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ate atomistic simulations of
flexible molecules using conformationally
generalisable machine learned potentials†

Christopher D. Williams, *a Jas Kalayan, b Neil A. Burton c

and Richard A. Bryce *a

Computational simulation methods based on machine learned potentials (MLPs) promise to revolutionise

shape prediction of flexible molecules in solution, but their widespread adoption has been limited by the

way in which training data is generated. Here, we present an approach which allows the key

conformational degrees of freedom to be properly represented in reference molecular datasets. MLPs

trained on these datasets using a global descriptor scheme are generalisable in conformational space,

providing quantum chemical accuracy for all conformers. These MLPs are capable of propagating long,

stable molecular dynamics trajectories, an attribute that has remained a challenge. We deploy the MLPs

in obtaining converged conformational free energy surfaces for flexible molecules via well-tempered

metadynamics simulations; this approach provides a hitherto inaccessible route to accurately computing

the structural, dynamical and thermodynamical properties of a wide variety of flexible molecular systems.

It is further demonstrated that MLPs must be trained on reference datasets with complete coverage of

conformational space, including in barrier regions, to achieve stable molecular dynamics trajectories.
1. Introduction

Few areas of the physical and biological sciences remain
untouched by the valuable contributions of atomistic simula-
tion techniques, either based on ab initio quantum mechanics
(QM)1 or empirical potentials.2 Despite the many compelling
structural, kinetic and thermodynamic insights obtained from
these two well-established approaches, the inherent limitations
are well understood. Quantum chemical methods offer accuracy
but are bounded by computational inefficiency and their use
quickly becomes intractable with increasing system size or time
scale. Empirical potentials are highly efficient to compute;
however, the use of simple physics-based functional forms to
represent the potential energy surface can neglect or misrep-
resent important quantum mechanical effects, with inaccurate
property prediction across diverse elds as a result.3–9 The
emergence of machine learned interatomic potentials (MLPs)
offers a possible solution to bridge this accuracy-efficiency
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gap.10–15 MLPs are trained to learn the complex mapping
between a system's atomic structure, encoded by carefully
chosen input features, and its multidimensional potential
energy surface, using regression algorithms. In many instances,
the extremely exible functional forms of the MLP enable much
higher accuracy than can be achieved using empirical poten-
tials, providing that a sufficiently high-quality ab initio QM
reference dataset is available for training. The capability to
perform simulations with forces and energies at quantum
chemical accuracy without the prohibitive computational cost is
revolutionising the atomistic modelling toolkit for applications
spanning materials science,16,17 chemistry18 and biology.19

For exible molecular systems, which can have complex
conformational energy surfaces dened by torsional motions
around one or more interdependent rotatable bonds, the
accuracy-efficiency gap is particularly problematic.20 An inter-
play of many competing effects, such as conjugation, steric
repulsion, hydrogen bonding, dispersion, electronic repulsion
and solvation can lead to subtle differences in relative confor-
mational energies. Many of these effects are not well repre-
sented by conventional empirical potential methods,
sometimes resulting in a failure to correctly identify the lowest
energy conformer.5,7 On the other hand, the timescales involved
in torsional motions are oen too long to observe conforma-
tional changes using ab initio molecular dynamics (AIMD)
methods due to the requirement to overcome large activation
energy barriers. One area in which this trade-off impedes
progress is drug design, where it is critical for atomistic
© 2024 The Author(s). Published by the Royal Society of Chemistry
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simulations to be able to accurately distinguish between the
energies of the unbound and protein-bound conformational
states of exible drug molecules, as well as conduct long
simulations, to sample a representative ensemble and thus
correctly assess their binding affinities. In this particular eld,
MLPs may confer signicant advantages over conventional
techniques.21,22

