSE
are nm. b For the Deep4Chem, ChemFluor, and BODIPYs databases,
the metric uses the same R2 as the competitive models. For the
SMFluo1 database, the metric used is the Pearson coefficient (r), the
same as in the competitive model. c The GNN model is established
according to the main parameters reported by Joung et al.14 d RF used
Morgan ngerprints as feature descriptors.

Table 5 The prediction performance of SubOptGraph for the external
test set of blue OLED emittersa

Property Conditionsb R2 MAE RMSE

lAbs Pretrained −6.60 58.67 67.09
Train-OLED 0.48 11.44 17.56
Transfer learning 0.92 5.73 6.95

lEmi Pretrained −1.01 40.26 48.97
Train-OLED 0.19 24.53 31.02
Transfer learning 0.90 8.23 10.74

FWHM Pretrained −0.48 23.07 27.79
Train-OLED 0.51 13.15 15.97
Transfer learning 0.84 7.20 9.09

PLQY Pretrained −1.65 0.36 0.42
Train-OLED 0.66 0.12 0.15
Transfer learning 0.76 0.11 0.13

a For absorption wavelength, emission wavelength and FWHM, the
units of MAE and RMSE are nm. b Pretrained, Train-OLED, and
transfer learning denote the SubOptGraph model trained on
Deep4Chem, SubOptGraph directly trained on the training set of blue
OLED emitters, and SubOptGraph trained by transfer learning,
respectively.
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updates features, thus being more convenient in practical
application.

As for the SMFluo1 database, Shao et al. used FCNN coupled
with Morgan and MACCS ngerprints to achieve high accuracy
with a Pearson coefficient (r) of 0.989 on the test set for
absorption wavelength.16 Using the same data, our SubOpt-
Graph further improves the prediction accuracy with an r of
0.992 and it outperforms RF (0.978). Despite the slight
improvement compared to FCNN (which is not unexpected, as
their accuracy was already very high), it should be noted that
SMFluo1 contains only∼1200 samples and ChemFluor has only
∼4300 samples. It is known that a small dataset is generally not
suitable for DL training and learning.39 However, even in this
case, our SubOptGraph can still achieve higher prediction
© 2024 The Author(s). Published by the Royal Society of Chemistry
accuracy than traditional descriptor-based methods. Collec-
tively, beneting from our improvements in feature learning
and the integration of prior domain knowledge, our model
signicantly outperforms competitive models in ve different
optical datasets, of either large or small size, strongly conrm-
ing its robustness and generalization.
3.3 Application and experimental validation for emitters of
OLEDs

OLED emitters have attracted tremendous research attention in
at-panel displays and solid-state lighting sources.40 OLED
emitters are rich in heavy atoms, and aromatic and hetero-
aromatic rings with complicated p-conjugated structures,
which not only means great difficulty in synthesis, but also
affects control over optical properties.41,42 So, it is of great
importance to develop new OLED emitters for commercial
application, especially for the narrow-emission and highly effi-
cient blue emitters.43,44 Thus, we collected 238 blue OLED
emitter/solvent combinations consisting of 179 unique emitters
in 48 solvents from the extensive experimental literature as an
external test set to verify our model performance for unseen
samples. The 238 combinations contain 38 absorption wave-
lengths, 100 emission wavelengths, 82 PLQYs and 18 FWHMs.
These data were loaded as ESI† in the MS Excel format. Unfor-
tunately, the prediction performance was very poor, as shown in
Table 5. The reason is mainly the signicant differences in the
structure between these blue OLED emitters in the external test
set and those molecules in the training set of the Deep4Chem
database, as evidenced by the similarity comparison in Fig. S1.†
Thus, a model trained only on Deep4Chem cannot learn effec-
tive knowledge related to blue OLED emitters, leading to very
poor performance. Given this issue, we collected another 1114
blue OLED emitter/solvent combinations consisting of 391
unique emitters in 84 solvents from more than 100 pieces of
literature as the training set for blue OLED emitters. The
training set contains 211 absorption wavelengths, 414 emission
Chem. Sci., 2024, 15, 17533–17546 | 17539
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Table 6 The experimental values and predicted values of PPI-2TPAa

