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The halolactonization reaction provides rapid access to densely functionalized lactones from unsaturated
carboxylic acids. The endo/exo regioselectivity of this cyclization reaction is primarily determined by the
electronic stabilization of alkene substituents, thus making it inherently dependent on substrate
structures. Therefore this method often affords one type of halolactone regioisomer only. Herein, we
introduce a simple and efficient method for regioselectivity-switchable bromolactonization reactions
mediated by HFIP solvent. Two sets of reaction conditions were developed, each forming endo-
products or exo-products in excellent regioselectivity. A combination of computational and experimental
mechanistic studies not only confirmed the crucial role of HFIP, but also revealed the formation of
endo-products under kinetic control and exo-products under thermodynamic control. This study paves
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Introduction

Halonium-promoted addition of nucleophiles to alkenes is one
of the most fundamental reactions in organic chemistry, which
offers widespread applications in organic synthesis." The
intramolecular variant of this transformation is a powerful tool
to construct molecular complexity by not only creating a new
ring and stereogenic centres but also introducing a halide group
for subsequent functionalizations.> Halolactonization is
a typical example of this transformation, offering rapid access
to densely functionalized lactones from acyclic unsaturated
carboxylic acids. A wide range of valuable lactone analogues
varying in both structures and stereochemistry could be ob-
tained through this protocol by controlling the diaster-
eoselectivity, enatioselectivity, and regioselectivity of the
reaction (Scheme 1a).* Traditionally, diastereoselective and
enantioselective halolactonizations are usually directed by
substrate structures.**” Over the past two decades, there have
been also developments of reagent-controlled enantioselective
halolactonization, relying on chiral electrophilic halogenating
reagents which in turn can be generated in situ through the
coordination of chiral catalysts to halogenating reagents.* On
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the other hand, regioselectivity of halolactonization has
predominantly been dictated by the electronic effects of alkene
substituents, with carboxylate groups intercepting halonium
intermediates at the position where positive charge stabiliza-
tion is most favorable. To the best of our knowledge, methods to
alter this inherent regioselectivity of halolactonization or offer
controllable formation of both regioisomers from one single
unsaturated carboxylic acid substrate are scarce in the
literature.?

In the last decade, hexafluoroisopropanol (HFIP) has attrac-
ted increasing attention as a reaction solvent due to its strong
hydrogen-bond donating ability, low nucleophilicity, stability
under redox conditions and most importantly the unique
capacity to stabilize ionic reaction intermediates.® HFIP has also
demonstrated its ability to facilitate a wide range of difunction-
alization reactions.” In relevant context to this work, there have
been seminal contributions from the Gulder group® on HFIP-
mediated halocyclization of terpenes, and the Lebceuf and
Gandon groups® on HFIP-mediated haloamidation and hal-
olactonization of alkenes with excellent reaction outcomes
(Scheme 1b). Building upon these research studies and our prior
investigations on halide-promoted addition reaction to alkenes,"
acid-promoted cyclization reactions and HFIP-assisted
Bronsted acid-catalyzed chemistry,"”” we envisaged that HFIP
can be used to activate bromonium sources such as NBS and
promote endo-bromolactonization of readily available conju-
gated unsaturated carboxylic acids™ (Scheme 1c, upper route).
On the other hand, the other bromolactonization regioisomers
with smaller ring sizes are inherently more thermodynamically
stable but require higher activation energies due to the lack of
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Scheme 1
bromolactonization.

electronic stabilization from the aromatic ring. We believed that
the presence of HFIP-activated Brgnsted acid catalysts can
potentially activate the reaction substrates to overcome these
higher activation energy barriers, leading to the formation of the
exo-cyclization product (Scheme 1c, lower route). This novel
regioselectivity-switchable protocol would enable rapid regiose-
lective synthesis of two different analogues of densely function-
alized lactones from readily available precursors.

