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Novel fungal diphenyl ether biosynthetic gene
clusters encode a promiscuous oxidase for elevated
antibacterial activitiesT
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Diphenyl ethers (DPEs) are produced by filamentous fungi using polyketide synthases (PKSs) directly, or via
Cu oxidase-catalyzed oxidative rearrangements of benzophenone intermediates. Here, we use
heterologous expression to reveal a third route towards DPEs in Preussia isomera that relies on an
oxidative multienzyme cascade to convert a PKS-generated, ester-linked didepside to depsidones and
further to DPEs, and apply comparative genomics to identify conserved biosynthetic gene clusters for
this pathway in multiple fungi. The distribution of DPE products is modulated by the expression chassis
upon pathway reconstitution. Among the post-PKS enzymes, the DpeH tyrosinase shows considerable

substrate promiscuity towards synthetic DPE analogues. By creating hybrid enzymes with a DpeH
Received 29th February 2024 thologue from Aspergillus nidul identify the C-terminal region of DpeH to alter substrat
Accepted 22nd July 2024 orthologue from Aspergillus nidulans, we identify the erminal region of DpeH to alter substrate
recognition. Our work highlights an evolutionarily conserved way to produce DPEs, and provides

DOI: 10.1039/d4sc01435a enzymatic tools to generate DPE analogues with broad spectrum antibiotic activity against multidrug-
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Naturally occurring didepsides, encompassing two hydrox-
ybenzoic acid moieties connected by an ester linkage, are
common lichen metabolites and have also been isolated from
a limited number of fungi. Didepsides display antitumor,
antimalarial, antibacterial, antifouling, and various human
enzyme-inhibitory activities.® The ester linkage may form by
oxidative coupling or rearrangements after the release of
orsellinic acid or its derivatives from polyketide synthase
enzymes (PKSs)."” However, PKSs directly affording didepsides
have also been reported recently, among which DrcA from
Aspergillus duricaulis,®> MollE from Ovatospora sp.,* and DepH
from A. sp. SCSIO SX7S7 ® condense acyl carrier protein-bound
intermediates to form ester-linked didepsides (Fig. 1A). The
enzymes encoded by gene clusters containing such PKSs may
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further elaborate the didepsides. Thus, cytochrome P450 mon-
ooxygenases (P450s) such as MollD and DepG install an ether
bond to form depsidones (DEPs),** while nonribosomal peptide
synthetases (such as DrcB) or prenyltransferases (e.g., MollF)
form composite natural products (Fig. 1A).>*

Previously, we identified a novel PKS, Preu6 (renamed DpeA
here) from Preussia isomera XL1326, which utilizes collabo-
rating starter acyl transferase (SAT) and thioesterase (TE)
domains to form didepside 1 (Fig. 2D).*” In addition to dpeA,
the corresponding cluster contains eight genes, dpeB-dpel
(GenBank accession PP925597, Fig. 2A). We reconstituted this
cluster and delineated the reaction order of the encoded
enzymes using stepwise heterologous expression in Saccharo-
myces cerevisiae BJ5464-NpgA®® (Table S1 and Fig. S1}). The
results revealed that DpeB (P450, 49% identity to DepG of A. sp.
SCSIO SX757 *) and DpeD (decarboxylase, 42% identity to DepF)
transform didepside 1 to two DEPs (2 and 3), similar to the
reactions catalyzed by their DepGF orthologues during the
formation of unguinol (Fig. 1A).° Next, DpeC (predicted o/pB-
hydrolase), DpeE (putative methyltransferase with a Methyl-
transf 23 conserved domain, pfam13489), DpeF (deduced
methyltransferase with a Methyltransf 2 conserved domain,
pfamo00891), and DpeH (putative tyrosinase) convert DEP 3 to
a series of DPEs, 4-8, among which DPE 8 is a new compound
(Fig. 2B and D).

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Biosynthetic gene clusters in fungi and models for the
biosynthesis of (A) didepsides; and (B) DPEs.

Since the production of 7 was very inefficient in the yeast
system, we could not detect any further transformations with
Dpel, a putative dehydrogenase (73% identity to AN7914 of A.
nidulans with an unknown function'®''). Thus, we introduced
the dpe biosynthetic gene combinations defined in BJ5464-
NpgA into A. oryzae NSAR1."> The biosynthetic steps catalyzed
by DpeABDCE to yield compounds 1-5 were identical in the two
systems, although small amounts of 3 were also converted to 4
by endogenous enzymes in A. oryzae (Fig. 2C and S27). DpeE,
a predicted SAM-dependent methyltransferase (Fig. S3A7), acted
as a decarboxylase in both chassis to convert 4 to 5, as pre-
cedented by other enzymes with an apparent methyltransferase
fold.”® This decarboxylase activity was not dependent on the
presence of SAM as verified by in vitro reconstitution of the
recombinant DpeE enzyme (Fig. S3B and Ct). Remarkably, A
oryzae NSAR1 preferred to transform 5 to 8 using DpeH
(Fig. S4t), in contrast to the yeast BJ5464-NpgA that utilized
DpeF to convert 5 to 6 (Fig. 2B). Despite the higher productivity
of the A. oryzae chassis, Dpel remained apparently nonfunc-
tional, nor did purified, recombinant Dpel catalyze any
conversions of 1-8 in vitro (Fig. S51). Thus, the function of Dpel,
if any, requires further investigation. Meanwhile, 8 was shown