Property Solventsb Experimental Calculatedc Predictedd

lAbs Toluene 349 332 355
Tetrahydrofuran 346 332 343
Dichloromethane 348 332 346

lEmi Toluene 411 396 419
Tetrahydrofuran 417 406 423
Dichloromethane 429 407 428

FWHM Toluene 44 — 48
Tetrahydrofuran 54 — 55
Dichloromethane 61 — 57

PLQY PMMA 0.90 — 1.0

a For absorption wavelength, emission wavelength and FWHM, the unit
is nm. b The absorption wavelength, emission wavelength and FWHM
are measured in three solvents (the concentration is 10−5 M), and the
PLQY is measured with 1 wt%-doped thin lm in a PMMA matrix.
c The data are derived from QM calculation. d The data are predicted
by our SubOptGraph.
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wavelengths, 416 PLQYs, and 73 FWHMs, which are also listed
in the Excel le as ESI.† We used the blue OLED training set to
directly train SubOptGraph and then predict the external test
set of blue OLED emitters. It can be seen from Train-OLED in
Table 5 that the performance has improved with respect to the
pretrained result, but it is still poor. This should be attributed to
the fact that the deep learning model requires a large amount of
data to support training due to its complex architecture. To
tackle this problem, we nally utilized the transfer learning
strategy, which has proved to be effective in improving the
performance on target domains different from the source
domain.45 Specically, we froze the message passing and
readout layers while the parameters of the full-connect layers
were initialized randomly. Then, the model was trained on the
blue OLED training set. Aer transfer learning, the performance
on the external test set of the blue OLED emitters was remark-
ably improved, as evidenced by Table 5. The result also show-
cases the exibility of our model, which can also utilize the
transfer learning strategy to apply it to other emitter elds with
signicantly different structures from the training dataset.
Although the superior performance of our model is sufficiently
demonstrated at the computational level, the nal goal of the
computational work is to play an effective role in practical
application. Thus, to gauge the reliability of our model in
practice, we conducted further experimental comparison and
validation, which has generally been overlooked in previous
work on the prediction of optical properties.10,13,15,16
Fig. 3 The structure and spectra of PPI-2TPA. (a) The structure of PPI-2T
of PPI-2TPA in three solvents. (c) The photoluminescence spectra of PP

17540 | Chem. Sci., 2024, 15, 17533–17546
Given the practical need to develop deep blue emitters with
high performance in the OLED eld,40,46,47 we designed a new
potential blue-light-emitting molecule. Specically, we selected
PPI as an acceptor (A) and TPA as a donor (D) to construct
a potential blue-light-emitting molecule (PPI-2TPA) with
a D–A–D structure (see Fig. 3a), as the two fragments were
demonstrated to be associated with deep-blue-light-
PA. PPI is the acceptor and TPA is the donor. (b) The absorption spectra
I-2TPA in three solvents.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 The synthesis route of PPI-2TPA.
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emission.48,49 As evidenced by the similarity comparison
(Fig. S2†), the newly designed compound is different in struc-
ture from the existing blue OLED molecules under study. We
rst used the optimized SubOptGraph to rapidly predict its
optical properties in different solvents. Given that the experi-
mental characterization of the absorption wavelength, emission
wavelength and FWHM is typically done in dilute solvents while
PLQY is generally characterized in the solid state, we nally
chose three solvents (toluene, tetrahydrofuran, and dichloro-
methane) for absorption wavelength, emission wavelength and
FWHM while PLQY was determined in a poly(methyl methac-
rylate) (PMMA) matrix. As shown in Table 6, the emission
wavelengths predicted by our model are in the range of 419–
428 nm in the three different solvents, showing a deep blue light
range.50 The FWHM values predicted by SubOptGraph range
from 48 to 57 nm while the PLQY value predicted is 100% in
PMMA, suggesting that PPI-2TPA is a potential high-
performance deep-blue-light-emitting molecule. Inspired by
the prediction results, we successfully synthesized PPI-2TPA
and characterized it experimentally. Details of the experi-
mental synthesis details are placed in the Methods section.
Fig. 3b and c show the experimental absorption and photo-
luminescence spectra in the three solvents. The experimentally
determined PLQY and FWHM data are also listed in Table 6.
The molecular structure of the PPI-2TPA we synthesized was
conrmed by a combination of 1H and 13C nuclear magnetic
resonance (NMR) as well as high resolution mass spectrometry
(HRMS) (Fig. S3–S5†). The details of all the experimental char-
acterizations are described in ESI.† It can be seen from Table 6
that our predicted values are very close to the experimental
ones, with 2–6 nm errors for the absorption wavelengths, 1–
8 nm errors for the emission wavelengths and 1–4 nm errors for
the FWHM. The predicted PLQY value differs from the experi-
mental one by 0.10, which is an acceptable level. The experi-
mental results conrm that PPI-2TPA is a deep blue OLED
emitter with good PLQY and acceptable FWHM, which provides
a new emitter candidate for the development of deep blue
OLEDs. Also, it strongly validates the reliability of our MLmodel
in practical application, indicating that our model can serve as
a quick and reliable tool for predicting optical properties in
OLED emitter elds. For comparison, we also employed the
quantum mechanical (QM) method to calculate the absorption
and emission wavelengths of PPI-2TPA (see ESI† for QM
© 2024 The Author(s). Published by the Royal Society of Chemistry
calculation details). Table 6 indicates that the QM-calculated
wavelengths are smaller than the ML-predicted ones, present-
ing a larger difference from the experimental ones. In addition,
we compared correlation coefficients between the computa-
tional values (SubOptGraph and QM) and the experimental
ones for PPI-2TPA, as shown in Table S3.† The values predicted
by SubOptGraph present much higher correlation coefficients
with the experimental ones than the values calculated by QM,
further conrming the better prediction performance of our ML
model than QM for the newmolecule PPI-2TPA. Furthermore, it
should be noted that the QM calculations take several hours on
64 CPU cores for each molecule, while our model prediction is
on the scale of seconds with the NVIDIA GeForce RTX 4090 GPU,
showcasing the much greater speed in application, suitable for
high-throughput screening.
4 Conclusions

