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Protein—protein interactions are pivotal in numerous biological processes. The computational design of
these interactions facilitates the creation of novel binding proteins, advancing
biopharmaceutical products. With the evolution of artificial intelligence (Al), protein design tools have
swiftly transitioned from scoring-function-based to Al-based models. However, many Al models for

crucial for

protein design are constrained by assuming complete unfamiliarity with the amino acid sequence of the
input protein, a feature most suited for de novo design but posing challenges in designing protein—
protein interactions when the receptor sequence is known. To bridge this gap in computational protein
design, we introduce ProBID-Net. Trained using natural protein—protein complex structures and protein
domain—domain interface structures, ProBID-Net can discern features from known target protein
structures to design specific binding proteins based on their binding sites. In independent tests, ProBID-
Net achieved interface sequence recovery rates of 52.7%, 43.9%, and 37.6%, surpassing or being on par
with ProteinMPNN in binding protein design. Validated using AlphaFold-Multimer, the sequences
designed by ProBID-Net demonstrated a close correspondence between the design target and the
predicted structure. Moreover, the model's output can predict changes in binding affinity upon
mutations in protein complexes, even in scenarios where no data on such mutations were provided
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Introduction

Natural proteins, despite their vital roles as carriers of various
life activities, have limitations due to their specific working
environment and finite lifespan. To address these limitations,
the ability to create entirely novel proteins from scratch using
computational algorithms becomes essential. This process is
known as computational protein design (CPD). The primary
objective of CPD is to identify specific combinations of amino
acid residues on a native scaffold that can fold into desired
protein structures with precise functions. Additionally, CPD can
be utilized to optimize existing native proteins or complexes to
enhance their stability or modify their functions to serve
specific purposes. This powerful approach allows researchers to
engineer proteins tailored to specific needs, going beyond what
nature has provided and offering great potential for various
applications in biomedicine and beyond.*

Designing proteins is very challenging because of the vast
search space of sequences and structures. Before the recent
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advance the design of protein—protein interactions.

surge of Al algorithms, the most advanced methods still relied
on hand-crafted energy functions and heuristic sampling algo-
rithms, which frequently produce suboptimal solutions and are
computationally intensive and time-consuming. Classical CPD
methods, such as Rosetta Design,* typically demand predefined
protein secondary structures or specific folding modes, then
select appropriate amino acids or short peptides using energy
functions, perform sequence structure optimization iterations,
and finally generate output sequences by ranking energy func-
tion scoring results.>® In recent years, there have been
numerous impressive achievements”™™ in protein design
through classical CPD methods, including self-assembly,*
immune signaling,'>'* enzyme," targeted therapeutics,'*'® and
protein switches,"'” demonstrating the tremendous potential
of designed proteins.*®

With the advent of deep learning, CPD research has rapidly
transformed from knowledge-based to data-driven methods in
recent years.' Artificial deep neural networks are capable of
extracting protein features from existing data, generating inte-
grated statistical motifs, and storing them in millions of
parameters for inference in different protein design applica-
tions. Several deep network architectures have been widely used
in protein research and have made a significant impact. Early
Al-protein-design models, including SPIN*® and SPIN2,** have
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achieved a sequence recovery rate of about 34%. Later on,
SPROF,** ProDCoNN** and our prior research, referred to as
DenseCPD,* have employed a 3D-CNN as the model architec-
ture. These approaches have notably enhanced sequence
recovery. More recently, Graph Neural Network (GNN) is
employed to predict residue interactions and residue types in
proteins. In this context, proteins are treated as graphs, with
nodes representing residues, and the prediction becomes
a graph classification problem. Among them, graph based
models, such as ProtTrans,” GVP,> StructGNN,** AlphaDe-
sign,” ESM-IF, ProteinMPNN,*® PiFold,” SPIN-CGNN and
VFN,* have exhibited notable successes in the realm of protein
design and have improved sequence recovery to 50-55%.
Notably, LM-DESIGN,* ABACUS-R** and ProDESIGN-LE,** ESM-
IF, LM-DESIGN,*" and CarbonDesign®** have used various Al
models including large language Model (LLM) and AlphaFold2
architectures to achieve high accuracy in sequence design or
generation. The designs of some of these models have been
verified by wet experiments and exhibited impressive success
rate‘4,5,32,35737

Protein-protein interactions play a vital role in numerous
biological processes as they form the foundation of many
molecular machines responsible for multiple functions.*®*
Understanding these interactions in detail can provide crucial
insights into the functions of protein complexes and has signif-
icant implications for medical and drug research. Classical CPD
methods often leverage information extracted from native
complex structures. This involves the strategic placement of
naturally occurring protein scaffolds guided by hotspot residues,
followed by the generation of binders through methodologies
such as library selection or antibody modification.**** Subse-
quently, computational saturation mutagenesis is employed to
optimize the affinity and specificity of the protein binder.**™*

Although the deep learning models mentioned above have
demonstrated impressive results in designing individual
protein units by predicting the joint probability of residues
under given backbone constraints or generating direct
sequences, there is a notable lack of models specifically tailored
for protein binder design. Thus, developing such binder design
models is an important area of research that holds great
potential for advancing our understanding of protein-protein
interactions and would be valuable in identifying suitable
binding proteins for a given target protein structure. Among the
mentioned models, those of both Rosetta®> and ProteinMPNN?*
can be employed for the specific task of designing protein
binder interfaces.

