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multistep retrosynthesis with
transformer loops†

David Kreutter and Jean-Louis Reymond *

Integrating enzymatic reactions into computer-aided synthesis planning (CASP) should help devise more

selective, economical, and greener synthetic routes. Herein we report the triple-transformer loop

algorithm with biocatalysis (TTLAB) as a new CASP tool for chemo-enzymatic multistep retrosynthesis.

Single-step retrosyntheses are performed using two triple transformer loops (TTL), one trained with

chemical reactions from the US Patent Office (USPTO-TTL), the second one obtained by multitask

transfer learning combining the USPTO dataset with preparative biotransformations from the literature

(ENZR-TTL). Each TTL performs single-step retrosynthesis independently by tagging potential reactive

sites in the product, predicting for each site possible starting materials (T1) and reagents or enzymes (T2),

and validating the predictions via a forward transformer (T3). TTLAB combines predictions from both

TTLs to explore multistep sequences using a heuristic best-first tree search and propose short routes

from commercial building blocks including enantioselective biocatalytic steps. TTLAB can be used to

assist chemoenzymatic route design.
Introduction

Computer-aided synthesis planning (CASP), originally proposed
by E. J. Corey in the 1960's, uses computational approaches,
including rule-based systems as well as various types of neural
networks, to exploit synthetic methodology as recorded in the
scientic literature to propose multistep syntheses of target
molecules from commercial precursors.1–27 Integrating enzyme-
catalyzed reactions would enable CASP to participate in the
global effort towards more selective, economical, and greener
chemical manufacturing processes. However, the task is chal-
lenging due to the sparsity and very different nature of
biotransformations compared to chemical reactions.28–33 Both
template-based and transformer-based CASP tools for bio-
catalysis were recently reported,34–36 which make use of
biochemical reaction data describing mostly metabolic path-
ways as collected in databases such as BRENDA, KEGG, Meta-
Cyc, Rhea, PathBank, MetaNetX or EzCatDB.37–43 However, these
biochemical pathway datasets only partly reect the use of
enzymes in organic synthesis, where enzymes or enzyme prep-
arations (extracts, whole cells, etc.) are used under non-natural
conditions, such as in immobilized form and at very high
substrate concentrations, and to convert molecules oen quite
different from the natural substrate.31 The CASP tool ASK-
COS,44,45 on the other hand, proposes chemo-enzymatic route
d Pharmaceutical Sciences, University of

land. E-mail: david.kreutter@unibe.ch;

tion (ESI) available. See DOI:

the Royal Society of Chemistry
nding using a template-based strategy based on literature data
collected from the Reaxys database46 for both chemistry and
biocatalysis, which for the case of enzymes represent more
relevant examples for the practice of organic synthesis
compared to data from biochemical pathways.

We recently showed that CASP tools based on transformer
models,17,18 trained on SMILES descriptions47,48 of chemical
reactions of starting materials (SM) with a set of reagents (R) to
form a product (P) as collected in the public USPTO dataset,49,50

can be adapted to specic reaction subclasses by transfer
learning.51 Extending on this opportunity, we then showed that
literature information on a few ten thousand biotransforma-
tions extracted from Reaxys,46 for which the reagent set R is
substituted with a text description of the enzyme or enzyme
preparation, can be combined with the USPTO dataset to train
a transformer model by multi-task transfer learning (MTL).52

The resulting enzymatic transformer performed forward
predictions of enzymatic reactions as used in typical preparative
biotransformations, including enantioselective processes such
as kinetic resolution with lipases or enantioselective ketone
reduction and reductive aminations with 71% top-2 accuracy,
approaching the typical performance of forward transformer
models. The key difference between our enzymatic transformer
model and the other approaches for enzymatic reactions
mentioned above was the use of a text description of the enzyme
rather than its E.C classication or a link to literature
references.

Herein we report the integration of our enzymatic trans-
former model into our recently reported triple transformer loop
algorithm (TTLA) for multistep chemical retrosynthesis,53 to
Chem. Sci., 2024, 15, 18031–18047 | 18031
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obtain a triple transformer loop algorithm with biocatalysis
(TTLAB, Fig. 1). Our previously reported triple transformer loop
algorithm (TTLA) performed single-step retrosynthesis predic-
tion using a triple transformer loop (TTL) operating on products
P with tagged reactive sites to explore diverse bond disconnec-
tions. In detail, potential reactive sites in P were rst tagged to
produce a series of P*,54 and for each P* a rst transformer T1
was used to predict SM, a second transformer T2 to predict
a suitable R for the proposed transformation SM / P, and
nally a third transformer T3 to predict P from the predicted SM
and R, thereby potentially validating the retrosynthetic step.
The TTLAB presented here combines our original triple trans-
former loop trained on USPTO,53 here called USPTO-TTL, with
ENZR-TTL, which is a new TTL trained on an updated version of
our previously reported ENZR dataset containing biotransfor-
mations from the literature and originally used only for forward
predictions,52 which now comprises 57 176 reactions.