To improve the accuracy of prediction for optical properties and
to address the limitations of a widely used paradigm (MPNN) of
a graph neural network in feature learning, which focuses
mainly on node features, our SubOptGraph embeds chemistry-
intuitive feature learning into the MPNN architecture by adding
subgraph learning, updating edge learning and coupling prior
domain knowledge into the end-to-end molecular graph
learning. With these improvements, the structural features
associated with the optical properties can be better extracted
from a limited dataset. Consequently, SubOptGraph achieves
the highest accuracy to date for four important optical proper-
ties, in which the R2 values of the independent test set are 0.983
for the absorption wavelength, 0.952 for the emission wave-
length, 0.763 for PLQY and 0.767 for FWHM in the largest
optical experiment database (Deep4Chem). Unlike previous ML
work that mainly used a single dataset to validate the model
performance, we used ve different optical datasets to verify the
robustness and generalization of SubOptGraph. Beneting
from these technical advantages, our SubOptGraph greatly
outperforms the eight competitive models in the ve different
optical databases. Furthermore, our SubOptgraph is also ex-
ible, and can be applied to other emitter elds signicantly
different from the training data by transfer learning, further
conrming its generalization. More importantly, we also con-
ducted experimental synthesis and characterization to verify the
Chem. Sci., 2024, 15, 17533–17546 | 17541
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reliability of our model in practical application, which has
generally been overlooked in previous ML work. The experi-
mental results strongly validate the application potential of our
SubOptGraph in practice. All source codes and blue OLED
emitter data under study are freely available at https://
github.com/Jo3690/SOG. We expect that they will become
useful tools for aiding the design of new emitters with desired
optical properties for a variety of elds.
5 Methods
5.1 Subgraph function Fsub

The subgraph function Fsub is used for subgraph feature
extraction. First, subgraphs are extracted from the original
graph, which can be expressed as eqn (1):

Sub(l)[v] = G(l)[Nk(v)] (1)

where G(l)[Nk(v)] represents the l-th layer k-hop subgraphs
centered at node v. The k-hop subgraph is a graph consisting of
the central node v and its neighboring nodes, while k-hop
means the steps from the central node v to the farthest node.

Then, for subgraph embedding, a GNN (i.e., MPNN) is used
to extract the subgraph features, including three encoding
processes: subgraph encoding, centroid encoding and context
encoding. F subgraph encoding can be described by eqn (2):

h(l+1)jSubgraph = GNN(ijSub(l)[j]) (2)

where GNN(ijSub(l)[j]) represents the embedding of node i in the
l-th layer subgraph centered at node j (i.e., Sub(l)[j], i s j).

Secondly, for Sub(l)[j], the embedding of node j is also
extracted. Thus, centroid encoding is dened as eqn (3):

h(l)jCentroid = GNN(jjSub(l)[j]) (3)

where GNN(jjSub(l)[j]) represents the embedding of node j in the
l-th layer subgraph centered at node j.

Finally, to capture the information about node v in different
subgraphs (i.e., context encoding), the information about node
v is condensed in terms of eqn (4):

h(l+1)v jContext = GNN(vjSub(l)[j])jcj s.t. v ˛ Nk(j) (4)

where cj s.t. v ˛ Nk(j) means that node v is in the different
subgraphs centered at node j.

Considering that the distance-to-centroid of the k-hop
subgraph has been calculated and proved to be essential for
augmenting the node features, we have fused this feature with
the eventual embedding, and made a gate mechanism to
subgraph encoding and context encoding, in order to control the
contributions of different nodes, as described by eqn (5) and (6):

h(l+1)jSubgraphv = Sigmoid(d(l)vjj)�GNN(ijSub(l)[j]) (5)

hv
ðlþ1Þ

���Context ¼ Sigmoid
�
dvjj

ðlÞ
�
�

GNN
�
v
��SubðlÞ½j�

����cj s:t: v˛NkðjÞ
(6)
17542 | Chem. Sci., 2024, 15, 17533–17546
where Sigmoid and � denote the activation function and
element-wise multiplication, respectively. d(l)vjj represents the
distance between node v and node j in the l-th layer.