The general training protocol for MLPs is well-established
but the last few years have seen the algorithmic variety of
schemes in the literature rapidly evolve,23,24 including those
based on feed-forward,25–28 message-passing and equivariant
neural networks,29–36 Gaussian process regression,37–39 kernel
ridge regression40–42 and atomic cluster expansions.43–45 In spite
of this important progress, the widespread adoption of MLPs in
molecular simulation requires several remaining challenges to
be surmounted.42,46,47 One of these challenges pertains to
trajectories that are unstable over the long timeframes required
for sampling the underlying probability distribution to calcu-
late meaningful simulation observables. These instabilities can
arise from unphysical congurations in regions of the potential
energy surface that were poorly sampled in the reference dataset
used for training,36,48,49 where there is no guarantee that MLPs
can extrapolate to predict physically reasonable forces. It must
therefore be ensured that reference datasets contain structures
for all relevant local minima, as well as those corresponding to
transition paths, to prevent unstable trajectories. This challenge
is particularly acute for exible molecules which may possess
a distribution of distinct conformational states associated with
separate energetic minima.20 Developing models that generalise
across all regions of conformational space is the necessary next
step underpinning the widespread deployment of MLPs for
exible molecules. This naturally brings into focus the task of
how to efficiently generate high quality reference datasets for
training MLPs.

In contrast to the development of data efficient learning
algorithms, comparatively little attention has been paid on how
best to generate reference dataset structures. It is most common
for structures to be sampled from equilibrium molecular
dynamics (MD) simulations.40,50,51 Although elevated tempera-
tures are frequently employed to extend the range of sampling,
there is no guarantee that an arbitrary high temperature will be
sufficient to surmount large activation energy barriers and
sample all the relevant conformers of a exible molecule.
Another common approach is normal-mode sampling.25,52–54

However, exhaustive normal-mode sampling, which depends
on computing the Hessian matrix, may be a prohibitively costly
overhead. In addition, the non-linear distortions involved in
conformational change may be poorly approximated by linear
normal-mode sampling. Other more sophisticated approaches,
such as active learning,55–58 adaptive learning59,60 and query-by-
committee,61 have been proposed to generate structures in
poorly sampled regions. However, in many cases, these
approaches are unnecessarily complex and computationally
intensive, especially when the rotatable bonds of interest are
essentially already known. In addition, there is an advantage to
training a stable and accurate MLP at the rst attempt, avoiding
potentially unnecessary and computationally costly training
© 2024 The Author(s). Published by the Royal Society of Chemistry
iterations. The use of enhanced sampling techniques,62–65 which
are well-established in MD simulations, could be used to
improve sampling with little computational overhead instead.
For example, Yang et al.66 recently showed that enhanced
sampling could be used to generate the transition state struc-
tures needed to train and employ a reactive MLP to simulate
urea decomposition.

In this study, we highlight that comprehensive conforma-
tional sampling, i.e. ensuring that all energetically relevant
conformers are represented by structures in the reference
dataset, is a crucial consideration when training MLPs for
exible molecules. We rstly demonstrate that the most
popular reference dataset used for MLP benchmarking, the
revised MD17 (rMD17) dataset,40,67 which contains the gas-
phase trajectories of several exible drug molecules, is
missing important conformers. Simulations of these exible
molecules using MLPs trained on the rMD17 dataset ultimately
fail due to the generation of unphysical structures. We then
propose a straightforward alternative scheme for generating
robust reference datasets for training accurate, conformation-
ally generalisable MLPs to remedy this shortcoming. Finally, we
remark upon the implications of our ndings in the training of
MLPs for simulating exible molecules and their stability in MD
simulations.
2. Methods
2.1 Training scheme

MLPs were trained according to a robust variant of the PairFE-
Net global descriptor scheme,68 which is based on the original
PairF-Net formalism.28 For certain applications, the use of
global descriptors to encode atomic structure confers advan-
tages over local descriptors. In avoiding the use of cut-offs or
symmetry functions inherent to local descriptor models, all
quantum chemical and long-range effects are included. The
inability of local descriptor models to account for long-range
interactions may have a signicantly deleterious impact on
the predictive ability of an MLP,69–72 potentially hindering its
ability to distinguish between conformers that subtly differ in
stability. Furthermore, although local descriptor models can be
parallelised and designed with molecular generalisability and
size-extensivity in mind,14,25,27,38,43 these attributes are not always
necessary or desirable depending on the application at hand.23