To predict enzymatic disconnections, ENZR-TTL tags
potential reactive sites in P to produce various tagged P* by
using a new tagging model for enzymatic disconnections
trained on ENZR, called ENZR-AutoTag. ENZR-TTL then
predicts possible SM from each possible tagged P* using a new
ENZR-T1 model, and possible enzymes (E) for the predicted
reaction SM / P by a new ENZR-T2 model. Both transformer
models are obtained by MTL of the USPTO dataset with the
ENZR dataset. Finally, ENZR-TTL validates the predicted SM + E
/ P reaction with the previously reported forward transformer
ENZR-T3 (retrained on a more recent and larger ENZR dataset)
based on the identity of the predicted and original P and the
condence score.52

To explore multistep chemo-enzymatic retrosyntheses, TTLAB
considers single-step predictions from both USPTO-TTL and
Fig. 1 Concept of the TTLAB multistep search operating organic (USPTO
in parallel. In the new enzymatic retrosynthesis, potential reactive sites in a
and each labelled product P* is then passed through ENZR-TTL consisting
ENZR-T2 predicting the enzyme name E from SM / P, and the previo
retrosynthetic step is validated if the correct product P is predicted by
scores CS(T3) are used to compute the RPScore53 to prioritize steps in t

18032 | Chem. Sci., 2024, 15, 18031–18047
ENZR-TTL using the approach developed previously for TTLA. In
this approach, possible routes are ranked with the route penalty
score (RPScore),53 combining the simplicity of all SM along the
route,55,56with the condence score of each retrosynthetic step, as
well as route length, and the various routes are ranked and iter-
atively extended using a heuristic best-rst tree search. TTLAB
can be used to assist chemoenzymatic route design.
Methods
Chemical reaction dataset

The same United States Patent and Trademark Office (USPTO)
chemical reaction dataset as in our previous report was used.53

It is a version curated by Thakkar et al.54 derived from the data
mining work of Lowe.49,50
Triple transformer loop models for chemical reactions
(USPTO-TTL)

Themodels trained on the USPTO dataset are identical as in our
previous study and available on Zenodo,53 and herein named
USPTO-TTL. AutoTag is a tagging model predicting tagged
product P* from the target product P. T1 is a disconnection-
aware retrosynthesis model predicting starting materials SM
from the target tagged product P*. T2 is a reaction condition
model predicting reagents R, including catalyst and solvent,
from the reaction SM / P. T3 is a forward validation model
predicting P from SM + R.57
Enzymatic dataset

The enzymatic reaction dataset, herein named ENZR, was
extracted from Reaxys using the API accessible under
-TTL, green panel)53 and enzymatic (ENZR-TTL, orange panel) catalysis
productmolecule P are first labelled by the newmodel ENZR-Autotag,
of the newmodels ENZR-T1 predicting startingmaterials (SM) from P*,

usly reported forward model ENZR-T3 predicting P from SM + E. The
ENZR-T3 with a confidence score CS(T3) above 95%. The confidence
he retrosynthetic tree via a heuristic best-first sorting.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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a commercial license.46 We rst isolated reactions labelled as
“enzymatic reaction” in the “other conditions” eld
(“RXD.COND”). Next, we compiled a list of reagents, catalysts,
and solvents typically associated with enzymatic reactions. This
involved identifying components with the “ase” suffix in the text
elds “RXD.RGT,” “RXD.CAT,” and “RXD.SOL,”. Additionally,
we manually selected keywords corresponding to enzymatic
transformations, such as “P450,” “NADP,” “CAL-B,” “avin
mononucleotide,” and others, from the most frequently occur-
ring reagents and catalysts in the initial data retrieval. Finally,
we queried these enzymatic components individually in the
Reaxys database and retrieved the associated reactions. This
process resulted in a raw dataset consisting of 107 865 enzy-
matic reactions.

Enzymatic dataset: cleaning

The process of cleaning the ENZR dataset involved several steps,
wherein the RDKit library was used across various stages.58

Initially, multistep reactions and those lacking any reactant or
product were excluded, leaving 95 389 reactions. Next, reactions
were mapped using RxnMapper,59 for which 1333 reactions
failed and were removed. Reactions with unspecied atomic
symbols (“*”) were also removed. Unmapped reactant mole-
cules were removed for each reaction. A signicant number of
reactions (32 527) with more than one product were removed.
The remaining reactions were tagged with reactive atoms as
described previously,53 and reactions with no tagged atoms, or
with more than 10 tagged atoms, were removed. This cleaning
process results in a nal enzymatic dataset of 57 176 unique
reactions SMILES47,48 associated with textual descriptions of
each reagent, including cofactors, enzymes, and solvent.

Enzymatic AutoTag and triple transformer loop (ENZR-TTL)
models

Enzymatic transformer models for the ENZR-TTL, including the
AutoTag to tag reactive sites, and T1, T2 and T3 in the TTL itself,
were trained using the USPTO and the ENZR dataset through
MTL, similar to our previous Enzymatic Transformer model
with identical training hyperparameters.52 The split ratio 90 : 5 :
5 was applied as in the USPTO dataset resulting in 51 459 :
2859 : 2858 reactions in the training, validation, and test set
respectively. The dataset split was done such that reactions
resulting in identical products belong to the same splitting set.

During the MTL processes detailed below for all ENZR
models, we incorporated instruction tokens. These tokens,
“ENZYME” for the ENZR dataset and “USPTO” for the USPTO
dataset, were inserted at both the start and end of the SMILES
inputs. This addition aimed to provide additional context to the
model and enable it to focus on specic prediction types as
needed.