For subgraph aggregation, the three kinds of features are
condensed to graph-level embedding, which is described by eqn
(7):

h(l+1)sub_v = FUSE(d(l+1)ijj , h(l+1)v jCentroid, h(l+1)v jSubgraph,
h(l+1)v jContext) (7)

where FUSE indicates the concatenation operation.
Finally, the node features and subgraph features are fused in

terms of eqn (8):

x(l+1)i,out = x(l+1)i + h(l+1)sub_v (8)

where x(l+1)i,out are the updated node features that are fused with
the subgraph features.
5.2 State feature fusion

The state features are derived from experimental ndings for
organic emitters that reveal important structural factors
contributing to the optical properties, thus representing prior
domain knowledge. They are different from the conventional
molecular descriptors, which are calculated according to some
common rules to represent the overall structural features of
a molecule, rather than focusing on important structural
factors. In addition, the state features are integrated with node
features during the message passing phase to conduct feature
extraction while the descriptor-based neural network updates
only the descriptors, and does not involve integration with
feature updating of other types. Herein, MLP is used as the
state function Fu to make the nonlinear transformation for the
state features of the emitters and solvents. It is dened by
eqn (9):

uout = MLP(u) (9)

where u is the state features and uout denotes the updated state
feature. MLP is a neural network with the Relu activation
function. Before the message passing phase of node-centered
MPNN and edge-centered MPNN, the node features are fused
with the state feature through a concatenation operation, as
expressed by eqn (10)

xi = xi 4 ui,out (10)

where xi and ui,out refer to the node features and state features of
node i, respectively. 4 denotes the concatenation operation.
5.3 Graph convolutional functions Fv and Fe

Herein, Fv and Fe are used for the message passing of the node-
centered and edge-centered MPNN. The message passing phase
of node-centered MPNN can be described as eqn (11):

x(l+1)i = f(l)(x(l)i , f
(l)(x(l)i , x

(l)
j , eji)) (11)
© 2024 The Author(s). Published by the Royal Society of Chemistry
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where i is the central node and j is the neighboring node. xi and
xj represent the node features of node i and node j, respectively.
eji is the edge feature between node j and i. l is the number of
layers. f(l) and f(l) are the l-th layer update and aggregation
functions, respectively.

For the edge feature, several studies have focused on edge
learning to harness the graph edge information. The weave
model proposed by Kearnes et al. utilized multiple MLPs to
incorporate the edge feature with the node feature,51 but not for
the nal prediction. EGNN constructed by Gong and Cheng
mainly used double stochastic normalization of graph edge
features to realize edge updating,52 but its architecture is
complex. CD-MVGNN developed by Ma et al.24 used an edge-
central encoder to conduct message passing for edge features
with a relatively simple architecture, achieving an improvement
in prediction of drug properties. Thus, similar to CD-MVGNN,
we also adopted the edge-centered MPNN by aggregating the
messages from all the neighboring edges to the central edge, as
dened by eqn (12):

e(l+1)ij = f(l)(e(l)ij , f
(l)(x(l)i , x

(l)
j , eki)) (12)

where k represents the neighboring nodes of node i, and eki is
the edge feature between node k and i.

5.4 Global attention readout function

For the readout phase, we adopted the global attention mech-
anism to extract the embeddings from the node-centeredMPNN
and edge-centered MPNN. Global attention can calculate the
coefficients of each node and edge based on the node and edge
features, as shown by eqn (13) and (14):

av,i = Softmax(MLP(vi)) (13)

ae,i = Softmax(MLP(ei)) (14)

where Somax denotes the activation function. av,i and ae,i are
the coefficients of node v and edge e of the i-th dimension,
respectively.