In this study, we aimed to develop a specialized model for
the design and optimization of protein-protein interface resi-
dues. We used DenseNet*® to recognize three-dimensional
structural data of protein interface residues. The resulting
network, named Protein Binding Interface Design Network
(ProBID-Net), was trained to learn the correlations between
target residues and their surrounding interface environment,
based on the distribution of residue backbone atoms found in
known receptor protein chains.

As a result, ProBID-Net has effectively acquired knowledge
regarding protein-protein interaction from interfaces and
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achieved an impressive sequence recovery rate of 52.7% on an
independent test set and 43.9% on an external test set. It
exhibited low perplexity in interface residue prediction and
high conservation of hydrophobic positions. We predicted the
complex structure of the designs with AlphaFold-Multimer, and
found that the predicted structure was in good agreement with
the design target, which further verified the foldability and
binding specificity of the model design sequence. In addition,
the predicted probability of each amino acid on the protein
interface residues can be used as a zero-shot prediction of
binding affinity change caused by mutations, providing a refer-
ence for binding affinity modification.

Results and discussion
Sequence recovery and perplexity

The ProBID-Net architecture comprises DenseNet models
featuring three Dense Blocks and were trained on the training
set of QSalign*’ labelled heterodimers and domain-domain
interfaces. Subsequently, three distinct non-redundant test sets,
namely the TS920, de novo set, and Folddock set, were employed
for evaluation. Each protein—protein complex of these test sets
exhibited a sequence identity with those in the training set of
less than 40%.

Model performance was evaluated using perplexity and
average recovery rate of residues located at the interfaces of
ligand protein. We defined residues on the unknown chain with
CA atoms within a distance of <8 A from any atom on the known
receptor chain as the target interface residues. Meanwhile,
interface sequence recovery is measured by reading structures
in test sets and then calculating the percent identity between
them by iterating over all residues on ligand protein interfaces.
Perplexity is a measure used in information theory to quantify
how well a probability distribution or probability model
predicts a sample. As shown in Table 1, the model achieved an
average interface sequence recovery of 37.7% on TS920, 37.6%
on the de novo set and 32.8% on the Folddock set.

In order to increase the amount of protein—protein interface
structural data, we hypothesize that the evolutionary conserva-
tion of protein domains aligns closely with that observed at the
fold level, potentially leading to an augmentation of protein
interface datasets. We assembled an additional dataset focused
on domain-domain interfaces through the segmentation of
domains in multi-domain protein chains according to CATH.**
Table 2 provides a comprehensive evaluation of the average
interface residue sequence recovery and perplexity for two
ProBID-Net models that were respectively trained on datasets
from pure chain-chain interface data and on the set with the
addition of domain-domain interface structure data. For
comparison, 1000 sequences were generated using Pro-
teinMPNN and Rosetta Design (using the ref 2015 energy
function) for each complex in the three test sets and the
sequence recovery and predictive perplexity were compared.

The enhancement observed in ProBID-Net trained on both
chain-chain interface and domain-domain interface sets
(ProBID-Net) relative to the version trained on the chain-chain
interface (ProBID-Net-CC) suggests an increased confidence in

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 The average recovery of interface residue sequences and standard deviation on three independent test sets, designed by ProBID-Net

trained through a five-fold cross-validation®?*

Average interface recovery (%) 1

Model no. 1 2 3 4 5 Average
TS920 379 +£12.8 38.0 £12.9 359+ 12.2 40.2 £ 13.4 36.7 £ 12.5 37.7
De novo 394 +£13.9 35.9 £13.0 35.0 +£13.4 40.8 + 14.3 37.0 £13.8 37.6
Folddock 32.6 £11.4 327+ 11.4 31.5 +£11.1 35.1+12.1 32.1+11.4 32.8

“ Trained with growth rate = 70. ” The domain-domain interfaces are not included in the training dataset, the training set solely comprises chain-
chain interface structures extracted from heterodimers. ¢ The format for the numbers is “Average Interface Recovery + Standard Deviation” in

percentage (%).

Table 2 Comparison of interface residues designed by ProBID-Net-
CC, ProBID-Net, ProteinMPNN and Rosetta on TS920, de novo set and
Folddock set according to the average interface recovery and
perplexity”

Average interface

Model recovery (%) 1 Perplexity |
TS920

ProBID-Net-CC 40.2 +13.4 3.91
ProBID-Net 52.7 + 16.5 3.02
ProteinMPNN 36.7 + 18.6 6.06
Rosetta fast design 43.2 + 14.6 —
De novo set

ProBID-Net-CC 40.8 + 14.3 3.87
ProBID-Net 43.9 £ 104 3.67
ProteinMPNN 43.0 £ 14.5 4.12
Rosetta fast design 42.6 + 13.8 —
Folddockset

ProBID-Net-CC 35.1 +12.1 4.63
ProBID-Net 37.6 £ 11.7 4.28
ProteinMPNN 39.3 £18.4 8.11
Rosetta fast design 40.5 + 16.2 —

“ The format for the table is “Average Interface Recovery + Standard
Deviation” in percentage (%).