The ENZR-AutoTag model was trained to predict the tagged
SMILES of the product (P*) from the product SMILES (P), in
a similar manner to the USPTO-AutoTag model. The ENZR-T1
was trained to predict SM from P* for enzymatic retrosyn-
thesis. In contrast, the ENZR-T2model differs signicantly from
its USPTO-T2 counterpart by predicting a textual description of
© 2024 The Author(s). Published by the Royal Society of Chemistry
the enzyme (TDE) rather than reagents (R) in SMILES format
from the theoretical reaction SMILES (SM / P). The ENZR-T3,
previously reported as the Enzymatic Transformer,52 serves as
forward validation, it was trained from SM + TDE to predict P,
now retrained using the new ENZR dataset.
Disconnection-aware automatic tagging strategy

In our previous study,53 the USPTO-TTL employed a combina-
tion of three tagging strategies: (1) a systematic tagging proce-
dure, tagging 1 to 3 neighbouring atoms, (2) tagging templates
of reactive sites with a conditional structure radius of 2 atoms,
and (3) the AutoTag Transformer model with a beam size of 50.

The ENZR-TTL uses a specic tagging strategy combining
only an AutoTag model54 and templates, excluding the system-
atic tagging approach. The dedicated ENZR-AutoTag was
trained from the ENZR dataset and USPTO by MTL. ENZR
reactive site templates were extracted from ENZR exclusively
with a radius of 2 atoms.
Chemoenzymatic multistep tree search algorithm

In parallel to the existing single-step USPTO-TTL, we added the
ENZR-TTL, which the multistep algorithm uses systematically
and independently. The prediction outcomes of both TTLs are
provided to the heuristic best-rst tree search, elaborating
routes mixing the predictions of both TTLs. Condence scores
of both TTLs behaving differently, the condence scores of
ENZR-T3 were adapted by polynomial t to the USPTO-T3
distribution (Fig. S1†) to ensure a fair scoring across TTLs.
The RPScore, based on molecular simplicity55,56 and condence
scores of T3 distinguishes which routes are the best to explore
further, and functions the same as reported in our previous
study.53

Our previous report of the Enzymatic Transformer model,
herein named ENZR-T3, demonstrated that a condence score
threshold was required to lter unreasonable enzymatic reac-
tions. A similar evaluation using the round-trip evaluation of
the ENZR-TTL was performed and a threshold of 90% con-
dence of ENZR-T3 was dened for considering ENZR-TTL
predictions for multistep retrosynthesis search.
Building block (BB) set

We combined MolPort (https://www.molport.com) and
Enamine (https://www.enamine.net) databases to build
a database of 534 058 commercially available compounds as
the building block (BB) set.
Results and discussion

Realizing the triple transformer loop algorithm with bio-
catalysis (TTLAB) for chemoenzymatic retrosynthesis required
rst to select a suitable dataset of enzymatic reactions, second
to adapt our previous chemical reaction TTL to these enzymatic
reactions, and nally to combine the enzymatic reaction TTL
with the chemical reaction TTL in a multistep search algorithm.
These steps are described in the following subsections.
Chem. Sci., 2024, 15, 18031–18047 | 18033
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Chemical and enzymatic reaction datasets and their
comparison

We used the USPTO reaction dataset, which lists one million
chemical reactions taken from the patent literature, as a broadly
accepted selection of chemical reactions used in organic
synthesis.49,50 In terms of enzymatic reactions, we selected 57
176 enzymatic reactions from the scientic literature using the
Reaxys API,46 forming an enlarged version of our earlier enzy-
matic reaction dataset (ENZR, see methods for details).52 The
composition of this enlarged ENZR dataset is comparable to its
smaller version and reects the practice of biocatalysis in
preparative organic chemistry as reported in the scientic
literature, with lipases and dehydrogenases forming the largest
class of enzymes (Fig. S2†).

In view of training transformer models for a combined
chemoenzymatic retrosynthesis, we analyzed whether the 57
176 enzyme-catalyzed reactions in our ENZR dataset contained
starting materials and products comparable to those in USPTO.
We also analyzed the ECREACT data,36 which lists 62 222
enzyme-catalyzed reactions associated with their respective
enzyme commission (EC) number, aggregated from the
biochemical reaction pathways datasets Rhea, BRENDA, Path-
Bank, andMetaNetX (Table 1).37,41–43 ENZR listed fewer reactions
than ECREACT but more molecules, indicating a larger diversity
of molecules tested in preparative biocatalysis compared to
biochemical intermediates. Furthermore, ENZR shared a larger
number of molecules with USPTO than ECREACT, and only
shared a small number of molecules with ECREACT. A similar
distribution was observed when focusing only on reaction
products, with only 2470 molecules and 816 product molecules
being shared between all three datasets (Fig. 2a and b).

To compare the three datasets in terms of molecule types, we
selected 10 000 molecules randomly across starting materials
and products in each dataset and constructed a TMAP,60

employing the MinHashed atom-pair ngerprint MAP4 as
similarity measure, which considers substructures and their
relative position in molecules.61 Areas of the TMAP covered by
molecules from USPTO (green) also contained molecules from
ENZR (orange), and to a lesser extent from ECREACT (blue),
showing a certain level of overlap in structural types between
the three datasets (Fig. 2c). Nevertheless, parts of the map were
dominated by one of three datasets. Predominantly green areas
(USPTO) contained drug-like heteroaromatic molecules, while
predominantly orange areas (ENZR) featured glycosides and
peptides. Furthermore, one fourth of the TMAP was standing
out because it was entirely blue (ECREACT) and was populated
Table 1 Dataset information

USPTO

Number of reactions 1 266
Number of unique molecules 1 493
Number (%) of molecules shared with USPTO —
Number (%) of molecules shared with ECREACT 3502 (
Number of chiral molecules 271 50

18034 | Chem. Sci., 2024, 15, 18031–18047
by phospholipids and triglycerides apparently completely
absent from the other two datasets, probably reecting the
difficulty to work with such molecules in terms of preparative
organic synthesis.