Then the embeddings are obtained by summing the product
of the coefficient and the corresponding feature, which can be
expressed as eqn (15) and (16):

Embv ¼
XN
i¼0

av;ixi (15)

Embe ¼
XE
i¼0

ae;iei (16)

where N is the dimension of the node features and E is the
dimension of the edge features. xi and ei are the node and edge
features of the i-th dimension, respectively. Embe and Embv are
then concatenated to become the nal embedding, as shown by
eqn (17):

Emb = Embv 4 Embe (17)
© 2024 The Author(s). Published by the Royal Society of Chemistry
5.5 Learning curve for the training set

The data were divided in a ratio of 8 : 2 for training and testing.
We performed a learning curve for all four optical properties of
the Deep4Chem dataset on the ve models, including our
SubOptGraph and its four ablated versions (MPNN, MPNN-
State, MPNN-Edge, MPNN-Sub). All the results are shown in
Fig. S6.† It can be seen that all ve models perform better with
an increasing amount of training data, in which SubOptGraph
achieves the best performance. In addition, it should be noted
that the performances of all ve models approach convergence
when using all the training data, suggesting that the size of the
training dataset should be reasonable for all the tasks under
study.
5.6 The synthesis of PPI-2TPA

As illustrated by Fig. 4, a mixture of (4-(diphenylamino)phenyl)
boronic acid (875 mg, 3.03 mmol), 3,6-dibromophenanthrene-
9,10-dione (500 mg, 1.36 mmol), Pd(PPh3)4 (75 mg, 0.06
mmol) and Cs2CO3 (1.56 g, 4.80 mmol) were dissolved in
toluene (9 mL), water (3 mL) and ethanol (3 mL). The reaction
mixture was degassed with argon and stirred at 100 °C for 12 h.
When the reaction was complete, the mixture was poured into
water. Aer extraction with CH2Cl2 (15 mL × 3), the resultant
organic phase was washed with brine and dried over anhydrous
Na2SO4. Aer removing the solvent, the residue was puried
using column chromatography on silica gel employing CH2Cl2/
petroleum ether (PE) (1/1) as an eluent to afford a deep red
powdery solid (Compound 1) with a yield of 53%. Then, benz-
aldehyde (297 mg, 2.8 mmol), Compound 1 (2.01 g, 2.9 mmol),
aniline (119 mg, 12.8 mmol) and ammonium acetate (1.19 g,
10.2 mmol) were dissolved in acetic acid (30 mL) and reuxed at
120 °C for 2 hours. Aer completion of the reaction, the mixture
was poured into water. Aer extraction with CH2Cl2 (30 mL ×

3), the resultant organic phase was washed with brine and dried
over anhydrous Na2SO4. Aer removing the solvent, the residue
was puried using column chromatography on silica gel
employing CH2Cl2/PE (1/3) as an eluent to afford a white
powdery solid (PPI-2TPA) with a yield of 60%. The structure of
the synthesized PPI-2TPA was conrmed by 1H NMR, 13C NMR
and HRMS, as shown in Fig. S3–S5 in ESI.† 1H NMR (400 MHz,
DMSO-d6) d(ppm): 9.22 (s, 1H), 9.18 (s, 1H), 8.74 (d, J = 8.0 Hz,
1H), 8.07 (dd, J1= 8.4 Hz, J2= 1.6 Hz, 1H), 7.94 (m, 2H), 7.87 (m,
2H), 7.75–7.69 (m, 5H), 7.65 (dd, J1 = 8.8 Hz, J2 = 1.6 Hz, 1H),
7.60 (m, 2H), 7.39–7.32 (m, 11H), 7.16–7.05 (m, 17H). 13C NMR
(200 MHz, DMSO-d6) d(ppm): 150.6, 147.0, 146.9, 146.7, 146.6,
138.0, 137.0, 136.3, 134.4, 133.6, 130.3, 130.2, 130.1, 129.5,
129.1, 129.0, 128.3, 128.1, 127.8, 126.2, 125.6, 125.1, 124.1,
124.0, 123.4, 123.2, 123.12, 123.05, 122.6, 121.7, 121.3, 121.0,
120.7. HRMS (ESI): calcd.: 857.3639 [M + H]+; found: 857.3640.
5.7 Model implementation

We implemented our graph neural network model using the
PyTorch 1.10 DL framework and training the models on the
NVIDIA GeForce RTX 4090 GPU.53 The model was optimized by
Chem. Sci., 2024, 15, 17533–17546 | 17543
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a grid search method. All codes and related data are available at
the Github repository.
Data availability

Collected OLED emitter data can be found in ESI.† The codes
and related data are available in the Github repository at https://
github.com/Jo3690/SOG.
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Multi-delity prediction of molecular optical peaks with
deep learning, Chem. Sci., 2022, 13, 1152–1162.

14 J. F. Joung, M. Han, J. Hwang, M. Jeong, D. H. Choi and
S. Park, Deep Learning Optical Spectroscopy Based on
Experimental Database: Potential Applications to
Molecular Design, JACS Au, 2021, 1, 427–438.

15 S.-H. Hung, Z.-R. Ye, C.-F. Cheng, B. Chen and M.-K. Tsai,
Enhanced Predictions for the Experimental Photophysical
Data Using the Featured Schnet-Bondstep Approach, J.
Chem. Theory Comput., 2023, 19, 4559–4567.