accurate protein interface sequence design when incorporating
domain-domain interface structure data into the training set.
ProBID-Net achieved a remarkable sequence recovery rate of
52.7% on the independent heterodimer test set (TS920),
surpassing the performance of ProteinMPNN (36.7%) and
Rosetta (43.2%). Moreover, on the de novo protein-protein
complex test set (de novo set) and the Folddock test set (Fold-
dock set), ProBID-Net achieved sequence recovery rates of
43.9% and 37.6%, respectively. Notably, ProBID-Net demon-
strated better performance in recovery scores on both the TS920
and de novo set compared to both ProteinMPNN and Rosetta
Design. However, ProBID-Net does not achieve the highest
performance on the Folddock set. We attribute this outcome to
the removal of all structures from the Folddock dataset that
exhibited high similarity to those in the ProBID-Net training set,
reducing the number of complexes from 2734 to 1106. The
remaining complexes in the Folddock set display significant
differences from the training set, which likely contributed to the
observed reduction in performance. In contrast, the CATH4.2

© 2024 The Author(s). Published by the Royal Society of Chemistry

dataset, used for training ProteinMPNN, was not subjected to
a similar structural dereplication process relative to the Fold-
dock set. This lack of filtering enabled ProteinMPNN to more
easily predict the correct interface residues.

Regarding the perplexity of interface residues, ProBID-Net
consistently outperformed the other two models on all test
sets. This robust performance underscores the efficacy of
ProBID-Net in designing protein-protein interaction interfaces.
In Fig. 1, we plotted the distribution of sequence recovery rates
for both models on TS920, de novo sets, and Folddock set.
Additionally, metrics such as residue type precision, recall and
F1_score of ProBID-Net and ProteinMPNN are present in Fig.
S1.7 The flexibility of certain positions in protein structural
interfaces, allowing the replacement of amino acids without
compromising the stability of the structure and potentially
enhancing binding strength, highlights the dynamic nature of
these regions. Our objective was to conduct a thorough
assessment of our model for interface residues, deviating from
established norms to develop a nuanced understanding of the
variations under natural conditions. To accomplish this, we
utilized the BLOSUM score, a comprehensive metric that
combines BLOSUMS62 (ref. 49) values and probabilities pre-
dicted by ProBID-Net. The calculation of this score follows
a similar approach to the evaluation methodology used in SPIN-
CGNN.*>** This score serves as an enlightening metric, effec-
tively capturing the intricacies associated with both perplexity
and the amino acid substitution.

As presented in Table 3, ProBID-Net demonstrated better
performance compared to ProteinMPNN across all three test
sets, as indicated by the relative BLOSUM. These findings

'

ProBID-Net

Sequence Recovery

ProBID-Net  ProteinMPNN ProteinMPNN ProBID-Net  ProteinMPNN

Fig. 1 The distribution of sequence recovery rates for both ProBID-
Net and ProteinMPNN on TS920 (A), de novo set (B), and Folddock set
(C). The violin plots represent the interface residue sequence recovery
from 920 heterodimers in TS920, 62 heterodimers in the de novo set,
and 1106 heterodimers in the Folddock set.
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Table 3 Comparison of interface residues designed by ProBID-Net-
CC, ProBID-Net, ProteinMPNN and Rosetta on TS920, de novo set and
Folddock set according to the median relative BLOSUM score and
conservation of hydrophobic and hydrophilic sequence positions®

Average hydrophobic AA substitutions

Model conservation (%) 1 (relative BLOSUM score) 1
TS920

ProBID-Net-CC 74.43 £ 8.6 0.343
ProBID-Net 77.78 £9.5 0.467
ProteinMPNN 76.79 £ 16.3 0.218
Rosetta fast design 73.46 + 10.3 —
De novo set

ProBID-Net-CC 77.97 £+ 8.3 0.351
ProBID-Net 76.09 £ 7.9 0.360
ProteinMPNN 73.34 £11.8 0.283
Rosetta fast design 70.21 £ 11.4 —
Folddockset

ProBID-Net-CC 70.68 £ 10.5 0.280
ProBID-Net 71.56 £ 9.8 0.306
ProteinMPNN 69.02 £+ 16.7 0.246
Rosetta fast design 67.39 £ 13.6 —

% The format for the table is “Average Interface Recovery + Standard
Deviation” in percentage (%).

underscore the heightened efficacy of ProBID-Net in capturing
evolutionary information pertaining to interface residues,
positioning it as a robust model with great capabilities
compared to other deep learning counterparts.

Amino acid substitutions in fixed backbone protein design
methods were acquired by calculating the position-wise confu-
sion matrix, elucidating the concordance between predicted and
native amino acids at interface positions. Such a confusion
matrix can be compared to the BLOSUM®62 matrix to examine the
likelihood of amino acid replacements in protein interfaces. As
shown in Fig. 2, the confusion matrix of ProBID-Net presented
a similar pattern to the BLOSUM62 matrix. Notably, most positive
substitutions in the BLOSUM62 matrix align with positive values
in the confusion matrix of ProBID-Net. This alignment signifies
a congruence between the model's predictions and amino acid
substitution probabilities in protein interfaces.