Histograms further highlighted similarities and differences
between molecules composing the three datasets. A histogram
of molecular size as heavy atom count (HAC) showed that ENZR
and USPTO contained molecules of comparable size (10# HAC
# 40), while more than half of ECREACT contained larger
molecules (HAC > 40) (Fig. 2d). Furthermore, a histogram of the
fraction of cyclic bonds showed that USPTO contained mostly
cyclic molecules, while ENZR contained similarly cyclic mole-
cules but also a sizable fraction of entirely acyclic molecules,
and ECREACT was almost entirely composed of acyclic mole-
cules (Fig. 2e). The difference in molecule properties between
the three datasets was also visible in scatter plots using
molecular weight, the fraction of carbon atoms and the fraction
of cyclic bonds as molecular descriptors (Fig. S3†). Note that
47.9% of ECREACT molecules contained a phosphate func-
tional group, compared to 8.2% in ENZR molecules and only
0.5% in USPTO molecules, further highlighting the different
nature of molecules involved in biochemical reaction pathways
compared to those in use for synthetic chemistry.

Taken together, these comparisons showed that molecules
in ENZR and USPTO datasets showed a signicant level of
overlap and might be useful for a transformer model approach
for combined chemoenzymatic retrosynthesis. By contrast, the
differences between ECREACT and USPTO were more
pronounced and suggested that these two datasets were almost
incompatible with each other.

Enzymatic triple transformer loop (ENZR-TTL)

Our TTL approach for single-step retrosynthesis consists of
tagging potential reactive sites in the product molecule P to
form a series of tagged P*, and for each P* to apply three
subsequent transformer models predicting SM from P* (T1),
reagents R from SM/ P (T2), and nally product P from SM + R
(T3). T3 validates the retrosynthetic step if the predicted P is
identical to the input P, and the condence score of the T3
prediction is used to compute the route penalty score (RPScore)
for the multistep search.53

In our approach, potential reactive sites in the product
molecule are rst tagged to mark potential reactive sites. Our
chemical reaction TTL used a combination of a transformer
model, templates and systematic tagging. Due to the much
higher substrate specicity of enzymes compared to chemical
reagents, we removed the systematic tagging approach for our
ENZR ECREACT

734 57 176 62 222
418 76 645 45 944

12 035 (15.7%) 3502 (7.6%)
0.27%) 4236 (7.4%) —
4 45 277 34 177

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Comparative analysis of USPTO, ENRZ and ECREACT datasets. (a) Venn diagram of all molecules in the USPTO, ENZR and the ECREACT
datasets. (b) Venn diagram for only products (P) of reactions. (c) TMAP of 3 × 10 000 randomly chosen molecules from USPTO, ENZR and
ECREACT datasets with similarities computed with the MAP4 fingerprint. The interactive map is available at https://tm.gdb.tools/TTLA/
EnzymeDB.html. (d) Number of heavy atoms distribution for molecules in each dataset. (e) Fraction of cyclic bond distribution for molecules
in each dataset.
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enzymatic TTL and only considered tagging with a transformer
model and with templates. Reactive sites in product molecules
of the ENZR dataset were identied from atom-mapping and
labelled as previously described for the USPTO.53 An ENZR-
AutoTag transformer was then trained by MTL combining the
tagged and untagged datasets of ENZR and USPTO. Enzymatic
templates were extracted from the atom-mapped ENZR dataset
considering only templates with a radius of two bonds around
reacting atoms to take enzyme specicity into account, an
aspect which was also reected by the much smaller number of
© 2024 The Author(s). Published by the Royal Society of Chemistry
ENZR templates (18 083) compared to the number of USPTO
templates (281 153).

To complement the transformer models for the chemical
TTL trained with the USPTO dataset (here named USPTO-TTL),
we used MTL of USPTO with the ENZR dataset using the
previously described parameters52 to obtain models for the
enzymatic TTL (here named ENZR-TTL). To help the trans-
formers to learn the differences between chemical and enzy-
matic reactions, all entries for MTL were labelled before and
aer the SMILES with “ENZYME” for ENZR data, and with
“USPTO” for USPTO data. These labels helped to avoid task
Chem. Sci., 2024, 15, 18031–18047 | 18035

https://tm.gdb.tools/TTLA/EnzymeDB.html
https://tm.gdb.tools/TTLA/EnzymeDB.html
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sc02408g


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
O

ct
ob

er
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

1/
14

/2
02

5 
9:

57
:3

7 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
ambiguity between USPTO vs. ENZR caused by the substitution
of reagent SMILES with enzyme names in text format for T2
(SMILES / SMILES vs. SMILES / text) and T3 (SMILES /

SMILES vs. SMILES + text / SMILES). The inuence of the
instruction tokens “ENZYME” and “USPTO” added before and
aer each input was well visible in the case of ENZR-T2, for
which the fraction of textual enzyme description produced
increased from 85.3% for an uninstructed model to 99.7% for
the instructed model.