16 J. Shao, Y. Liu, J. Yan, Z.-Y. Yan, Y. Wu, Z. Ru, J.-Y. Liao,
X. Miao and L. Qian, Prediction of Maximum Absorption
Wavelength Using Deep Neural Networks, J. Chem. Inf.
Model., 2022, 62, 1368–1375.

17 A. A. Ksenofontov, M. M. Lukanov, P. S. Bocharov,
M. B. Berezin and I. V. Tetko, Deep neural network model
for highly accurate prediction of BODIPYs absorption,
Spectrochim. Acta, Part A, 2022, 267, 120577.

18 J. F. Joung, M. Han, M. Jeong and S. Park, Experimental
database of optical properties of organic compounds, Sci.
Data, 2020, 7, 295.

19 S. G. Jung, G. Jung and J. M. Cole, Automatic Prediction of
Peak Optical Absorption Wavelengths in Molecules Using
Convolutional Neural Networks, J. Chem. Inf. Model., 2024,
64, 1486–1501.
© 2024 The Author(s). Published by the Royal Society of Chemistry

https://github.com/Jo3690/SOG
https://github.com/Jo3690/SOG
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc02781g


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
Se

pt
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 1

1/
9/

20
25

 2
:2

4:
52

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
20 C. Shorten and T. M. Khoshgoaar, A survey on Image Data
Augmentation for Deep Learning, J. Big Data, 2019, 6, 60.

21 F. H. Sinz, X. Pitkow, J. Reimer, M. Bethge and A. S. Tolias,
Engineering a Less Articial Intelligence, Neuron, 2019,
103, 967–979.

22 J. Wu, Y. Wan, Z. Wu, S. Zhang, D. Cao, C.-Y. Hsieh and
T. Hou, MF-SuP-pKa: Multi-delity modeling with
subgraph pooling mechanism for pKa prediction, Acta
Pharm. Sin. B, 2023, 13, 2572–2584.

23 J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals and
G. E. Dahl, Neural message passing for quantum
chemistry, arXiv, 2017, preprint, arXiv:1704.01212, DOI:
10.48550/arXiv.1704.01212.

24 H. Ma, Y. Bian, Y. Rong, W. Huang, T. Xu, W. Xie, G. Ye and
J. Huang, Cross-dependent graph neural networks for
molecular property prediction, Bioinformatics, 2022, 38,
2003–2009.

25 L. Zhao, W. Jin, L. Akoglu and N. Shah, From stars to
subgraphs: upliing any GNN with local structure
awareness, arXiv, 2022, preprint, arXiv:2110.03753, DOI:
10.48550/arXiv.2110.03753.

26 D. Bzdok, M. Krzywinski and N. Altman, Machine learning:
a primer, Nat. Methods, 2017, 14, 1119–1120.

27 P. Xu, X. Ji, M. Li and W. Lu, Small data machine learning in
materials science, npj Comput. Mater., 2023, 9, 42.

28 J. Guo, M. Sun, X. Zhao, C. Shi, H. Su, Y. Guo and X. Pu,
General Graph Neural Network-Based Model To Accurately
Predict Cocrystal Density and Insight from Data Quality
and Feature Representation, J. Chem. Inf. Model., 2023, 63,
1143–1156.

29 Z. Xiong, D. Wang, X. Liu, F. Zhong, X. Wan, X. Li, Z. Li,
X. Luo, K. Chen, H. Jiang and M. Zheng, Pushing the
Boundaries of Molecular Representation for Drug
Discovery with the Graph Attention Mechanism, J. Med.
Chem., 2020, 63, 8749–8760.

30 Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse,
A. S. Pappu, K. Leswing and V. Pande, MoleculeNet:
a benchmark for molecular machine learning, Chem. Sci.,
2018, 9, 513–530.

31 S. Guo, L. Wang, Q. Deng, G. Wang, X. Tian, X. Wang, Z. Liu,
M. Zhang, S. Wang, Y. Miao, J. Zhu and H. Wang, Exploiting
heterocycle aromaticity to fabricate new hot exciton
materials, J. Mater. Chem. C, 2023, 11, 6847–6855.

32 T. Jousselin-Oba, M. Mamada, K. Wright, J. Marrot,
C. Adachi, A. Yassar and M. Frigoli, Synthesis, Aromaticity,
and Application of peri-Pentacenopentacene: Localized
Representation of Benzenoid Aromatic Compounds, Angew.
Chem., Int. Ed., 2022, 61, e202112794.