To evaluate the sensitivity of recovery to the initial placement
of interacting partners, we re-docked the protein—protein

ID-Net BLOSUM62(Reference)
PSR R EEE
33

o

-
RO P NMLKIHGFEDCA
. PR |
T P

Ts

vowov

““““““““““ --1

Fig. 2 Confusion matrix of ProBID-Net. (A) In comparison to the
reference matrix BLOSUMG62. (B) On all three test sets. Positive values
(colored red) indicate preferred substitutions between amino acids.
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complexes from the test set using HDOCKIite v1.1.°> This
procedure involved splitting all complexes from the three test
sets and performing local protein-protein docking to generate
slightly altered conformations compared to the wild-type
complexes. The interfaces were then redesigned based on
these modified conformations. The docked ligand proteins
were categorized according to their root mean square deviation
(RMSD) from the crystal structures: 0-1 A, 1-5 A, and >5 A (Table
S1t). The recovery rate for each group was calculated and
compared to the recovery rate for the crystal structures
(Fig. S2t). The results demonstrate a clear trend: as RMSD
increases, the accuracy of the model in predicting interfacial
residues decreases. These results suggest that the ProBID-Net
model is relatively sensitive to the initial structural placement
of the input protein-protein interaction interface, underscoring
the importance of a high-quality initial structure for accurate
predictions.

Hydrophobicity conservation

In soluble proteins, hydrophobic residues such as leucine and
alanine are typically buried within the protein core, while
hydrophilic residues dominate the surface, facilitating solvent
accessibility. In contrast, the protein-protein interface requires
a high proportion of hydrophobic residues to foster hydro-
phobic interactions and ensure complex binding affinity and
stability.® This phenomenon underscores the critical role of
conserving hydrophobic residues in protein binders, a key
factor in maintaining protein-protein interactions throughout
evolution and a pivotal metric for assessing the efficacy of
designed protein binders. While protein sequence recovery is an
important metric in evaluating protein design models, the true
test of a designed protein sequence lies in its ability to fold into
the desired 3D structure and perform its intended function.
Recently, it has been shown that adaptations of AlphaFold2 (ref.
54) (AF) for protein complexes (FoldDock®) can rival high-
throughput yeast-two-hybrid and mass spectrometry screens
in identifying PPIs. To assess the performance of ProBID-Net,
we conducted tests on a set of protein-protein complexes
from the de novo set.

To gauge the proficiency of ProBID-Net in predicting analo-
gous amino acids, we further scrutinized the conservation of
hydrophobic and hydrophilic sequence positions in designed
sequences by categorizing residues into hydrophobic (Ile, Leu,
Met, Phe, Cys, Trp, Pro, Val, Ala, and Gly) and hydrophilic (Ser,
Thr, Asn, Gln, Asp, Glu, His, Arg, Lys, and Tyr) based on the
native sequence. Table 4 illustrates that ProBID-Net displays
a high conservation in hydrophobicity protein interface
positions.

AlphaFold2 folding validation

Specifically, we replaced the interface residues of the ligand
protein with the amino acid predicted with the highest proba-
bility by ProBID-Net. The AlphaFold2 v2.3.1 multimer module
was employed to assess the foldability of the designed
sequences. This evaluation involved predicting the 3D structure
of protein complexes formed by the designed sequences and

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 4 The conservation of hydrophobic and hydrophilic sequence designed by ProBID-Net, ProteinMPNN on TS920, de novo set and

Folddock set®?

ProBID-Net-CC ProBID-Net ProteinMPNN

Topl Top3 0.3 0.5 Topl Top3 0.3 0.5 Top1l Top3 0.3 0.5
TS920 74.43 95.31 81.78 89.43 77.78 96.17 85.52 92.43 76.79 93.95 84.88 90.80
De novo set 77.97 93.78 83.15 90.15 76.09 93.68 83.90 91.01 73.34 91.23 80.12 88.41
Foldock set 70.68 92.36 78.59 87.24 71.56 93.46 82.03 90.16 69.02 90.68 78.34 86.59

“ Top1 & Top3 signifies the preservation of hydrophobicity in the top 1 and 3 amino acids possessing the highest predicted probabilities. ? 0.3 & 0.5
indicate the preservation of hydrophobicity within the cumulative probability of 0.3 & 0.5.
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Fig. 3 Comparison of global TM-score between predicted structures
of designed sequences from ProBID-Net and ProteinMPNN. Structure
prediction was performed using AlphaFold-Multimer.

comparing them to the crystal structures from the Protein Data
Bank (PDB). Key metrics, including Predict Aligned Error (PAE),
TM-score and RMSD, were utilized to examine the structural
disparities between the predicted and actual structures. ProBID-
Net achieved a similar TM-score with ProteinMPNN for many
complexes but also showed more complexes with better TM-
score (Fig. 3). As depicted in Fig. 4, a majority of protein

TM-score=0.751, Recovery=0.511
PDB ID=7L5M, Chain B

TM-score=0.932, Recovery=0.381,

TM-score=0.812, Recovery=0.385,
PDB ID=6WMK, Chain B

PDB ID=7XFR, Chain B

TM-score=0.940, Recovery=0.308,
PDB ID=6VFH, Chain A

TM-score=0.908, Recovery=0.462
PDB ID=8AW4, Chain B

Fig. 4 Predicted complex structures of ProBID-Net designs using
AlphaFold-Multimer. The receptor and ligand protein in the X-ray
structures are colored in green and cyan. The predicted structure of
the receptor and ligand protein are colors in yellow and orange. The
chain id in each figure refers to the chain of the ligand protein.

© 2024 The Author(s). Published by the Royal Society of Chemistry

complex-binding proteins within the de novo set, redesigned by
both ProBID-Net, adopted a binding pattern reminiscent of the
crystal structure.