In terms of single-step round-trip accuracy,57 the ENZR-TTL
achieved 59.0% top-1 accuracy on the ENZR test set, some-
what below the 81.3% top-1 accuracy of the USPTO-TTL on the
USPTO test set. In both cases, the top-1 round-trip accuracy
measured the percentage of cases where P predicted by T3
matched the input P, which also included cases with different
SM and R compared to the ground truth in the test sets (see
details in Tables S1 and S2†). In both TTLs, the round-trip
accuracy decreased as function of the increasing number of
tagged atoms, suggesting that the decreasing number of
training examples and the increasing reaction complexity
caused more difficult learning in the different transformers
involved in producing the TTL predictions (Fig. 3a). ENZR-TTL
top-3 round-trip accuracies were as high as 76.2% and 76.9%
for single and double atom tags, compared to 94.1% and 92.8%
in the case of USPTO-TTL. The lower performance of ENZR-TTL
compared to USPTO-TTL probably reects the smaller training
set of enzymatic reactions learned by transfer learning, and
a more difficult task associated with the prediction of enzyme
names in T2. A similar analysis on the round-trip accuracy as
function of the heavy atom count showed no signicant higher
accuracies on smaller molecules, but rather a dependence on
Fig. 3 (a) Round-trip accuracies of ENZR-TTL and USPTO-TTL as funct
ENZR and USPTO test sets respectively. The top-N represents the ro
descriptions predicted by ENZR-T2 or reagents predicted by USPTO-T2. T
tagged atoms for both test sets. (b) Round-trip accuracy of ENZR-TTL a
represents the chosen confidence score cut-off. Bins were selected to

18036 | Chem. Sci., 2024, 15, 18031–18047
the number of molecules per molecular size bin, emphasizing
again a dependence on training set size rather than on molec-
ular size (Fig. S4†). As for the USPTO-T3, the condence score of
ENZR-T3 was correlated with the round-trip accuracy (Fig. 3b).
Analysis of test cases showed that a cut-off value of 90% had to
be applied to select meaningful validated enzymatic retro-
synthetic steps.

Reaction examples from the ENZR test set illustrate the
performance of ENZR-TTL in terms of single-step retrosyn-
thesis. In many cases, T1 predicts the same SM as recorded in
the ENZR dataset, T2 predicts the identical or almost identical
enzyme description (with enzyme name, additive and solvents),
and T3 predicts the correct P (Fig. 4 and S5†). These include
enantioselective reactions with non-biochemical substrates
(reaction (1)),62 cofactors (reaction (2))63 and cofactor regenera-
tion systems (reaction (3),64 here with a different T2 output), as
well as lipase-catalyzed reactions such as kinetic resolutions by
acylation (reaction (4))65 and heterocycle formations exploiting
the catalytic promiscuity of lipases (reaction (5)).66

Validated retrosyntheses by ENZR-TTL include cases where
the SM output by T1 and sometimes the enzyme name output by
T2 are different from those recorded in ENZR, with interesting
cases of reactions involving ketones and aldehydes as SM or P
(Fig. 5 and S6†). In one case, the T1 output species alcohol
chirality for a fatty acid alcohol dehydrogenase reported to be
non-enantioselective (although without providing primary data,
reaction (6)),67 whereby T1 probably infers alcohol chirality from
other alcohol dehydrogenases. In another case, a chiral cyclo-
butanol is proposed by ENZR-TTL to be obtained by reduction
of the parent ketone by a microbial dehydrogenase, while the
database case involves baker's yeast and a ketal precursor of the
ion of the number of tagged atoms on the target molecules from the
und-trip accuracy considering multiple examples of enzyme textual
he bar plots show the frequency fractions as function of the number of
s function of confidence scores of ENZR-T3. The vertical dashed bar
equally distribute predictions.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Examples of correctly predicted enzymatic single-step retrosynthesis by ENZR-TTL from the ENZR test set. The confidence scores of T3
are >99.5% in all cases. Enzyme names from the T2 output that differ from the database entry are highlighted in blue.
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cyclobutanone in aqueous pH 2, under which conditions the
ketal spontaneously hydrolyzes to give the ketone (reaction
(7)).68 Furthermore, a (2-chlorophenyl)-ketoacid recorded in
ENZR to be formed by enzymatic oxidation of the corresponding
mandelic acid,69 is predicted by ENZR-TTL to stem from
a transaminase reaction from the parent phenylglycine,
a known type of biotransformation (reaction (8)).70

Some discrepancies between ENZR data and ENZR-TTL
output are caused by database entry mistakes and illustrate
the self-correcting ability of the transformer model approach.
For example, N-acetylneuraminic acid is incorrectly recorded in
ENZR as involving a “pyruvate lyase” due to an enzyme naming
mistake in the corresponding publication (reaction (9)).71 For
this reaction ENZR-TTL correctly predicts that the enzymatic
conversion of SM (N-acetyl-mannosamine and pyruvic acid) is
carried out by the enzyme NeuNAc aldolase.72 Similarly, the
oxidative condensation of 2-pyridylmethanol with 2-amino-
phenol listed in Reaxys as an enzymatic process and recorded in
ENZR (reaction (10)) actually involves TEMPO (2,2,6,6-
tetramethylpiperidine-1-oxyl) as a chemical oxidant, which is
recycled by air oxidation using laccase as enzyme but was not
recorded in Reaxys.73 Here, ENZR-TTL proposes pincolinalde-
hyde and 2-aminophenol as SM and a true enzymatic process
using glucose oxidase and chloroperoxidase. This bi-enzymatic
© 2024 The Author(s). Published by the Royal Society of Chemistry
process has been reported for the related oxidative condensa-
tion of benzaldehyde and several para-substituted benzalde-
hydes with 2-aminophenol to form benzoxazoles.74