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Characterization of the dpe gene cluster in Preussia isomera.
(A) Schematic representation and annotation of the dpe cluster. (B and
C) Product profiles of S. cerevisiae BJ5464-NpgA or A. oryzae NSAR1
transformants expressing the indicated gene combinations, respec-
tively. Control, the corresponding empty vectors. *, a mixture of an
endogenous yeast metabolite with trace amounts of 8 (detected by
MS); #, orsellinic acid. (D) Biosynthetic model for DPEs 7 and 8.

to be transformed to 7 using in vivo biocatalytic conversions
with DpeF-producing S. cerevisiae or A. oryzae strains (Fig. S6T).

Taken together, the dpe cluster relies on the transformation
of a PKS-generated, ester-linked didepside to DEPs, and further
to various DPEs in a multistep, multi-enzyme, oxidative reaction
cascade. This is different from the ors cluster of A. nidulans
FGSC A4 where PKS AN7909 alone affords a DPE;'>" or from the
pta cluster of Pestalotiopsis fici where the Cu oxidase PtaE
catalyzes an oxidative rearrangement to generate the DPE
product (Fig. 1B).**

To date, approximately 170 DPEs have been isolated from 46
fungal species (Table S21). Upon alignment of the 31 available
genome sequences of DPE producers (Table S27) to the known
clusters ors, pta, and dpe, we identified putative DPE clusters in
20 species (Table S37), although the existence of divergent DPE

Chem. Sci., 2024, 15, 14248-14253 | 14249
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Fig. 3 Distribution of the proposed DPE biosynthetic gene clusters in
fungi. (A) ors-like gene clusters (Type 1), in which the PKSs alone may
produce DPEs. (B) pta-like gene clusters (Type Il), in which conserved
PKSs and PtaE-like Cu oxidases are predicted to be involved in the
formation of DPEs. (C) dpe-like gene clusters (Type lll), in which
conserved PKSs and P450s may produce DEPs that are further con-
verted to DPEs. Arrows with identical colors indicate orthologous
genes. The numbers above the genes indicate the percent identities of
the encoded proteins to their orthologues in the corresponding model
cluster.

clusters cannot be excluded in the remaining species either. The
identified clusters could be classified into three categories.
Twelve DPE clusters belong to Type I (ors-like clusters; Fig. 3A),
featuring PKSs with high similarity to AN7909. These are pre-
dicted to produce diorcinolic acid-like DPEs utilizing these
PKSs alone.*** Correspondingly, the DPE compounds isolated
from these 12 species are overwhelmingly diorcinol derivatives
(Table S4t). Three DPE clusters belong to Type II (pta-like
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View Article Online

Edge Article

clusters; DPE products similar to pestheic acid; Fig. 3B and
Table S57), in which PtaE-like Cu oxidases are predicted to form
the ether linkage." Finally, five DPE clusters belong to Type III
(dpe-like clusters; Fig. 3C), featuring conserved PKSs, P450s, and
DpeD-like decarboxylases that presumably generate DEPs en
route to DPEs (Table S6t). Three of the five Type III clusters
(those from Corynespora, Boeremia, and Aspergillus spp.) lack
DpeC orthologues that would hydrolyze the ester bond of DEPs
to form DPEs. We hypothesize that endogenous hydrolases
encoded elsewhere in the genomes of these species perform this
function, just as seen in A. oryzae NSAR1 (Fig. 2C and S27).
Interestingly, all three cluster types are present in genus
Aspergillus, potentially enriching the variety of DPEs in these
fungi.

Next, we tested the activities of compounds 1-8 against eight
antibiotic-resistant bacteria. DEP 3 was active against Gram-
positive bacteria, while DPEs 7 and 8 with the C-2' hydroxy
functionality installed by DpeH displayed broad-spectrum
antibacterial activities. Remarkably, the novel DPE 8 (yield:
259.8 4+ 15.9 mg L' in A. oryzae; Fig. S77) exhibited potent
activities against multidrug-resistant Staphylococcus epi-
dermidis, methicillin-resistant Sta. aureus (MIC = 6.25 pg mL ™),
and carbapenems-resistant Acinetobacter baumannii and Kleb-
siella pneumoniae (MIC = 12.5 png mL™'; Table S77).