Indeed, in drug design, Lipinski's “Rule of Five” mnemonic73

suggests that candidate ligands should have a molecular weight
of less than 500 g mol−1 in order to permit their penetration
through cell membranes. This size regime is within the capacity
of global descriptor models such as PairFE-Net. Furthermore,
where quantum chemical accuracy is only required for small
regions of a system, MLPs can be combined or embedded with
much cheaper empirical potentials, e.g. to model solvent or
a protein binding pocket, in a manner analogous to hybrid
quantum mechanical/molecular mechanical approaches, as
implemented in our earlier work68 and elsewhere.74,75

In PairFE-Net, an atomic structure is encoded using pairwise
nuclear repulsion forces,
Chem. Sci., 2024, 15, 12780–12795 | 12781
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FNR
ij ¼ ZiZj

rij2
(1)

where Zi is the nuclear charge and rij is the interatomic distance
between atoms i and j. This internal coordinate system guar-
antees rotational and translation invariance of the trained MLP.
The use of the full set of pairwise nuclear repulsion forces as
input features without cut-offs ensures that all long-range
interactions are included. To train an MLP, the absolute
energy of a structure, E, is rst converted to an energy scaled
over the range of forces, E*, where

E* ¼ Fmax
i;k ðE � EminÞ
ðEmax � EminÞ (2)

Fmax
i,k is the maximum absolute force across all atoms i and

Cartesian dimensions, k, and Emax and Emin are the maximum
and minimum energies, across the combined training and
validation sets. In our previous study,68 forces and scaled
energies were simultaneously decomposed into a set of pairwise
interatomic coefficients using a transformation matrix. Here we
employed a simplied version of the method, in which only the
scaled energy is decomposed into a set of interatomic energies
for the i and j atom pair, 3ij, according to

E* ¼
XNpair

ij

Xij3ij (3)

where Npair is the number of distinct atom pairs in the system,
given by

Npair ¼ NðN � 1Þ
2

(4)

where N is the number of atoms in the system. Xij is the pair
energy bias, which depends only on its reciprocal interatomic
distance,

Xij ¼ M

rij
(5)

and M is a normalization constant

M ¼
 XNpair

ij

1

rij2

!�1
2

(6)

During training according to the PairFE-Net scheme, arti-
cial neural networks directly predict the pairwise interatomic
energies, 3̂ij, which are then recombined to predict the scaled
energy, Ê*, according to eqn (3). The predicted energy is then
unscaled using

Ê ¼ Ê*ðEmax � EminÞ
Fmax
i;k

þ Emin (7)

from which the predicted conservative atomic forces for each
atom i and in each Cartesian direction k, F̂i,k, can be calculated
from

F̂ i;k ¼ �V!iÊ (8)

ensuring that energy is strictly conserved.
12782 | Chem. Sci., 2024, 15, 12780–12795
2.2 Neural network training

Reference datasets containing 10 000 structures were sub-
divided into separate training, validation and test sets con-
taining 8000, 1000 and 1000 structures, respectively. Feed-
forward articial neural networks were trained, using a batch
size of 32 structures, to predict forces and energies by mini-
mising the custom mean-squared error loss function, L,

L ¼ lE kE � Êk2 þ lF
1

3N

XN
i¼1

Xk
3

kFi;k � F̂ i;kk2 (9)

for the training set, where lE and lF are the (unscaled) energy
and force weights, given by

lF ¼ 3N

3N þ 1
lE ¼ 1� lF (10)