Finally, some incorrect cases involve a correct SM prediction
by T1, but a different choice of enzyme by T2, resulting in a valid
biotransformation but a different product P predicted by T3,
and a non-validated reaction in terms of round-trip accuracy of
ENZR-TTL (Fig. 6 and S7†). For example, the correct phenolic
SM is predicted by T1 for the formation of an O-methylated
macrolactone (reaction (11)). However, T2 selects a different O-
methyl transferase enzyme with a different regioselectivity, and
therefore T3 predicts a different regioselectivity for the meth-
ylation. Note however that the proposed product is the correct
one for the selected enzyme, as recorded in the same original
publication focusing on tuning O-methylation regioselectivity.75

In a related case of a chiral propargylic alcohol stemming from
reduction of the corresponding ketone by an alcohol dehydro-
genase, T1 predicts the correct SM but a change of enzyme
choice by T2 results in a T3 prediction of P with the opposite
enantioselectivity, which is correct for the selected enzyme but
incorrect relative to database entry (reaction (12)).76 A similar
different enzyme choice by T2 resulting in an enantiomeric P
correctly predicted by T3 also occurs for the addition of
Chem. Sci., 2024, 15, 18031–18047 | 18037
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Fig. 5 Examples of ENZR-TTL retrosynthetic steps from the ENZR test set validated by T3 involving different precursors and/or enzymes than
those in ENZR. Structural differences between SM database entry and T1 output are highlighted in orange and enzyme names from T2 output that
differ from the database entry are highlighted in blue.
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hydrogen cyanide to cyclohexane carbaldehyde catalyzed by two
different hydroxynitrile lyases (reaction (13)).77,78

In a related case involving tryptophan synthase, T1 predicts
the correct SM, T2 the correct enzyme, and T3 the correct L-
enantiomer, however the database entry lists the D-enantiomer,
which was obtained by coupling tryptophan synthase with
a stereoinversion cascade involving two enzymes that were not
listed in the database entry (reaction (14)).79,80 In a similar
enzymatic cascade yielding 2-(2-naphthyl)propylamine from an
epoxide precursor, T1 predicts the correct epoxide SM but
combines styrene oxide isomerase with a different trans-
aminase producing the (R)-enantiomeric P. By contrast, the
18038 | Chem. Sci., 2024, 15, 18031–18047
database entry for P has an undened stereochemistry, prob-
ably because the parent publications tested various trans-
aminases with different enantioselectivities (reaction (15)).81,82

Taken together, the above analysis showed that biocatalytic
retrosynthesis predictions by ENZR-TTL were generally relevant
and sometimes even corrected inaccuracies in database entries.
Encouraged by these data, we moved on to test multi-step
chemoenzymatic retrosyntheses with our TTL approach.
Chemoenzymatic multistep retrosynthesis with TTLAB

Integrating ENZR-TTL alongside the previously reported
USPTO-TTL provided the chemo-enzymatic retrosynthesis
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Examples of ENZR-TTL prediction involving a correct SM prediction by T1 but a different enzyme choice by T2 and therefore a different
product P compared to the database entry from the ENZR test set. Structural differences between P from database entry and T3 output are
highlighted in orange and enzyme names from T2 output that differ from the database entry are highlighted in blue.
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prediction system, named TTLAB (Fig. 1). To ensure the reli-
ability of the enzymatic steps selected by TTLAB, a condence
score lter of 90% was applied to ENZR-T3. This lter elimi-
nated chemically incorrect enzymatic retrosynthetic steps
which would otherwise be selected by the tree-search because
they achieved a high RPScore due to a high degree of molecular
simplication.

We challenged TTLAB to propose retrosyntheses for 100
product molecules from the USPTO test set, 80 product mole-
cules from the ENZR test set, and 1000 molecules from the
Caspyrus dataset.83,84 A retrosynthesis was judged successful
whenever the reaction sequence went back to a SM molecule
available in the BB set, which consisted of 534 058 commercially
available compounds (see Methods for details). TTLAB
proposed synthetic routes for 88 of the 100 USPTO test set
© 2024 The Author(s). Published by the Royal Society of Chemistry
product molecules, 61 of the 80 ENZR test set product mole-
cules, and 852 of the 1000 molecules of the Caspyrus dataset,
and in almost all cases at least one of the proposed routes
contained at least an enzymatic step (Table S3†). For TTLAB-
predicted syntheses of USPTO and Caspyrus molecules,
approximately 8% and 9% of the proposed steps were enzy-
matic. This percentage ranged from 17% to 50% for TTLAB
predicted syntheses of ENZR molecules considering either all
proposed syntheses or only top-scoring ones (Table S4†). The
ability of TTLAB to identify short chemo-enzymatic synthetic
routes was well visible when analyzing the number of steps per
route as well as the number of enzymatic steps per route among
the top-5, top-50, top-500 or all routes for USPTO, ENZR and
Caspyrus molecules (Fig. 7).
Chem. Sci., 2024, 15, 18031–18047 | 18039
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The chemoenzymatic routes predicted by TTLAB are well
illustrated by three examples from the ENZR test set, for which
we show in each case the best RPScoring route including at least
one enzymatic step (Fig. 8). The rst example is the predicted
synthesis of the chiral cyanocarboxylic acid 1, which was re-
ported as the product of the enantioselective mono-hydrolysis
of the prochiral dinitrile 2 by a mutant nitrilase enzyme.85

TTLAB predicts the identical biotransformation as the rst
retrosynthetic operation, and proposes to assemble dinitrile 2
by Michael addition of cyanoacetic acid to unsaturated nitrile 3
and decarboxylation. Finally, TTLAB proposes to prepare nitrile
3 from the parent aldehyde 4, which is a well-known type of
transformation however using different reagents.86

