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The high structural diversity and porosity of metal—organic frameworks (MOFs) promote their applications
in selective gas adsorption. The development of robust MOFs that are stable against corrosive SO, remains
a daunting challenge. Here, we report a highly robust aluminum-based MOF (HIAM-330) built on a 4-
connected Alz(OH),(COOQ), cluster and 8-connected octacarboxylate ligand with a (4,8)-connected scu
topology. It exhibits a fully reversible SO, uptake of 12.1 mmol g~ at 298 K and 1 bar. It is capable of
selective capture of SO, over other gases (CO,, CH,4, and N;) with high adsorption selectivities of 60,
330, and 3537 for equimolar mixtures of SO,/CO,, SO,/CH,4, and SO,/N,, respectively, at 298 K and 1
bar. Breakthrough measurements verified the capability of HIAM-330 for selective capture of SO, (2500
ppm) over CO, or N,. High-resolution synchrotron X-ray powder diffraction of SO, loaded HIAM-330
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Introduction

By 2050, fossil fuels are predicted to account for 77% of global
energy production, with coal emerging as the primary source in
the global energy supply matrix.* Exhaust gases from pulverized
coal combustion consist of 10-12% CO, and 500-3000 ppm
SO,;* the latter is a toxic and corrosive gas that will pose
significant threats to human health and the environment.**
While current flue gas desulfurization (FGD) technologies can
remove most SO, from flue gases,*” they generate a tremendous
amount of solid waste and suffer from high energy input.
Achieving complete removal of trace SO, proves challenging, as
it necessitates a capture system with low selectivity for both
dinitrogen and carbon dioxide coupled with remarkable mate-
rial stability to withstand the highly corrosive nature of SO,.*°
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revealed the binding domains of adsorbed SO, molecules and host—guest interactions.

Selective capture of SO, by dry, regenerable adsorbents
under ambient conditions has attracted growing interest and is
perceived as a promising strategy for eliminating trace SO,."°
This new method offers advantages such as lower energy
consumption and minimized solid waste compared with the
FGD strategy. Additionally, the recovered SO, can be used to
produce valuable chemicals such as sulfuric acid. While porous
materials such as zeolites,® activated carbon,'* and silica* have
been employed for SO, capture, their adsorption capacity is
generally low,">* limiting the overall capture efficiency. Metal-
organic frameworks (MOFs) have garnered substantial attention
for gas adsorption, due to their high porosity, structural diver-
sity, precisely tunable pore dimensions, and highly custom-
izable functionality.®*>'®* However, to date, only a limited
number of MOFs have exhibited reversible SO, adsorption and
structural stability upon adsorption-desorption cycles.””* This
is due to the highly corrosive nature of SO,, which can cause
framework degradation in many MOFs."?*** Thus, the ability of
a MOF to maintain its structural integrity and retain its
adsorption capacity after repeated cycles of SO, adsorption and
desorption is a crucial factor for its practical application in
desulfurization processes. Furthermore, highly stable and
crystalline MOFs can enable the study of host-guest interac-
tions using in situ X-ray diffraction techniques to understand
the underlying mechanism of selective adsorption. To this end,
the development of MOFs with reversible SO, adsorption and
excellent structural stability remains a challenging and impor-
tant area of research.

Over the past few years, AI-MOFs and Zr-MOFs have
demonstrated superior efficacy in the adsorption of SO,,
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underpinned by their high stability.>*** Their framework
robustness arises not only from the strong Al-O and Zr-O bonds
but also from the highly connected multinuclear inorganic
clusters.”® The ability of these clusters to link with multiple
ligands bolsters the stability of the MOFs. Using highly con-
nected organic ligands to synthesize MOFs is an effective
strategy for improving framework stability. Thus, the combi-
nation of multinuclear inorganic building blocks and multi-
topic organic linkers usually leads to MOFs with intriguing
connectivity and topology. However, the construction of MOFs
from high valence metals (AI**, Zr**, Ti**, etc.) and organic
linkers with high connectivity (>6) is particularly challenging
due to the inherent synthetic difficulties. For example, only
a handful of Zr-MOFs built on hexacarboxylates and
octacarboxylates®**® have been reported, while only a single
example of AI-MOF incorporating hexacarboxylates exists.** Yet,
no examples of AI-MOFs made of an octacarboxylate linker have
been reported to date.