Compared to our previous study,68 the pairwise interatomic
coefficients do not feature in the loss function, enabling
improved force and energy prediction accuracy. The learning
rate, initially set to 5 × 10−4, was chosen on the basis of
balancing the need to minimise training time and avoid
exploding gradients. As well as being used to monitor for
overtting, the validation set was used to determine the
convergence criteria of the training process. Specically, if there
was no improvement in the validation loss over the preceding
2000 epochs, the learning rate was reduced by a factor of 0.5,
and training was stopped once the learning rate had decreased
to 1 × 10−7. All networks were comprised of an input layer
containing Npair nodes, three hidden layers each containing 360
nodes with sigmoid linear unit (SiLU) activation functions and
a linear output layer containing Npair nodes. The use of multiple
hidden layers greatly enhances the ability of the trained
networks to t complex and highly non-linear functional
dependences, improving their predictive capability compared to
our previous study.68 Network hyperparameters were chosen on
the basis of systematic evaluation and optimisation of test set
predictions using an independent molecule in the rMD17
training set (malonaldehyde). Separate neural networks were
trained for each molecule and dataset. All neural networks were
constructed and trained using Tensorow, version 2.12.76
2.3 Dataset generation

To sample structures for the reference datasets, molecular
dynamics simulations were performed using the GAFF poten-
tial.77 The simulations were initiated using a single molecule
centred in a simulation cell with side lengths of 2.5 nm.
Simulations were performed for 11 ns in the canonical
ensemble, numerically integrating the equations of motion
using the velocity Verlet algorithm and a 1 fs timestep. Target
temperatures were maintained using the Nosé–Hoover chain
thermostat78 with a collision frequency of 50 ps−1, a chain with
10 beads, 5 thermostat iterations and 5 Yoshida-Suzuki inte-
gration parameters. For each molecule, partial atomic charges
were derived from the restrained electrostatic potential (RESP)
approach79 at the HF/6-31G* level of theory. Non-bonded
interactions were calculated without cut-offs. In enhanced
© 2024 The Author(s). Published by the Royal Society of Chemistry
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sampling simulations, the metadynamics62,80 bias potential was
constructed as the sum of penalty Gaussian functions with
a xed height, h, and width of 0.24 kcal mol−1 and 0.35 radians,
deposited every 0.5 ps. In all sampling simulations, structures
were saved every 1 ps in the nal 10 ns of simulation time. All
MD simulations were carried out using the OpenMM library,81

version 8.0 and, in the case of enhanced sampling with meta-
dynamics, using the OpenMM Plumed plugin.82 The propor-
tions of the (4,j)-surface populated with structures shown in
Table 2 were estimated using a 32 × 32 grid.

The 10 000 structures sampled from the empirical potential
simulations were evaluated using single point calculations at
the B3LYP-D3/6-31G* level83–86 to obtain reference datasets
containing quantum chemical Cartesian atomic forces and
energies. Torsional energy proles for 4 or j were obtained by
constrained geometry optimisations. For each value of 4,
a conformational search with respect to j was carried out to
nd the minimum energy, and vice versa. The torsion energy
proles were calculated at the B3LYP-D3/6-31G* level83–86 for
consistency with the newly generated datasets and, separately,
at the PBE/def2-SVP level for consistency with the rMD17
reference datasets, respectively. All DFT calculations employed
Gaussian 09, revision D.01,87 using a pruned 99 590 point
(ultrane) integration grid and tight SCF convergence criteria of
<10−8 RMS change in the density matrix, which corresponds to
a change in energy of approximately 10−7 kcal mol−1.

Due to the use of input descriptors based on an internal
coordinate system which imposes an arbitrary order on input
features, the PairFE-Net scheme is not invariant with respect to
atomic permutation. When combined with inherently uneven
MD sampling, this can result in signicantly different energy
and force predictions for symmetrically equivalent structures
and an inability of trainedMLPs to correctly reproduce torsional
energy proles. One solution to this problem is augmenting the
dataset with structural copies of all symmetrically equivalent
structures, but this is unfeasible for all but the smallest mole-
cules due to a combinatorial explosion in the number of
permutations. Instead, aer the DFT evaluation and prior to
training MLPs, all permutationally equivalent atoms or groups
of atoms in the reference dataset were swapped. For each
structure, 10 random swap moves were applied to every
symmetry-related functional group, losing memory of the initial
conguration but keeping the size of the dataset constant. This
“shuffling” of the reference dataset allows the neural network to
learn the permutational symmetries of the molecule and
essentially eliminates the problem associated with a lack of
permutational invariance combined with uneven MD sampling,
enabling accurate prediction of torsional energy proles.
2.4 MLP simulations