The second example is the predicted synthesis of the
phospha-C-peptide 5, which was reported to be formed by
coupling L-methionine ethyl ester with ethyl phosphinate 6
catalyzed by a phosphordiesterase.87 TTLAB proposes the
identical last step using the same enzyme. Since phosphinate 6
is not present in the commercial BB set, TTLAB further proposes
a synthesis from vinyl glycine 7 by N-acetylation and esterica-
tion, done as a single step, followed by addition of ethyl
methylphosphinate to the double bond. The latter reaction had
been reported to prepare L-phosphinothricin, a naturally
occurring herbicidal amino acid, however TTLAB omits to list
the required radical initiator tert-butyl per-2-ethylhexanoate.88

The third example is chiral sulfone 8, which TTLAB would
prepare by deacetylation and sulde oxidation of intermediate 9
using known chemistry.89 Intermediate 9 would be formed by
diastereoselective enzymatic acetylation of the parent alcohol by
Fig. 7 Analysis of synthetic routes predicted by TTLAB on productmolec
(a and b) the number of steps per route or (c and d) the number of enzy

18040 | Chem. Sci., 2024, 15, 18031–18047
porcine pancreatic lipase using p-chlorophenylacetate as acyl-
ating agent, a biotransformation reaction known from the test
set.90 This parent alcohol would be formed by non-
stereoselective reduction of ketone 10 using sodium borohy-
dride. This reduction is predicted with low condence by TTLAB
because this reaction can in fact be performed stereoselectively
using LiAlH4.91 Indeed, when the condition of an enzymatic step
is not imposed, TTLAB readily proposes, as the second best
RPScoring route, a two-step chemical synthesis of 8 from 10 by
stereoselective reduction followed by thioether oxidation to the
sulfone.

We further exemplify TTLAB in the prediction of chemo-
enzymatic retrosyntheses for three drugs with known chemo-
enzymatic routes (Fig. 9). In these cases, TTLAB oen identies
steps that are part of the training sets. For the rst case of the
cholesterol-lowering drug atorvastatin 11, our algorithm
proposes as best RPScoring route the acidic deprotection of the
corresponding tert-butyl ester, which is a commercial building
block. Imposing at least one enzymatic step results in a four-
step sequence from a linear chiral keto-ester precursor 12, for
which the rst step is an enzymatic reduction by an aldo-keto
reductase which was evolved precisely for this purpose and is
present in the TTLAB training set.92 The overall TTLAB route
design is similar to the chemoenzymatic process developed for
this drug involving an enzymatic enantioselective reduction of
ethyl cyanoacetoacetate as initial step.93

In the second case of the antidepressant (S)-duloxetine 13,
the top-RPScoring route with at least one enzymatic step pre-
dicted by TTLAB is the single-step demethylation of the
ules from the USPTO and ENZR test sets. The route count as function of
matic steps per route is given for the different top-N categories.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Top RPScoring retrosyntheses predicted by TTLAB including at least one enzymatic step for three ENZR test set products. The confidence
score of each predicted step is indicated in parentheses. Starting materials in the commercial BB set are written in orange.
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commercial N,N-dimethyl analog 14 catalyzed by a laccase, and
the second best is a three-step sequence involving Boc protec-
tion of the achiral ketone precursor 15a, followed by enantio-
selective reduction with an alcohol dehydrogenase and
arylation of the resulting alcohol with uoronaphthalene. This
route is similar to the published chemoenzymatic synthesis of
this drug starting with N,N-dimethylketone 15b,94 also proposed
by the ASKCOS chemical CASP tool with the help of manual
intervention to introduce biocatalytic steps.95

In the third case of the DDP4 inhibitor sitagliptin (16) used
to treat type II diabetes, TTLAB identies a single-step enzy-
matic enantioselective retrosynthesis from the commercial b-
ketoamide 17 using a transaminase. Although TTLAB only
names the PLP cofactor in the reagents, this step is present in
the ENZR training set using a transaminase that has been
engineered for the synthesis of this drug.96 The second best
RPScoring route is a similar two step sequence from the
commercial ketoester 18 involving an enzymatic enantiose-
lective reductive amination followed by amide bond formation.
Note that the enzymatic step is part of the ENZR training set and
uses the exact same combination of four enzymes for this
biotransformation,97 illustrating that transformer model ENZR-
T2 memorizes enzyme textual description with high accuracy.

The above analysis and application examples show that
TTLAB can propose short chemoenzymatic retrosyntheses for
various target molecules. It should be noted that enzymatic
steps are selected by TTLAB only when the reaction is closely
related to a training set reaction, reecting the fact that
© 2024 The Author(s). Published by the Royal Society of Chemistry
biocatalytic reactions are oen highly specic for certain types
of starting materials and are intrinsically poorly generalizable.
Comparison with other chemo-enzymatic CASP tools

To compare TTLAB with other chemo-enzymatic retrosynthesis
tools, we subjected the six target molecules discussed above (1,
5, 8, 11, 13 and 16, Fig. 8 and 9) to the IBM RXN for Chemistry
retrosynthesis prediction tool in “Automatic mode” using the
“enzymatic mode 2022-05-31”model and “high quality” tuning,
which uses the reported transformermodel.36 We also tested the
template-based tool ASKCOS as available online using either the
“reaxys_biocatalysis” and “reaxys”models combined, or just the
“reaxys_biocatalysis” model alone,45 as well as the recently re-
ported chemo-enzymatic version of BioNavi with the “Default
settings” preset, allowing both “Bio-building blocks” and
“Chemo-building blocks”, and combining “Enzymatic
synthesis” and “Non-enzymatic synthesis”.35,98