Here, we report the incorporation of an octacarboxylate,
4’4" 4" 4"""-(ethene-1,1,2,2-tetrayl)tetrakis(([1,1’-biphenyl]-
3,5-dicarboxylic acid)) (Hgettbpdc) into a robust aluminum-
based MOF, denoted as HIAM-330. It features a 4,8-c scu
topology, built on 4-connected Al;0,(COO), clusters and 8-
connected ettbpdc®” linkers. The structure contains two
distinct types of cavities and demonstrates a SO, adsorption
capacity of 12.1 mmol g " at 298 K and 1 bar. The adsorption
was fully reversible and the adsorption capacity was retained
after multiple SO, adsorption/desorption cycles. HIAM-330
exhibits selective capture of SO, in the presence of CO, and
N,. Molecular insights into the selective adsorption mechanism
were achieved through X-ray diffraction analysis on SO,-loaded
HIAM-330, which elucidated the binding domains and host-
guest interactions.
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Results and discussion

Hgettbpdc was selected as the organic building block for con-
structing the Al-octacarboxylate MOF due to its well-defined
rigidity, planar geometry and facile synthesis. It was synthe-
sized from 1,1,2,2-tetrakis(4-bromophenyl)ethylene via the
Suzuki coupling reaction (Fig. S1-S37). Subsequently, block-
shaped crystals of HIAM-330 were solvothermally synthesized
at 150 °C by reacting Al(NO;);-9H,0 and Hgettbpdc in DMF/
formic acid/acetonitrile mixed solvent (Fig. S51). Single-crystal
X-ray diffraction analysis revealed that it crystallized in the
tetragonal crystal system with a space group of I4/mmm (Table
S1t). The crystal structure of HIAM-330 is built on a trinuclear
Al;0,(C0O0)4(H,0); cluster. In each cluster, the central AI*" is
octahedrally coordinated to four carboxylate oxygen atoms and
two bridging oxygen atoms, while the terminal AI** is octahe-
drally connected to two carboxylate oxygen atoms, one bridging
oxygen atom, and three water molecules (Fig. 1 and S67). Thus,
the trinuclear Al; clusters act as 4-connected nodes in the
structure of HIAM-330, bridged by ettbpdc®~ organic struts. It is
noteworthy that the Al; cluster observed here is distinct from
the commonly observed triangular trinuclear Al; SBU, where
a p;-O connects three AI*" to form a 6-connected node.>® The
octacarboxylate organic linker ettbpdc®~ is fully deprotonated
and connected to sixteen AI’" centers from eight Al; clusters,
with all carboxylates coordinated in bidentate mode (Fig. S77).
The overall structure of HIAM-330 features 4,8-c scu topology. It
is intriguing that its connectivity is in sharp contrast to that of
previously reported scu Zr-MOFs. The latter, as exemplified in
PCN-606,** is constructed on 8-connected Zrg nodes and 4-
connected organic linkers (usually tetracarboxylates, Fig. 1).
Nevertheless, in HIAM-330, the Al; clusters serve as the 4-con-
nected nodes and the organic ligands act as the 8-connected

@ Tl

4-c Al, node

scu HIAM-330

Fig. 1 Building blocks and crystal structure of PCN-660 (left) and HIAM-330 (right).
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units. This also leads to a different pore structure. The
commonly observed scu-type Zr-MOFs such as PCN-606 or Zr-
abtc possess one-dimensional rhombic channels, derived
from the cubic cages of 4,12-c ftw-type connectivity.*® In
contrast, in HIAM-330, there are two distinct types of cages, with
large and small cages arrayed in alternating sequences (Fig. 1
and S87).