Results and discussion

We elected to focus on bromolactonization in this work, as
brominating reagents and their corresponding products possess
balanced reactivity and stability compared to chloro or iodo
counterparts. We initiated this study by choosing 1a, which was
efficiently obtained by ring-opening olefination of cyclo-
pentanone ketal according to our recent work," as the model
substrate and N-bromosuccinimide (NBS) as a brominating

7188 | Chem. Sci, 2024, 15, 7187-7197

(a) Halolactonization reaction; (b) HFIP-mediated halocyclization; and (c) this work: HFIP-mediated regioselectivity-switchable

reagent, which can generate e-caprolactone 2a and d-valer-
olactone 3a as endo-cyclization and exo-cyclization products
respectively (Table 1). The bromolactonization of 1a in HFIP
happened smoothly at room temperature, selectively forming
endo-product 2a in 91% yield with a 13/1 regioisomer ratio (entry
1, Table 1). Both reactivity and selectivity of this HFIP-mediated
endo-bromolactonization are in accordance with Lebceuf and
Gandon work.” Lowering the reaction temperature to 0 °C, with
a slight decrease in yield and longer reaction time, resulted in
absolute selectivity to endo-product 2a (entry 2). This observation
is in agreement with our initial hypothesis that endo-products of
bromolactonization reactions are kinetically favorable while exo-
products are thermodynamically favorable. For a simple reaction
setup and better reaction efficiency, we chose to carry out the
reaction at room temperature in subsequent studies.

On the other hand, introducing a catalytic amount of
Bronsted acids into the reaction, as predicted, shifted the
selectivity towards the exo-product 3a while maintaining

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Optimization of HFIP-mediated regioselectivity-controllable bromolactonization

@)
Br
WOH NBS (1.1 equiv) 0. 0
—_— +
© rt, 1h
Br
1a 2a 3a
Entry® Catalyst (mol%) Solvent (v/v) Yield of 2a” Yield of 3a” 2a/3a ratio”
1 HFIP 91% 7% 13/1
2¢ HFIP 77% Traces >20/1
3 AcOH (10%) HFIP 88% 10% 8.8/1
4 TFA (10%) HFIP 67% 20% 3.4/1
5 PTSA (10%) HFIP Traces 89% <1/20
6 TfOH (10%) HFIP Traces 86% <1/20
7 PTSA (5%) HFIP Traces 87% <1/20
8 PTSA (2%) HFIP Traces 79% <1/20
9 HFIP/DCE (1/1) 85% 8% 10.6/1
10 HFIP/DCE (3/7) 85% 9% 9.4/1
11 HFIP/DCE (1/9) 71% Traces >20/1
12 DCE ND ND —
13 TFE 29% 60% 1/2.1
14 iPrOH ND ND —
15 MeNO, Traces Traces —
16 PTSA (5%) DCE 11% 5% 2.2/1
17 PTSA (5%) TFE 22% 12% 1.8/1
18 PTSA (5%) iPrOH 13% 5% 2.6/1
19 PTSA (5%) MeNO, 17% 20% 1/1.2

“ Reaction conditions: 1a (0.1 mmol), NBS (1.1 equiv.), catalyst, and solvent (v/v, 0.1 M) were stirred at room temperature for 1 h. ? Yields and
regioisomer ratios were determined by "H NMR using methyl benzoate as an internal standard. See pages S4-S5 in the ESI for full optimization

studies. ND = not detected. ¢ Reaction was carried out at 0 °C for 2 h.

excellent overall yields of both products (Table 1, entries 3-8).
Interestingly, weaker acids such as acetic acid (AcOH, entry 2)
and trifluoroacetic acid (TFA, entry 4) caused minor shifts in
selectivity, whereas stronger acids like p-toluenesulfonic acid
(pTSA, entry 5) and triflic acid (TfOH, entry 6) induced
a complete alteration in selectivity toward exo-product 3a. pTSA
was chosen for further studies of exo-bromolactonization as it is
inexpensive and easier to handle. Reducing the amount of pTSA
to 5 mol% did not change the reaction efficiency (entry 7) while
the yield of exo-product 3a slightly decreased when employing
2 mol% of pTSA (entry 8). We also attempted to reduce the
amount of HFIP in endo-bromolactonization by using DCE as
a co-solvent, but both yield and selectivity slightly dropped
(entries 9-11). To clarify the role of HFIP in this reaction, we
carried out the reaction in DCE as a typical solvent for hal-
ocyclization chemistry, trifluoroethanol (TFE) as a weaker
hydrogen-bonding donor solvent, isopropanol as the respective
non-fluorinated alcohol, and nitromethane (MeNO,) as a highly
polar solvent for charge stabilization (entries 12-19). Without
HFIP as solvent, reactions generally led to unsatisfactory
outcomes, regardless of whether or not there was a Bregnsted
acid catalyst, confirming the crucial role of HFIP in the forma-
tion of both endo- and exo-products.