The IBM RXN for chemistry provided retrosyntheses for all
six target molecules, however none of the retrosyntheses con-
tained any enzymatic steps in the sequences and the sequences
went back to chiral building blocks as source of chirality (Table
2 and Fig. S8–S13†). The difficulty of this tool in identifying
biocatalytic steps might reect the fact that it uses biochemical
reaction data and very different molecule types as discussed
above (Fig. 2). On the other hand, ASKCOS only predicted ret-
rosyntheses successfully for 13 and 16. In these two cases, at
least one route contained enzymatic steps and the routes were
similar to those coming from TTLAB, with enzymatic steps
Chem. Sci., 2024, 15, 18031–18047 | 18041
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Fig. 9 Retrosyntheses of atorvastatin (11), (S)-duloxetine (13) and sitagliptin (16) proposed by TTLAB. Reactive bonds and starting materials in the
commercial BB set are drawn in orange. The confidence scores of individual retrosynthetic steps are indicated in parentheses after the predicted
reagents.
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involved in establishing stereochemistry in two cases (Table 2
and Fig. S14–S21†). This similarity might reect the fact that
ASKCOS also exploits literature data on biotransformations
collected from Reaxys, although in a different manner that
TTLAB. BioNavi only produced retrosyntheses for 1 and 5,
however these were short and included biocatalytic steps
(Fig. S22–S24†).
18042 | Chem. Sci., 2024, 15, 18031–18047
Although the three chemoenzymatic CASP tools tested did
not perform as well than TTLAB in the examples discussed
above, one cannot generalize and each retrosynthesis should be
analyzed in detail for feasibility. In that respect, it must be
noted that for chemical steps IBM RXN for chemistry ouputs the
reagents as part of the starting materials and describes the
reaction class for each transformation, thereby providing an
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Summary of the number of chemical steps (C) and number of
biocatalysis steps (B) for each target molecule using various combined
chemical and biocatalysis tools

Target moleculea TTLAB IBM RXN36 ASKCOS45 BioNavi98

1 2C + 1B 8C — 3C + 1B, 3Cb

5 1C + 1B 7C — 2C, 1B
8 1C + 1B 1C — —
11 3C, 1B 1C — —
13 1B, 2C + 1B 2C 1C, 2C + 1B —
16 1B, 1C + 1B 4C 1C, 1B, 2B —

a See Fig. 8 and 9 for TTLAB retrosyntheses, Fig. S8–S13 for IBM RXN for
chemistry retrosyntheses, Fig. S14–S21 for ASKCOS retrosyntheses, and
Fig. S22–S24 for BioNavi retrosyntheses. b another 6 routes were
proposed by BioNavi for 1 with up to 5 steps, however without
enzymatic steps.
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information comparable to the output of TTLAB. For enzymatic
steps however for which TTLAB provides enzyme names, IBM
RXN for chemistry only provides EC numbers, which can be
insufficient to choose a particular enzyme in cases such as
lipases and alcohol dehydrogenases for which substrate toler-
ance and stereoselectivity are highly variable. On the other
hand, ASKCOS does not provide reagents or enzyme names but
simply links to Reaxys references, which have to be searched
manually to identify the proper reaction conditions. Finally,
BioNavi informs whether a given steps is enzymatic or non-
enzymatic and upon request connects to a list of reagents or
enzymes, which again is an output similar to TTLAB. Note that
each tool uses a slightly different set of commercial building
blocks, which may inuence the ability to propose retro-
synthetic routes as well as route length depending on the
availability of advanced intermediates in the building block set.
Conclusion

In summary, our work integrates biocatalysis in a computer-
assisted synthesis planning (CASP) system, going towards
greener and more sustainable chemistry. We achieved this by
introducing a dual multistep retrosynthesis prediction system,
integrating both chemical and biocatalytic steps in the form of
two triple transformer loops, namely our previously reported
TTL trained on USPTO reactions for chemical steps (USPTO-
TTL),53 and a related enzymatic ENZR-TTL trained on an
updated version of our ENZR dataset of biotransformations
extracted from Reaxys.52 ENZR-TTLmakes use of a newmodel to
mark potential biocatalytic disconnection sites (ENZR-Autotag)
in product molecules and consists of three new transformers to
predict and validate possible retrosynthetic biotranformations.
The competitive framework, driven by the route penalty score
(RPScore), drives the selection of optimal steps by our best-rst
tree search, incorporating both catalytic steps to generate mixed
synthesis routes. In the successful routes selected by TTLAB, 8–
17% of the steps (depending on the molecular dataset) are
enzyme-catalyzed reactions, suggesting that our tool can valu-
ably contribute to green process design. Our results not only
showcase the tool's capabilities in proposing viable solutions
© 2024 The Author(s). Published by the Royal Society of Chemistry
for drug-like molecules but also establish it as a valuable
resource for synthesis design. The continuous enrichment of
data in Reaxys promises ongoing enhancements in enzymatic
capabilities, progressively going towards enzymatic synthesis.

Data availability

Code and instructions to compute multistep retrosynthesis as
well as the code to tag reactive sites are available on our GitHub
repository: https://github.com/reymond-group/
MultiStepRetrosynthesisTTL. The original USPTO dataset can
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available.
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