33 Y.-P. Zhang, X. Liang, X.-F. Luo, S.-Q. Song, S. Li, Y. Wang,
Z.-P. Mao, W.-Y. Xu, Y.-X. Zheng, J.-L. Zuo and Y. Pan,
Chiral Spiro-Axis Induced Blue Thermally Activated
Delayed Fluorescence Material for Efficient Circularly
Polarized OLEDs with Low Efficiency Roll-Off, Angew.
Chem., Int. Ed., 2021, 60, 8435–8440.

34 D. Chen, L. O'Bray and K. Borgwardt, Structure-aware
Transformer for graph representation learning, Proceedings
© 2024 The Author(s). Published by the Royal Society of Chemistry
of the 39th International Conference on Machine Learning,
2022, pp. 3469–3489.

35 Y. Li, D. Tarlow, M. Brockschmidt and R. S. Zemel, Gated
graph sequence neural networks, arXiv, 2015, preprint,
arXiv:1511.05493, DOI: 10.48550/arXiv.1511.05493.

36 S. Xu, X. Liu, P. Cai, J. Li, X. Wang and B. Liu, Machine-
Learning-Assisted Accurate Prediction of Molecular Optical
Properties upon Aggregation, Advanced Science, 2022, 9,
2101074.

37 X. Li, S. Zhang, L. Xu and X. Hong, Predicting
Regioselectivity in Radical C–H Functionalization of
Heterocycles through Machine Learning, Angew. Chem., Int.
Ed., 2020, 59, 13253–13259.

38 Y. Lu, S. Anand, W. Shirley, P. Gedeck, B. P. Kelley,
S. Skolnik, S. Rodde, M. Nguyen, M. Lindvall and W. Jia,
Prediction of pKa Using Machine Learning Methods with
Rooted Topological Torsion Fingerprints: Application to
Aliphatic Amines, J. Chem. Inf. Model., 2019, 59, 4706–4719.

39 L. Brigato and L. Iocchi, A close look at deep learning with
small data, arXiv, 2020, preprint, arXiv:2003.12843, DOI:
10.48550/arXiv.2003.12843.

40 M. Zhu and C. Yang, Blue uorescent emitters: design tactics
and applications in organic light-emitting diodes, Chem. Soc.
Rev., 2013, 42, 4963.

41 D. Chen, W. Li, L. Gan, Z. Wang, M. Li and S.-J. Su, Non-
noble-metal-based organic emitters for OLED applications,
Mater. Sci. Eng., R, 2020, 142, 100581.

42 S. Liu, X. Zhang, C. Ou, S. Wang, X. Yang, X. Zhou, B. Mi,
D. Cao and Z. Gao, Structure–Property Study on Two New
D–A Type Materials Comprising Pyridazine Moiety and the
OLED Application as Host, ACS Appl. Mater. Interfaces,
2017, 9, 26242–26251.

43 R. K. Konidena and K. R. Naveen, Boron-Based Narrowband
Multiresonance Delayed Fluorescent Emitters for Organic
Light-Emitting Diodes, Adv. Photonics Res., 2022, 3, 2200201.

44 H. Tan, G. Yang, Y. Deng, C. Cao, J. Tan, Z. Zhu, W. Chen,
Y. Xiong, J. Jian, C. Lee and Q. Tong, Deep-Blue OLEDs
with Rec.2020 Blue Gamut Compliance and EQE Over 22%
Achieved by Conformation Engineering, Adv. Mater., 2022,
34, 2200537.

45 F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong
and Q. He, A Comprehensive Survey on Transfer Learning,
Proc. IEEE, 2021, 109, 43–76.

46 J. U. Kim, I. S. Park, C.-Y. Chan, M. Tanaka, Y. Tsuchiya,
H. Nakanotani and C. Adachi, Nanosecond-time-scale
delayed uorescence molecule for deep-blue OLEDs with
small efficiency rolloff, Nat. Commun., 2020, 11, 1765.

47 H. Lim, H. J. Cheon, S. Woo, S. Kwon, Y. Kim and J. Kim,
Highly Efficient Deep-Blue OLEDs using a TADF Emitter
with a Narrow Emission Spectrum and High Horizontal
Emitting Dipole Ratio, Adv. Mater., 2020, 32, 2004083.

48 W. Li, D. Liu, F. Shen, D. Ma, Z. Wang, T. Feng, Y. Xu, B. Yang
and Y. Ma, A Twisting Donor-Acceptor Molecule with an
Intercrossed Excited State for Highly Efficient, Deep-Blue
Electroluminescence, Adv. Funct. Mater., 2012, 22, 2797–
2803.
Chem. Sci., 2024, 15, 17533–17546 | 17545

https://doi.org/10.48550/arXiv.1704.01212
https://doi.org/10.48550/arXiv.2110.03753
https://doi.org/10.48550/arXiv.1511.05493
https://doi.org/10.48550/arXiv.2003.12843
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc02781g


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
Se

pt
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 1

1/
9/

20
25

 2
:2

4:
52

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
49 H. Liu, Q. Bai, L. Yao, H. Zhang, H. Xu, S. Zhang, W. Li,
Y. Gao, J. Li, P. Lu, H. Wang, B. Yang and Y. Ma, Highly
efficient near ultraviolet organic light-emitting diode based
on a meta-linked donor–acceptor molecule, Chem. Sci.,
2015, 6, 3797–3804.