We subsequently explored the versatility of our newly
developed method in both endo-bromolactonization (Scheme

© 2024 The Author(s). Published by the Royal Society of Chemistry

2a) and exo-bromolactonization (Scheme 2b). A series of
unsaturated carboxylic acid 1 were first subjected to our optimal
conditions for endo-bromolactonization. Substrates with
diverse electronic and steric effects (1a—j) were well tolerated
under endo-bromolactonization conditions, yielding 7-endo-
products 2a-j in moderate to excellent yields. Electron-rich
thiophene substrate 1k led to poor efficiency, probably due to
susceptibility to electrophilic bromination on the electron-rich
aromatic ring in HFIP medium.** Our method also demon-
strated good efficiency in 6-endo-bromolactonization, gener-
ating 6-endo-product 21 in good yield. However, 8-endo-
bromolactonization exhibited unimpressive efficiency (prod-
ucts 2m and 2n), which can presumably be attributed to the
challenging formation of eight-membered medium-sized
lactones.

A quite similar trend in reaction yields was also observed
when the same set of unsaturated acids 1 was subjected to our
optimal conditions of exo-bromolactonization (Scheme 2b). In
the case of d,e-unsaturated carboxylic acids, except for
substrates with an electron-rich aromatic ring (1f and 1k),
which are sensitive towards electrophilic aromatic bromina-
tion,'*** other substrates (1a-e and 1g-j) exhibited a complete
switch in regioselectivity to 6-exo-bromolactonization with
moderate to excellent yields when treated with a Bregnsted acid
catalyst in HFIP. Absolute exo-regioselectivity and excellent

Chem. Sci., 2024,15, 7187-7197 | 7189
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Scheme 2 Substrate scope of (a) endo-bromolactonization and (b) exo-bromolactonization. Reaction conditions unless otherwise noted: 1 (0.2

mmol), NBS (1.1 equiv.), with/without pTSA (5 mol%), HFIP (0.1 M). Diastereomeric ratios were all >20/1 without quoted ratios in parentheses.

[al

HFIP/DCM (1/4, 0.1 M) was used. ' HFIP/DCM (1/99, 0.1 M) was used. '! Reaction was stirred without catalyst for 1 h prior to adding catalyst and

further stirring for 1 h. [ NMR vyield. ! TFOH (10 mol%) was used.

yield were also observed with y,3-unsaturated carboxylic acid 11,
while no expected products 3m and 3n were detected for the
case of g,{-unsaturated carboxylic acids 1m and 1n. It should be
noted that along with controllable regioselectivity, our method
also offered excellent to absolute diastereoselectivity for both
endo- and exo-cyclization.

Next, we extended the substrate scope of HFIP-mediated
bromolactonization to other alkenoic acid scaffolds (Scheme
3). Estrone-derived d,e-unsaturated carboxylic acid 10, obtained
by modifying estrone through a three-step procedure as re-
ported in our recent work,”® smoothly underwent 7-endo-

7190 | Chem. Sci, 2024, 15, 7187-7197

bromolactonization, yielding tetracyclic lactone 20 as an equi-
molar mixture of two diastereomers in 88% yield. Similar to
substrates in Scheme 2b, the regioselectivity completely shifted
to 6-exo-product 3o, also as an equimolar mixture of two dia-
stereomers in excellent yield, when a catalytic amount of pTSA
was used to promote the reaction (Scheme 3a). This example
demonstrated a quick and efficient way for the late-stage
modification of complex cyclic ketones into lactones with
various ring-sizes.

As discussed earlier in Scheme 2, we believe that the selective
formation of endo-product 2 is kinetically favored due to

© 2024 The Author(s). Published by the Royal Society of Chemistry
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a. Rapid access to two analogues of estrone-based lactone
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b. Bromolactonization on other scaffolds
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Scheme 3 Expanding the substrate scope of bromolactonization: (a) rapid access to two analogues of estrone-based lactone and (b) bro-

molactonization on other scaffolds.

benzylic stabilization, and the selective formation of exo-
product 3 is thermodynamically supported due to generation of
a more stable ring size. To support this hypothesis, we carried
out some negative testing studies with two other structures
often encountered in halolactonization chemistry, terminal
alkenoic acid 1p and trans-stilbene-type acid 1q. Gratifyingly,
both of these exclusively yielded exo-product 3p and endo-
product 2q, respectively in good to excellent yields, regardless of

© 2024 The Author(s). Published by the Royal Society of Chemistry

whether catalytic pTSA was used or not (Scheme 3b). These
outcomes align well with our hypothesis, as 3p and 2q are both
kinetically and thermodynamically favorable, owing to both
benzylic stabilization and the formation of a more stable ring
size. As a result, this leads to an unswitchable regioselectivity
with substrates 1p and 1q.