In the MLP simulations, atomic forces were predicted from
trained PairFE-Net neural networks. Constant temperatures
were maintained using the Langevin thermostat with a coupling
constant of 1 ps−1 and bond lengths were unconstrained. All
other simulation parameters were as described above for the
empirical potential simulations. Although the time that
© 2024 The Author(s). Published by the Royal Society of Chemistry
instability arises is obvious by visual analysis of MD trajectories,
unstable structures were dened as those in which either (i) any
bond deviates by ± 0.25 Å relative to the initial (optimised)
structure; or (ii) any interatomic distance is less than 0.75 Å.
Stability was rst assessed using a short 10 ps simulation,
saving structures every 1 fs. On successful completion of this
simulation, longer 25 ns simulations were performed, saving
structures every 1 ps, while again checking for stability using the
above criteria. Converged conformational free energy surfaces
were obtained using 25 ns well-tempered metadynamics simu-
lations.88 As opposed to the conventional metadynamics tech-
nique, a bias factor of 6.0 was used to scale h, from an initial
value of 0.24 kcal mol−1.

3. Results
3.1 Benchmarking

A crucial rst step in the development of new MLPs is bench-
marking with reference datasets. The rMD17 dataset40,67 has
been the subject of extensive testing and benchmarking and is
by far the most popular benchmark dataset for MLPs. It
contains 10 small organic molecules with structures sampled
from short ab initio MD simulations in vacuum at 500 K. To
assess the performance of PairFE-Net for each molecule, the
rst 10 000 structures were taken from the rMD17 dataset. Of
these 10 000 structures, the rst 8000 were used for training, the
subsequent 1000 for cross-validation purposes and the nal
1000 for testing. The 1000 test structures drawn from the
reference dataset will herein be referred to as the sub-sample
test sets, to distinguish them from independently generated
test sets.

Benchmarking with 8000 training structures demonstrates
the exceptional performance of PairFE-Net in predicting
Cartesian atomic forces and energies for each molecule in
rMD17. The mean absolute errors (MAEs) for these sub-sample
test sets are in the ranges of 0.020–0.221 kcal mol−1 Å−1 and
0.004–0.055 kcal mol−1 for forces and energies, respectively
(Table 1, Fig. 1a). 100% of energies and 99.6% of forces were
predicted within 1 kcal mol−1 (Å−1) by PairFE-Net. Sorting the
absolute errors and plotting them against their percentile
produces a sigmoidal “S-curve”, enabling visualisation of the
distribution of errors.89 The S-curves for aspirin demonstrate
the very high delity of PairFENet-trained MLPs with respect to
the underlying DFT dataset (Fig. 1c), as well as highlighting the
long tail in the force and energy error distributions. Due to
these long tails, it is instructive to evaluate MLPs using
maximum forces and energy errors, which are particularly
important when it comes to simulation stability and prediction
of physically relevant structures using trained MLPs: maximum
absolute errors are typically an order of magnitude larger than
the MAEs (Fig. 1a and Table S2†). The maximum force error
across all 468 000 Cartesian force components in the 10 mole-
cule test sets was 3.729 kcal mol−1 Å−1 and the maximum
energy error across all 10 000 test set structures (1000 per
molecule) was 0.603 kcal mol−1. In addition to this exceptional
prediction accuracy, the PairFE-Net scheme is computationally
efficient, with each MLP taking no longer than 1–2 days to train
Chem. Sci., 2024, 15, 12780–12795 | 12783
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Table 1 Force and energy mean absolute errors of flexible drug molecule MLPs trained on the rMD17, MD-300K, MD-500K and Meta-300K
datasets. After training, each MLP was separately tested on three independent test sets: the reference dataset sub-sample of 1000 structures, as
well as torsion scans for rotation about 4 and j