The phase purity of HIAM-330 was verified through powder
X-ray diffraction (PXRD) analysis (Fig. 2a). Thermogravimetric
analysis (TGA) of as-synthesized HIAM-330 displayed a contin-
uous weight loss, while that of the methanol-exchanged sample
showed a plateau from 120-270 °C, indicating the successful
exchange of high boiling point solvents by methanol (Fig. S97).
During the subsequent activation of the methanol-exchanged
HIAM-330 by heating at 150 °C, its crystal structure was fully
retained. Our experimental investigation suggests that HIAM-
330 exhibits excellent stability, as evidenced by its fully
preserved PXRD patterns after being heated at 150 °C in open
air for 1 week, immersed in water at 80 °C for 1 week, or exposed
to 90% humidity for 1 week (Fig. 2a). The permanent porosity of
HIAM-330 was evaluated by N, adsorption measurements at 77
K (Fig. 2b). The N, isotherm displays a typical type I profile,
yielding a BET surface area of 1624 m* g~ and a pore volume of
0.65 m® g~' (Fig. S10%). The pore size distribution curve,
determined using the NLDFT model, was centered at approxi-
mately 5.5, 8.5, and 13.0 A (Fig. S111), which is consistent with
the value estimated from Zeo++ software based on the crystal
structure (Fig. S127).

Single-component adsorption isotherms of SO, were
collected at 298, 283, and 273 K (Fig. S137). HIAM-330 exhibits
fully reversible adsorption for SO, with a high adsorption
uptake of 12.1 mmol g~ " at 298 K and 1 bar. This value is higher
than those of most of the MOFs studied for SO, capture, such as
Zr-bptc, UiO-66, UiO-66-NH,, and Zr-DMTDC,* but is lower
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than those of the recently reported MFM-190 series showing
higher porosity®* (Fig. S141). Furthermore, the adsorption
uptake increased dramatically at relatively low pressure, indi-
cating its ability to capture trace SO,. The calculated isosteric
heat of adsorption (Qy) is 38.0 k] mol " at zero coverage. To
study the capability of HIAM-330 for selective capture of SO,
from other light gases that often co-exist in the flue-gas stream,
its adsorption towards CO,, CH,, and N, was also evaluated.
HIAM-330 adsorbs 2.60 mmol g~ * of CO,, 0.68 mmol g " of
CH,, and 0.09 mmol g’1 of N, at 1 bar and 298 K, substantially
lower than that of SO, (Fig. 2¢). The Q, of CO, calculated from
adsorption isotherms at 298, 283, and 273 K is 16 kJ mol " at
zero coverage, indicating its notably weaker adsorption affinity
compared to that of SO, (Fig. 2e). The selectivities of HIAM-330
for SO,/CO,, SO,/N, and SO,/CH, were calculated via ideal
adsorbed solution theory (IAST) at 298 K (Fig. 2d). Due to the
negligible adsorption capacity for nitrogen, the calculated SO,/
N, selectivity values are unusually high (>1000) and are subject
to large uncertainties. HIAM-330 also shows high selectivity
values of 60 and 330 for equimolar binary mixtures of SO,/CO,
and SO,/CHy,, respectively at 298 K and a total pressure of 1 bar.
The values remain similar when the concentration of SO,
decreased to 10%, resulting in selectivities of 44 and 239 for
SO,/CO, and SO,/CH,, respectively. These results suggest the
preferential adsorption of SO, over other light gases by HIAM-
330.

While many MOF materials exhibit high adsorption capac-
ities for SO, due to high porosity, only a small number of them
show fully reversible adsorption and retain their crystallinity
when exposed to highly corrosive SO,. HIAM-330 demonstrates
the ability to maintain its structure after undergoing SO,
adsorption-desorption tests (Fig. 2a). In consideration of
practical applications, cyclic adsorption-desorption experi-
ments were also conducted. In five consecutive adsorption/
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Fig.2 Gas adsorption on HIAM-330. (a) PXRD patterns of HIAM-330 under various conditions. (b) Adsorption—desorption isotherms of N, at 77 K
by HIAM-330. (c) Adsorption isotherms of SO,, CO,, CH,4, and N, at 298 K. (d) IAST selectivities of SO,/CO,, SO,/CH,4, and SO,/N, at 298 K in
HIAM-330. (e) Qg curves for SO, and CO, in HIAM-330. (f) Five adsorption—desorption cycles for SO, in HIAM-330 at 298 K and 1 bar.
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Fig. 3 Separation of SO,, N, and CO, by HIAM-330: breakthrough plots for (a) the SO,/N, mixture (2500 ppm SO, 75% N, in He, and total flow
rate: 20 mL min~?) and (b) the SO,/CO, mixture (2500 ppm SO,, 15% CO, in He, and total flow rate: 20 mL min~?) in HIAM-330 at 298 K.

desorption cycles, no notable loss of SO, adsorption capacity
(<5%) was observed for HIAM-330 (Fig. 2f), further confirming
its high stability to SO,.