We also attempted to exclude benzylic stabilization by
carrying out reactions on aliphatic unsaturated acids 1r-t,

Chem. Sci., 2024,15, 7187-7197 | 7191
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Scheme 4 Proposed reaction mechanism for the bromolactonization.

which have nearly identical electronic effects on both reactive
sites. Isopropyl-substituted acids 1r and 1s exclusively yielded 6-
exo-product 3r and 5-exo-product 3s in excellent yields in the
presence or absence of the pTSA -catalyst, respectively.
Unswitchable regioselectivity and excellent yield were also
recorded on a less sterically hindered methyl-substituted acid
1t. These results confirmed the importance of the benzylic effect
on the controllable regioselectivity.

To gain better insights into the reaction mechanism and
effect of catalyst/solvent on the regioselectivity for the bromo-
lactonization, we then turn our effort to density functional
theory (DFT) calculations at the MN15/6-311+G(2d,2p)/SMD//
M06-2X/6-31G(d,p)/SMD level of theory (see page S97 in the
ESIT for computational details). The proposed reaction mech-
anism for the bromolactonization is shown in Scheme 4.
Traditionally, this transformation is expected to take place via
a stepwise Adz2-type mechanism. The first step of this reaction
is the electrophilic addition of the bromine atom to the C=C
double bond of the substrate generating a reactive cyclic bro-
monium intermediate, which is followed by a nucleophilic
addition leading to endo- and exo-cyclic products.'®

TS-1
AGt = 36.8 (kcal/mol)

Alternatively, by means of kinetics studies, NMR spectroscopy,
and DFT calculations, Jackson and Borhan'” proposed that the
halolactonization can take place via a concerted Adg3-type
mechanism in which the nucleophilic and electrophilic addi-
tions happen simultaneously and no ionic intermediate is
generated during the reaction. Moreover, the additions of the
nucleophile and electrophile can occur at the same face (i.e.,
syn-addition) or opposite faces (i.e., anti-addition) of the C=C
double bond (Scheme 4)."

We first performed DFT calculations to elucidate the reac-
tion mechanism for the bromolactonization in the aprotic DCE
solvent, using 1c (Ar = p-Br-C¢H,-) as the model substrate.
Consistent with previous experimental and theoretical
studies,'”*® DFT calculations revealed that in DCE, the bromo-
lactonization takes place via a syn-concerted addition pathway
(Fig. 1). No transition state for the stepwise mechanism as well
as anti-concerted addition pathway could be located. Interest-
ingly, the activation barriers for the syn-additions are calculated
to be fairly high, amounting to 36.8 and 39.4 kcal mol " for TS-1
and TS-2, respectively. This DFT result is in good agreement
with our experimental findings (Table 1) that only a trace

o »
—3 »
O-- e e
H“Q ’rN\
Y = ¢
N\ g -N 2.19
o
TS-2

AG* = 39.4 (kcal/mol)

Fig.1 Optimized transition states for the concerted bromolactonization in DCE. Transition states TS-1 and TS-2 lead to endo- and exo-cyclic

products, respectively.
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amount of the lactonization product can be observed when this
reaction is performed in DCE (vide supra).

DFT calculations were subsequently performed to investigate
the favorable mechanistic pathway and regioselectivity for the

a. Kinetic studies
NS OH
SN
1a,[Clp=0.1M

——4 equiv HFIP

Conversion of 1a (%)

NBS (1.1 equiv)
——

CD,Cly, rt, 1 h
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bromolactonization in HFIP. Because of its powerful hydrogen
bond (H-bond) donor ability,*? it is possible for HFIP to form
strong H-bonds with various species along the reaction course.
Therefore, a mixed explicit-implicit solvation model is used, in

Conversion of 1a vs Time

—e—1.5 equiv HFIP —e—2 equiv HFIP
—=5 equiv HFIP

—e—3 equiv HFIP
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Fig. 2 Experimental mechanistic studies: (a) kinetics studies and (b) conversion between endo- and exo-product. See pages S6—S9 in the ESIT

for more details.
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Fig. 3 Computed free energy profile for the stepwise bromolactonization in HFIP. S represents the HFIP molecule.

which explicit HFIP molecules were included in DFT calcu- there are some changes in absolute energy values, the conclu-
lations.>**»* Based on our kinetic studies suggesting that the sion remains similar all through our calculations, which gives
reaction order in HFIP is approximately 3 (Fig. 2a and further a solid validation to the accuracy of the mixed explicit-implicit
details in pages S6-S8 in the ESIT), three HFIP molecules were solvation model.

included in our computational investigations. Additionally, we Our DFT calculations indicated that the favorable mechanism
have also performed calculations by involving one and two HFIP  for the bromolactonization in HFIP is the stepwise pathway
molecules (Fig. S1-S4, pages $99-S100 in the ESIT). Although (Fig. 3), which is consistent with the previous calculation for the

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 11 April 2024. Downloaded on 1/14/2026 10:19:04 AM.