Fig. 5A-D depict various protein-protein complexes (PDB ID
6DM9, 6FOF, 7A48, 7XFR) as examples. In these instances,
ProBID-Net demonstrated better recovery of the complex
structure compared to ProteinMPNN. Visualization of these
complex interfaces revealed that the binders designed by
ProBID-Net displayed closer fit to the native structures and also
smaller PAE. Notably, the inter-chain PAE of the model pre-
dicted by ProBID-Net appeared lower than that of the model
assembled by ProteinMPNN, suggesting a higher accuracy in
the inter-chain orientation of the ProBID-Net model compared
to ProteinMPNN.

Correlation between ProBID-Net prediction and protein-
protein binding affinity

The predictive capabilities of ProBID-Net regarding the influ-
ence of mutations on the binding affinity of protein complexes

TMescore = 0,873, Reovery=0.267
PDB ID=7A48.Chain B

roteinMPNN_TM-score = 0.835

Fig. 5 Comparison of structures of binder sequences designed by
ProBID-Net and ProteinMPNN, predicted with AlphaFold-Multimer,
and aligned to native complex structures (colored by chain). The
AlphaFold-Multimer PAE heatmap is presented, depicting the PAE
between all pairs of residues in Angstroms. In each subfigure, the
upper row shows results from ProBID-Net and the bottom row from
ProteinMPNN.
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were assessed in a zero-shot setting. To this end, the binding
affinity caused by these mutations from the SKEMPI v2.0 data-
base®® was used as test data. The predictions from mutations on
protein-protein complexes and the changes of ProBID-Net were
used to classify whether a single mutation increased or
decreased the binding of the complex. The classification used
the logarithm of the ratio (Pmyutant/Pwildtype) Of the difference in
amino acid probabilities yielding a ROCAUC value of 0.66
(Fig. 6). In the context of the study, an elevated ROCAUC serves
as an indicator of the model's heightened ability to discriminate
between mutations classified as advantageous and deleterious.

The zero-shot evaluation focusing on protein—protein
binding affinity assesses a model's potential to extrapolate its
knowledge and forecast mutation effects on binding affinity
without direct training on the precise mutations within the
evaluation dataset. This result suggests that ProBID-Net
demonstrates some ability to predict the impact of mutations
on the stability of protein complexes, although further
improvements may be needed for more accurate predictions. To
further evaluate the performance of ProBID-Net in zero-shot
binding affinity prediction, we utilized the large-scale data
from MaveDB,*” which is a publicly accessible database (https://
www.mavedb.org) that collects datasets derived from various
analyses of variant effects, such as those obtained from deep
mutation scanning (DMS) or Massively parallel Reporting
Analysis (MPRA) experiments. For our investigation, we
curated five protein-protein complex systems from MaveDB,
specifically focusing on three datasets with a substantial
sample size exceeding 300 data points. In order to explore
whether ProBID-Net could discover beneficial mutations
within the same protein, potentially optimizing the binding
affinity of the complexes, we employed both ProBID-Net and
ProteinMPNN to redesign the interface residues of the binding
regions in the C. thermocellum cohesin fragment (PDB ID:
2VN5),?® IgG and IGg-FC (PDB ID: 1FCC)* complexes, and SARS-

Receiver operating characteristic of SKEMPI
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Fig.6 The ROC of ProBID-Net zero-shot prediction of affinity change
caused by mutation in the SKEMPI v2.0 dataset. The ROC line in the
graph serves as a reference, representing the ROC of an imaginary
model making random predictions pertaining to the advantageous and
deleterious effects associated with binding energy in residue
mutations.
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CoV-2 Receptor Binding Domain and ACE2 (ref. 60) complex
(Fig. 7). The analysis outcomes revealed that ProBID-Net (with
a ROCAUC of 0.73, 0.67, and 0.57) surpassed ProteinMPNN
(with a ROCAUC of 0.62, 0.67, and 0.38) in the correlation test of
protein-protein complex binding energy. By redesigning the
interfacial sequence, ProBID-Net demonstrated its efficacy in
diminishing the binding free energy, thereby augmenting the
stability of protein-protein complexes. These findings suggest
that ProBID-Net holds promise in guiding and refining protein—-
protein complex interactions by facilitating beneficial muta-
tions in interface residues. This, in turn, culminates in an
enhancement of the binding affinity and overall stability of the
protein complexes.

To explore the relationship between protein-protein binding
affinity and recovery rate, we compared protein—-protein
complexes from the three test sets with data from the PDBbind**
dataset. This process identified 117 complexes with binding
affinities reported as Ky, Kj, or ICso, which were then converted
to AAG values. We plotted the recovery rates of ProBID-Net for
each complex against their binding affinities (Fig. S31). The
analysis shows that the overall recovery rate is independent of
the binding affinity.

To evaluate the performance of ProBID-Net in recovering
hotspot and non-hotspot residues, we utilized the MIX hotspot
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Fig. 7 Comparison of ROC Curves for ProBID-Net (Left) and Pro-
teinMPNN (Right) predictions against binding free energy changes
from MaveDB. (A) C. thermocellum cohesin fragment (PDB ID: 2VN5);
(B) an 1gG and IgG-Fc complex (PDB ID: 1FCC); (C) SARS-CoV-2
receptor binding domain and ACE2 complex (PDB ID: 6M0J).
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structural dataset from a recent study.®> Hotspot residues were
defined as interfacial residues with a AAG > 2 kcal mol ™" upon
mutation to alanine, which resulted in 440 hotspot residues and
1902 non-hotspot residues. ProBID-Net was used to redesign
these residues and the average recovery rates for hotspots and
non-hotspots were 0.334 and 0.472. The detailed recovery rate
for each protein-protein complex is illustrated in Fig. S4.f
These results indicate that ProBID-Net exhibits lower prediction
accuracy for hotspot residues compared to non-hotspot resi-
dues. This discrepancy may be due to the highly dynamic nature
of hotspot residues, which can participate in multiple binding
conformations depending on the interacting partner, making
accurate prediction more challenging.