Then, we turned to AN7912, an orthologue (57% identity) of
DpeH in the ors cluster. AN7912 hydroxylates diorcinol
(Fig. 1B)"* and accepts the simplified substrate 9 (Fig. 4C), but
this enzyme could not convert 5 to 8 (Fig. 4B), or 6 to 7 (Fig. S87).
In contrast, DpeH converts 9, 5, and 6 to their hydroxylated
derivatives (9a/b, 8, and 7, respectively; Fig. 4B and S8t). The
AlphaFold2-predicted*® structures of AN7912 and DpeH differed
both at their N-termini (M'-K*® in DpeH; M"-R*® in AN7912)
and C-termini (L**°-Q**° in DpeH; L***-P**° in AN7912; Fig. 4A
and S97). Replacing either or both terminal regions of AN7912
with those of DpeH showed that hybrid M2 (AN7912[M"'-L***] +
DpeH[L***-Q**]) could transform compounds 5 to 8, and 6 to 7
while chimera M1 (DpeH[M'-K*’] + AN7912[E*°-P**°]) could
not, revealing that the C-terminal region modulates substrate
recognition. Correspondingly, hybrid M4 (DpeH[M'-L**°] +
AN7912[L***-P**°]), and truncated enzyme M5 (DpeH[M'-L***])
lost the ability to convert 5 to 8, or 6 to 7 (Fig. 4B and S87).
Importantly, all tested chimeras (M1-M4) and truncated
enzymes (M5-M6) retained their activities towards simplified
substrate 9.

The C-terminal region of DpeH possesses a short a-helix
(V¥7°-M>""), a linker (S*”°-C*®?), and a short g-sheet (Y***-Y*%?)
that are all missing from AN7912 (Fig. 4A). Deleting the a-helix
from chimera M2 (ie, mutant M7: M2-A[V***-M*"*]) or
progressively truncating the M2 hybrid enzyme (i.e., mutants
M8-M10) revealed that all these structural elements are neces-
sary to produce 8 from 5, and 7 from 6, but their presence or
absence does not affect the hydroxylation of substrate 9 (Fig. 4B
and S87).

Finally, we tested the substrate promiscuities of DpeH and
AN7912 with various synthetic DPE analogues using

© 2024 The Author(s). Published by the Royal Society of Chemistry
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compounds 9, 9a and 9b.

biotransformation in the A. oryzae chassis. DPE 11 was partially
converted to 11c by an unknown endogenous enzyme of A.
oryzae (Fig. 5 and S10}). AN7912 showed a narrow substrate
spectrum, affording only minute amounts of 17a from 17, but
rejecting all other substrates (Fig. 5B). In contrast, DpeH turned
out to be a promiscuous enzyme accepting all tested DPEs to
generate novel “unnatural” products (Fig. 5A and D). The
regiospecificity of the reaction was strict, with hydroxylation at
C-2’ in all cases. With DPE 17, double hydroxylation at C-3 and
C-2" was also observed, as may have been expected considering
the symmetrical structure of this substrate (Fig. 5A). Impor-
tantly, mutant M2 (AN7912[M'-L***] + DpeH[L***-Q**°]) was
just as promiscuous as DpeH, and afforded the same
biotransformation products (Fig. S111), confirming the essen-
tial role of the C-terminal region of DpeH in determining
substrate specificity.

Conclusions

In summary, we characterized the dpe biosynthetic gene cluster
of Preussia isomera via heterologous expression in S. cerevisiae
and A. oryzae chassis. Most predicted DPE biosynthetic clusters
in fungi seem to rely on a conserved PKS to directly form DPE
analogues from orsellinic acid-type nascent, PKS-bound
monomers. Rarer DPE clusters afford their products by enlist-
ing a PtaE-like Cu oxidase to catalyze the oxidative rearrange-
ment of polyketide-derived benzophenones. In contrast, dpe-
type clusters utilize a conserved PKS to produce analogues of

© 2024 The Author(s). Published by the Royal Society of Chemistry

the ester-linked didepside lecanoric acid 1. These are then
converted to DPEs by a multienzyme cascade. With the dpe
cluster, oxidative conversion of 1 to DEP 2 is catalyzed by DpeB,
followed by decarboxylation to 3 by DpeD, oxidative ring
opening to 4 by DpeC, and another decarboxylation to 5 by
DpeE. DPE 5 may then be converted to the novel broad-
spectrum antibiotic 8 by DpeH, or methylated by DpeF to
yield 6 which is then hydroxylated by DpeH to yield another
broad-spectrum antibiotic, DPE 7. Interestingly, the preference
to produce 8 or 6/7 seems to be determined by the chassis, with
DPE 8 dominating in Aspergillus, while DPEs 6 and 7 preferred
in Saccharomyces. DpeH is a promiscuous enzyme that recog-
nizes a variety of DPE analogues, and faithfully transforms them
to their C-2' hydroxylated derivatives. AN7912, the DpeH
orthologue encoded in the ors cluster of A. nidulans is a much
less promiscuous catalyst than DpeH. However, transplanting
a short C-terminal region of DpeH (41 amino acids) broadens
the substrate specificity of AN7912, and allows the resulting
chimera to accept DPEs 5 and 10-17 as its substrates. Our work
not only clarifies a novel pathway towards DPEs in filamentous
fungi, but also provides a useful tool for synthetic biology to
produce novel “unnatural” DPE analogues and highlights
protein engineering strategies to broaden the substrate speci-
ficity of DpeH orthologues. Meanwhile, DPEs 7 and 8 may
further be evaluated as potent broad-spectrum antibiotics
against multidrug-resistant Gram-positive and Gram-negative
pathogens on the WHO global priority list.
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