To further verify the ability of HIAM-330 for selective capture
of trace SO,, dynamic breakthrough experiments were con-
ducted using a fixed bed filled with HIAM-330. At 298 K and 1
bar, a mixture of SO,/N, (2500 ppm SO,, 75% N, diluted in He)
was passed through the column at a flow rate of 20 mL min™".
The results showed that N, eluted at the beginning of the
process, while SO, was retained in the column for more than
three hours (Fig. 3a). Additionally, the calculated SO,/N, sepa-
ration factor was 745. Similarly, another column breakthrough
measurement was performed with a mixture of SO,/CO,
(2500 ppm SO,, 15% CO, diluted in He). CO, broke through
within less than two minutes, while SO, was retained for 136
minutes (Fig. 3b). The separation factor of SO,/CO, was

240027 I

244':2 36
A

calculated to be 65.5. These findings validated the capability of
HIAM-330 for selective capture of trace SO, from other light
gases as a durable adsorbent.

The adsorption domains of SO, in HIAM-330 were deter-
mined by Rietveld refinements of the high-resolution synchro-
tron PXRD pattern of SO,-loaded HIAM-330 (Fig. S221). The
robust framework of HIAM-330 remained highly crystalline,
allowing direct visualization of the adsorbed SO, molecules in
the pores. It was revealed that there were seven SO, binding
sites in the pores, with one in the small tetrahedral cage
(Fig. 4a), two in the large octahedral cage (Fig. 4b), and four in
the small pocket surrounded by eight trinuclear Al; clusters
(Fig. 4c). The total crystallographic uptake of SO, was estimated
to be 7.35 mmol g~ ', corresponding to a crystal structure at
a relatively low SO, pressure of ~0.14 bar. It is interesting to
observe that most of the adsorbed SO, molecules are located

223

2.97

vl

=

VI vV
313n

233 2.49
A

Y \ﬁ/zu

F R4

2. 58‘

Fig. 4 Adsorption domains of SO, in HIAM-330 determined by Rietveld refinements of high-resolution in situ synchrotron powder X-ray

diffraction. (a) site I, (b) sites Il and lll, (c) sites IV=VII.
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nearby the inorganic nodes rather than aggregating in the two
main cages. This indicates that the Al; clusters are favorable
binding sites for SO, at low pressure. The SO, molecule at site I
was stabilized by the organic linker through hydrogen bonds
(0SO---H-C = 2.44 A and 0,S---H-C = 2.36 A). At site III, the
adsorbed SO, was immobilized by the phenyl ring (OSO---pi =
2.64 A, electrostatic interactions) and by one hydrogen bond
(OSO---H-C = 2.16 A). In the remaining five sites (sites II and
IV-VII), the adsorbed SO, molecules were predominantly
interacting with the Al; cluster (the bridging oxygen or the
terminal H,0) through dipole-dipole interactions with the
shortest OSO---O and 0,S---O distances of 1.97 and 1.91 A,
respectively. The above results offer molecular insights into the
guest-host interaction of SO, adsorption in HIAM-330 and
highlight the important role of the trinuclear Al; cluster in SO,
capture.

Conclusions

The design and synthesis of highly porous and stable MOFs
with multi-topic ligands and high valence metals is important
for enriching MOF structure diversity, adsorption, and capture
of corrosive gases such as SO,. We present the construction of
an intriguing 4,8-c scu-type A-MOF using a rigid octacarbox-
ylate linker. The resulting MOF, HIAM-330, exhibits high
porosity, excellent stability, high SO, uptake (12.08 mmol g~ " at
298 K and 1 bar), and high IAST SO,/CO, selectivity (60, SO,/CO,
= 50/50). Mixed-gas column breakthrough experiments further
confirmed the effective removal of trace SO, by HIAM-330 in the
presence of CO, and N,. The excellent chemical and thermal
stability of HIAM-330 endows it with good recyclability. Further,
Rietveld refinement of high-resolution PXRD patterns of SO,-
loaded HIAM-330 provides valuable information regarding SO,
adsorption sites and possible guest-host interactions, which is
important for understanding the adsorption mechanism.
Overall, our findings contribute to rational design strategies for
making stable MOFs that hold strong promise for effective
capture of target molecules.
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