Conclusions

ProBID-Net has successfully learned the characteristics of
protein—protein interactions from the interfaces of protein
heterodimer complexes. This enables the model to furnish
predictions regarding the amino acid probability on each
residue within a given protein backbone structure, leveraging
insights garnered from the protein receptor binding sites. We
broadened the training set by incorporating domain-domain
interface structure data into the training set, thus allowing for
a more comprehensive representation of diverse interaction
patterns. ProBID-Net outperforms ProteinMPNN with a higher
protein sequence recovery rate and lower perplexity on all the
independent heterodimer test sets. Furthermore, the model
exhibits pronounced conservation in hydrophobicity positions,
underscoring its robust capacity to capture evolutionary infor-
mation pertaining to protein interface residues.

The primary objective behind developing ProBID-Net was to
enhance its focus on the structural training set specific to
protein-protein interaction interfaces. In addition, domain-
domain interfaces were also considered as a subset of protein—
protein interfaces and incorporated into the supplementary
training set. This approach significantly expanded the size of
the training dataset. Our test results demonstrate that this
strategy effectively improves the model's performance, partic-
ularly in recovering interface residue sequences across various
test sets. The inclusion of domain-domain interfaces as part of
the training data contributed to this enhancement by providing
a broader and more diverse dataset for the model to learn from,
thus strengthening its ability to accurately predict interface
residues.

The reliability of redesigned protein complex sequences was
validated through AlphaFold-Multimer verification experi-
ments, which demonstrated the foldability and specificity of the
binding sites. Notably, the lower PAE observed in sequences
designed by ProBID-Net implies a heightened accuracy in inter-
chain orientation compared to counterparts designed by
ProteinMPNN.

In the context of zero-shot prediction, ProBID-Net exhibited
a notable correlation between mutations occurring in residues
at the protein-protein complex interface and a consequential
decrease in binding free energy in complexes sourced from the
SKEMPI and MaveDB database.
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In conclusion, ProBID-Net emerges as a promising tool with
substantial potential. Its utility extends to enhancing the
binding stability of protein-protein complexes and facilitating
the redesign of highly specific, compatible binding proteins.
This is achieved through a nuanced understanding of the
structural nuances within protein receptor binding sites,
making ProBID-Net a valuable asset in the realm of computa-
tional protein design.

Materials and methods
Datasets

The overall data collection and processing workflow are shown
in Fig. 8. We employed the PDB structures labeled as hetero-
dimers by QSalignHET,*” which comprised 3821 structures with
the confidence category of “Very High”, “High” and “Medium”.
By treating one of the chains as the design target in turn, we
derived a dataset of 7642 (3821 x 2) complex structures.

Given the limited availability of protein—protein complexes
within PDB, particularly within the realm of heterodimer chain-
chain interfaces, it becomes imperative to explore alternative
approaches. Recognizing the similarity between domain-
domain and chain—chain interfaces, we consider the former as
a unit of evolutionary conservation and leverage domain-
domain interface structures extracted from the PDB using Sen's
protein interface library. This library, comprising 27 885 clus-
ters with structural similarity, serves as a valuable resource for
training our model. To enhance the diversity of our dataset, we
meticulously curate multi-domain chains from heterodimers
mentioned above, resulting in a comprehensive dataset of 19
481 domain-domain interface residue structures. This enriched
dataset, integrated into the training set, empowers our model to
better comprehend the intricacies of protein interactions, ulti-
mately enhancing its predictive capabilities.

For de novo designed protein—protein complexes, we con-
ducted an exhaustive search for recent heterodimeric complex
structures*>**%7 published from 2018 to 2023 in the PDB. We
used specific keywords “de novo design” and applied additional

19,481 2728+6
Domian-domain QSalignHET Folddock set ;
Interface structures Deterodimers [/ h_ bindes N complexes ___
| Domain-domain . ! | Chain-chain 5,\“‘2 ! | ;)_‘1\> & .
| interface set ¥ ! interface set MG | 1106 A, 6{% ]
! iﬁ ig;- ' o | Je :
119481 < K1 | 9,321 SR L. . . ‘,: gﬁ»_—_},_“___‘_ H
90% 10%
@ (8401) % (920) ﬂ
- [ - -
Training set for Training set for Tégéo De hovo set Folddock set

ProBID-Net
(27882)

ProBID-Net-CC

(1106)
(8401)

(920) (62)
Fig. 8 The overview of dataset collection, clustering and partitioning
processes and the number of protein—protein interface structures
contained in each dataset, where the green arrow indicates the inte-
gration of similar structures from the test set into the training set.
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filters, such as ensuring that each complex had a total number
of polymer instances (chains) equal to 2 and a number of
distinct protein entities greater than or equal to 2. These
structures were then clustered using MMseqs2 (ref. 76) with
a 30% sequence identity cutoff, resulting in a set of 89 unique
structures.