A O T ®
17 O--H--0 0
o & s 5,
solv ! Zat O o7

(kcal/mol)

(cc)

Fig. 4 Computed free energy profile for the stepwise bromolactonization in HFIP catalyzed by TfOH. S represents the HFIP molecule.
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halolactonization in protic solvent.’® The barrier height for the
formation of the bridged bromonium species 5 via TS-3 is
calculated to be 15.7 keal mol . It should be noted that we have
also considered the concerted mechanism for this trans-
formation in HFIP. However, we can only locate the transition
state for the syn-concerted addition pathway (Fig. S5 in the ESIT),
which is calculated to be 9.7 keal mol ™ higher in energy than TS-
3. Therefore, the concerted mechanism is unlikely to occur.
Additionally, the stepwise mechanism is also calculated to be the
favorable pathway for the reaction of 11 in HFIP (see Fig. S6 in the
ESIT for more details). This result is in agreement with the fact
that HFIP has an exceptional cation stabilization ability*>** due to
the low nucleophilicity and high dielectric constant, and, thus,
the stepwise mechanism is supposed to be the preferable
pathway.*

In the bridged bromonium intermediate 5, the natural
charge of the C1 atom is higher than that of the C2 atom (Fig. 3).
Therefore, the activation barrier for the nucleophilic addition
from the oxygen atom of the carboxyl moiety to the C2 atom of
the bromonium cation leading to the endo-cyclic product is
calculated to be 2.6 keal mol ™" lower in energy than that for the
nucleophilic addition to the C1 atom. This result is consistent
with experimental data where the formation of the endo-product
is more favorable in HFIP. Our computational study demon-
strates that the regioselectivity for the bromolactonization in
HFIP is determined by electronic properties and this reaction is
under kinetic control.

On the other hand, our experiments demonstrated that when
TfOH is used as a catalyst, the exo-cyclic product is more
favorable (Table 1). By using DFT calculations, we found that in
the presence of TfOH, the NBS reagent can easily be protonated
lowering the LUMO energy from —1.05 eV to —2.04 eV for
neutral and protonated NBS, respectively leading to the
enhancement of NBS reactivity.** When TfOH is included, the
activation barrier for the electrophile addition TS-6 is calculated
to be 9.2 keal mol ™" relative to 1 (Fig. 4), which is 6.5 keal mol ™
lower than that without TfOH, i.e., TS-3. In addition, TFOH can
also have a great stabilization effect on the bridged bromonium
species. From bromonium intermediate 8, although the nucle-
ophilic addition generating the endo-product is kinetically more
favorable, the reaction is now under thermodynamic control.
The endo-product can isomerize to generate a more stable exo-
cyclic product. This computational result is consistent with our
additional control experiments, in which the endo-cyclic species
2 can transform into the exo-cyclic species 3 in the presence of
TfOH or pTSA (Fig. 2b - upper route, also see page S9 in the ESIt
for more details). It should be noted that when the isomeriza-
tion was carried out in DCE instead of HFIP (Fig. 2b - lower
route), average yields of exo-product 3a with poor diaster-
eoselectivity (in the case of TfOH) or incomplete conversion (in
the case of pTSA) were observed, highlighting the vital role of
HFIP in this conversion.

Conclusion

In summary, we introduce an effective and straightforward
method to access two different analogues of bromolactones by

© 2024 The Author(s). Published by the Royal Society of Chemistry
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precisely manipulating the regioselectivity of the bromolacto-
nization reaction in HFIP solvent. DFT calculations under-
scored the significance of HFIP in both endo-
bromolactonization under kinetic conditions and exo-bromo-
lactonization under thermodynamic conditions. This method,
when combined with our recently developed ring-opening ole-
fination of cyclic ketone ketals, offers a novel pathway for late-
stage modifications of cyclic ketones into functionalized
lactones.
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