50 F. Yuan, Y.-K. Wang, G. Sharma, Y. Dong, X. Zheng, P. Li,
A. Johnston, G. Bappi, J. Z. Fan, H. Kung, B. Chen,
M. I. Saidaminov, K. Singh, O. Voznyy, O. M. Bakr, Z.-H. Lu
and E. H. Sargent, Bright high-colour-purity deep-blue
carbon dot light-emitting diodes via efficient edge
amination, Nat. Photonics, 2020, 14, 171–176.
17546 | Chem. Sci., 2024, 15, 17533–17546
51 S. Kearnes, K. McCloskey, M. Berndl, V. Pande and P. Riley,
Molecular Graph Convolutions: Moving Beyond
Fingerprints, J. Comput. Aided Mol. Des., 2016, 30, 595–608.

52 L. Gong and Q. Cheng, Exploiting Edge Features for Graph
Neural Networks, IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 9203–9211.

53 A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai and
S. Chintala, PyTorch: An Imperative Style, High-
Performance Deep Learning Library, Adv. Neural Inf.
Process. Syst., 2019, 32, 8026–8037.
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc02781g

	Enhancing chemistry-intuitive feature learning to improve prediction performance of optical propertiesElectronic supplementary information (ESI)...
	Enhancing chemistry-intuitive feature learning to improve prediction performance of optical propertiesElectronic supplementary information (ESI)...
	Enhancing chemistry-intuitive feature learning to improve prediction performance of optical propertiesElectronic supplementary information (ESI)...
	Enhancing chemistry-intuitive feature learning to improve prediction performance of optical propertiesElectronic supplementary information (ESI)...
	Enhancing chemistry-intuitive feature learning to improve prediction performance of optical propertiesElectronic supplementary information (ESI)...

	Enhancing chemistry-intuitive feature learning to improve prediction performance of optical propertiesElectronic supplementary information (ESI)...
	Enhancing chemistry-intuitive feature learning to improve prediction performance of optical propertiesElectronic supplementary information (ESI)...
	Enhancing chemistry-intuitive feature learning to improve prediction performance of optical propertiesElectronic supplementary information (ESI)...
	Enhancing chemistry-intuitive feature learning to improve prediction performance of optical propertiesElectronic supplementary information (ESI)...
	Enhancing chemistry-intuitive feature learning to improve prediction performance of optical propertiesElectronic supplementary information (ESI)...
	Enhancing chemistry-intuitive feature learning to improve prediction performance of optical propertiesElectronic supplementary information (ESI)...

	Enhancing chemistry-intuitive feature learning to improve prediction performance of optical propertiesElectronic supplementary information (ESI)...
	Enhancing chemistry-intuitive feature learning to improve prediction performance of optical propertiesElectronic supplementary information (ESI)...
	Enhancing chemistry-intuitive feature learning to improve prediction performance of optical propertiesElectronic supplementary information (ESI)...
	Enhancing chemistry-intuitive feature learning to improve prediction performance of optical propertiesElectronic supplementary information (ESI)...
	Enhancing chemistry-intuitive feature learning to improve prediction performance of optical propertiesElectronic supplementary information (ESI)...
	Enhancing chemistry-intuitive feature learning to improve prediction performance of optical propertiesElectronic supplementary information (ESI)...
	Enhancing chemistry-intuitive feature learning to improve prediction performance of optical propertiesElectronic supplementary information (ESI)...
	Enhancing chemistry-intuitive feature learning to improve prediction performance of optical propertiesElectronic supplementary information (ESI)...
	Enhancing chemistry-intuitive feature learning to improve prediction performance of optical propertiesElectronic supplementary information (ESI)...

	Enhancing chemistry-intuitive feature learning to improve prediction performance of optical propertiesElectronic supplementary information (ESI)...
	Enhancing chemistry-intuitive feature learning to improve prediction performance of optical propertiesElectronic supplementary information (ESI)...
	Enhancing chemistry-intuitive feature learning to improve prediction performance of optical propertiesElectronic supplementary information (ESI)...
	Enhancing chemistry-intuitive feature learning to improve prediction performance of optical propertiesElectronic supplementary information (ESI)...