Additionally, we collected six heterodimeric complexes from
the CASP15 competition and compiled a total of 2728 protein
complexes with known pairwise interfaces from recent
studies,””” forming the “Folddock complex set”. These
complexes were carefully chosen to meet certain criteria,
including a resolution between 1 and 5 A, sequence length
between 30 and 1200, and a sequence identity of less than 30%
within the Folddock complex set. To remove the redundancy
between the QSalignHET set and the other two test sets, all the
complexes in the four datasets were clustered with a sequence
identity of 40% and a coverage of 0.8 using MMseqs2: mmseqs
easy-cluster Heterodimers_chain Heterodimer_chain_clu tmp—cov-
mode 0-c 0.8-min-seq-id 0.4-threads 8.

This procedure resulted in the formation of 2996 distinct
clusters, each containing representative and component chains.

After clustering, for the de novo set and Folddock set, struc-
tures with identical PDB IDs or those sharing the same cluster as
the heterodimers identified by QSalignHET were systematically
excluded. As a result, 17 pairs of complexes in the initial de novo
set, and 1622 pairs in the initial Folddock set were moved to the
training set. This process resulted in the generation of 62 struc-
tures in the de novo set and 1106 structures in the Folddock set.
Additionally, 10% of the clusters in the chain-chain interface set
were chosen to constitute an independent test set, distinct from
the other 90%. The remaining 90%, in conjunction with domain-
domain interface data, constituted the training dataset. The PDB
IDs for all test sets, along with the corresponding ligand chain
IDs, are presented in Tables S2-S4.F

Network architecture

The distribution of constituent atoms of residues on both the
target chain and the neighboring chain is taken into consider-
ation by evaluating them within a three-dimensional grid box.
This process involves quantifying the densities of these atoms
and subsequently storing this information in the characteristic
atomic channels corresponding to the 20 natural amino acids.
This method of representing structural data ensures the preser-
vation of the natural features of the protein structure and
prevents the risk of information loss that could arise from arbi-
trary extraction. Its efficacy and efficiency have been demon-
strated through its successful application in DenseCPD.*

After preprocessing the PDB structures, certain components
such as nucleic acids, small molecule ligands, and short
peptides with less than 20 amino acids were removed to focus
specifically on the protein-protein interactions. Each target
residue and its neighbouring residues on another chain were
then positioned in a standardized orientation, with the N atom
situated on the y = 0 plane and x < 0. The Ca atom of the target
residue was set at the origin (0, 0, 0), and the Cp atom was
placed on the positive Z axis.

19984 | Chem. Sci, 2024, 15, 19977-19990

View Article Online

Edge Article

To represent the atomic coordinates, a density distribution
was created on a 20 A x 20 A x 20 A grid box with a grid size of 1
A. The grid box was centered at (0, 0, 2) A to encompass more
neighbouring residues in contact with the target residue. The

distribution of atom densities was achieved using the Gaussian
2

. d . .
function p = exp( — ﬁ) , where d is the distance between the

atom and the center, and r is the atom's radius. The radii of N,
C, Ca, CB, and O atoms were assigned as 0.755, 0.817, 0.817,
0.821, and 0.695 A, respectively. These radii were determined
based on the van der Waals radius from the CHARMMS36 force
field, ensuring that each atom's density would be 0.05 at
a distance of its van der Waals radius.

The encoding of the 20 natural amino acids, each possessing
distinct characteristic atoms, necessitated consideration of the
specific atom count associated with each amino acid type. For
instance, glycine (Gly) comprises only 4 atoms (CA, C, N, and O),
while phenylalanine (Phe) has 11 atoms (CA, CB, C, CD1, CD2,
CE1, CE2, CG, CZ, N, and 0). Crucially, the target amino acid is
characterized by five essential atoms: CA, CB, C, N, and O.
Consequently, the encoding process involved representing the
20 amino acids using 173 atomic types, and the densities of
these atomic types were meticulously stored in dedicated grid
boxes. This resulted in a data size for a target residue interface
structure of 20 x 20 x 20 x 173, reflecting the grid arrangement
for each interface structure.

The structures of the target residue and its neighbors were
analysed using DenseNet, which is composed of several dense
blocks connected by transition blocks. Each dense block contains
multiple convolution blocks with a bottleneck operation, fol-
lowed by batch normalization, ReLU activation, and a (3 x 3 x 3)
convolution. All the outputs from the convolution blocks are
connected to each other within the same dense block.

To enhance computational efficiency and reduce the input
feature map size, the bottleneck operation was used in the
transition blocks and involved batch normalization, ReLU
activation, and a (1 x 1 x 1) convolution. These transition
blocks perform compression and pooling operations with
a compression rate of 0.5 between the dense blocks.

The depth of the DenseNet was adjustable, with variations in
the number of dense blocks and convolution blocks. The
growth rate, representing the size of the feature map in the
output of a convolution block, determined the number of
feature maps. In this study, three dense blocks, each
comprising six convolution blocks and a growth rate of 70, were
employed.

Finally, the output of ProBID-Net is processed through
a softmax layer, generating 20 values that sum to 1. These values
represented the probabilities of the 20 natural amino acids for
the target residue.

Training

To ensure robustness and assess the model's performance, the
complex structures in the training set were divided into five
equal groups based on their clustering. This facilitated 5-fold
cross-validation, where the model was trained and evaluated on
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different combinations of the data groups to ensure a thorough
and reliable assessment of its predictive capabilities.

The training was carried out for 35 epochs, and early stop-
ping was implemented with a patience of 5 epochs to avoid
unnecessary iterations. The categorical cross-entropy was
utilized as the loss function, and the Adam optimization
method with a learning rate of 0.001 and a batch size of 16 were
employed for training. To prevent overfitting during training,
we applied a weight decay of 10~ to the convolution layers.

ProBID-Net was implemented using TensorFlow with the
Keras library (http://keras.io). During the training process,
a categorical cross-entropy loss function was employed, and
optimization was performed using the Adam algorithm for 35
epochs. After that, the training was extended by adding the
domain-domain interface data and continuing for another 35
epochs. For optimization with stochastic gradient descent
(SGD), early stopping was implemented, and the learning rate
and batch size remained the same as during the Adam opti-
mization. The output of the neural network is the probabilities
of the 20 amino acids for the target residue.

Performance measure

Recovery. The most widely used criteria for evaluating the
methods for fixed backbone design are sequence recovery and
perplexity. The sequence recovery was calculated using the
percentage of the identity of designed sequences to native
sequences:

Recovery <D,SN,SN’> = %i [S,-N = argmax(S,N/)] (1)
p

where S" is a sequence with N residues from test set D. S;" is the
i-th native residue and S/ is the corresponding predicted
probability from the model.

Perplexity. Perplexity is a metric commonly used in Natural
Language Processing (NLP) to assess the quality of language
models. It can also be used to evaluate the performance of
models in multi-classification tasks in neural networks. In this
study, perplexity is being used as a measure of the certainty
around the predicted amino acid residues. Lower perplexity
values suggest higher certainty or confidence in predicting
native residue types. The perplexity on all protein-protein
complexes in test set D is calculated by exponentiated categor-
ical cross-entropy loss per residue:

N
> > log SI-N/
NeD i=1
_ ”ﬁ (2)

SNeD

Perplexity (D) = exp

where SV is a sequence with N residues from the test set D. S;" is
the i-th native residue and S/ is the corresponding predicted
probability from the model.

Hydrophobicity conservation

We examined the conservation of hydrophobic and hydrophilic
sequence positions of design sequences by defining
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hydrophobic (Ile, Leu, Met, Phe, Cys, Trp, Pro, Val, Ala and Gly)
and hydrophilic (Ser, Thr, Asn, Gln, Asp, Glu, His, Arg, Lys and
Tyr) residue positions according to the native sequence.

BLOSUMS62 substitution matrix

The substitution scores between native sequences and designed
sequences were calculated using:

B p(x,y)
sx.y) = log (q<x>q<y>) ®

where p(x, y) is the jointly likelihood that native amino acid x is
substituted by predicted amino acid y, and g(x) and ¢q(y) are the
frequencies of amino acids x & y in the native distribution.

BLOSUMG62 substitution matrix

The BLOSUM score is calculated as the weighted sum of BLO-
SUMSG62 (ref. 78) values based on predicted probabilities:

BLOSUMcore = 3 BLOSUM62(N;, Nuaive) X Pi (4)
i=1
where 7 is the length of the sequence, Npqive is the i-th amino
acid in the native sequence, N; is the predicted amino acid and
P; is the predicted probability distribution for the i-th position.
BLOSUMS62(x, y) gives the BLOSUM62 value for the substitution
of amino acids x and y.
The normalization is done by dividing the BLOSUM score of
the methods by the BLOSUM score of the native sequence:
n—1
BLOSUMscore_nalive = Z BLOSUM62(Nnalive7 Nnalive) (5)
i=1
where 7 is the length of the sequence, Nyq¢ive is the i-th amino
acid in the native sequence.

BLOSUMqcore

N ali BL M‘core = T
ormalized BLOSUM; BLOSUM ore voine (6)

The sums are over all positions in the sequence. This nota-
tion reflects the mathematical representation of the BLOSUM
score calculation and its normalization.

Zero-shot evaluation on protein-protein binding affinity

Zero-shot evaluation on the protein-protein binding affinity
refers to assessing the performance of ProBID-Net predicting
the impact of mutations on the binding affinity of protein
complexes without any specific training on the exact mutations
in question.

Pmu an
ROCAUC = f< —log (#) AG) 7)
wildtype
where Pyjiaype is the probability distribution of amino acid
types before mutation, Ppytant is the probability distribution of
amino acid types after mutation, AG is the change in binding

Pmutant

free energy, —log( ) is the negative logarithm of the ratio

wildtype
of amino acid type probabilities after and before mutation, and
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ROCAUC is the Receiver Operating Characteristic Area Under
the Curve.

The process involves using a dataset containing mutations
within protein-protein complexes and the corresponding
changes in binding affinity. The model is then tasked with
binary classification, determining whether a given mutation
leads to an increase in the stability of the complex. The evalu-
ation is conducted without explicit training on these specific
mutations, relying on the model's ability to extrapolate from its
training data to make accurate predictions for novel mutations.

Data availability

The PDB IDs of all test sets are available in the ESI.T ProBID-Net
code is available at https://github.com/ComputArtCMCG/
ProBID-NET. The model checkpoint trained on both chain-
chain interface and domain-domain interface is available at
https://tigshare.com/s/ebbd5184c0a46tb2b179.
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