Molecule Test set

Mean absolute error

Force (kcal mol−1 Å−1) Energy (kcal mol−1)

rMD17 MD-300K MD-500K Meta-300K rMD17 MD-300K MD-500K Meta-300K

Aspirin Sub-sample 0.22 0.15 0.31 0.27 0.06 0.03 0.10 0.16
4-Scan 7.93 6.51 1.27 0.19 5.42 1.63 2.04 0.12
j-Scan 4.76 0.98 0.20 0.15 0.51 0.38 0.06 0.15

Paracetamol Sub-sample 0.20 0.19 0.29 0.31 0.04 0.03 0.06 0.06
4-Scan 15.61 21.50 22.75 0.12 3.60 5.74 8.00 0.02
j-Scan 3.78 0.06 0.08 0.09 0.50 0.02 0.02 0.02

Salicylic acid Sub-sample 0.08 0.06 0.14 0.13 0.01 0.01 0.03 0.03
4-Scan 136.60 20.28 0.19 0.25 175.24 11.52 0.05 0.16
j-Scan 5.09 2.99 0.74 0.20 0.83 1.89 1.37 0.09
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using a single GPU node. The learning curve for aspirin trained
on the rMD17 dataset is shown in Fig. 1b.

To enable a like-for-like comparison with other MLP
schemes the performance of PairFE-Net trained networks was
also benchmarked using a smaller training set comprised of the
rst 1000 structures, which is the typical dataset size used for
benchmarking with rMD17 in the literature. The accuracy of
MLPs trained on the smaller dataset is diminished compared to
the 8000 structure training set, with the force and energy MAEs
increasing to 0.187–1.020 kcal mol−1 Å−1 and 0.023–
0.327 kcal mol−1, depending on the molecule (Fig. S1†). For
aspirin, separate MLPs were trained using the training splits
suggested by Christensen and von Lilienfeld67 but no signicant
differences were observed in resulting test set MAEs compared
to training MLPs using the rst 1000 structures.
3.2 Simulation stability and MLP generalisability

Despite excellent test error performance, we observed that MD
simulations of three molecules from rMD17 with conforma-
tional exibility, aspirin, paracetamol and salicylic acid,
Fig. 1 Performance of PairFE-Net MLPs, trained on 8000 structures from
(kcal mol−1) test set prediction errors using the rMD17 dataset shown i
bottom panel shows the maximum, absolute errors for each 1000 struc
(green) sets for aspirin. The loss function, L, which is minimised durin
a reduction in the learning rate. (c) Force (blue) and energy (red) S-curve p
quantum chemical accuracy (1 kcal mol−1).

12784 | Chem. Sci., 2024, 15, 12780–12795
frequently display simulation instabilities and unphysical
structures when using MLPs trained on the rMD17 benchmark
dataset. This suggests that the MAEs do not provide a reliable
approximation of the true generalisation error for the entire
potential energy surface, which can be attributed to incomplete
conformational sampling in the reference dataset. Extrapola-
tion to these unsampled regions leads to the generation of
unphysical structures in subsequent timesteps of the simula-
tion, undermining the ability to use the MLP to calculate any
properties of interest from the MD simulation. To simplify the
discussion and provide consistent labelling for each molecule,
torsion angles are labelled with respect to the incompleteness of
their sampling in rMD17, with 4 as the least well-sampled
torsion angle, enabling a general denition of trans and cis
conformers as 4 = 180° and 4 = 0°, respectively. For each
molecule, there is a degree of coupling between 4 and a second
torsion angle, j, dening a two-dimensional conformational
(4,j)-surface. These two torsion angles are highlighted in
Fig. 2a, 3a and 4a. For aspirin, a third torsion angle, u, denes
rotation of the carboxylic acid functionality; however, sampling
the rMD17 benchmark dataset. (a) Force (kcal mol−1 Å−1) and energy
n blue and red, respectively. The top panel shows the mean, and the
ture test set. (b) Learning curves for the training (black) and validation
g training, is defined in Methods. Sudden drops in L correspond to
lots of error distribution. The black dashed line marks the threshold for

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a) Key conformational transitions (i)–(iv) of aspirin defining the (4,j)-surface. Relative population densities of the (4,j)-surface for the (b)
rMD17, (c) MD-300K, (d) MD-500K and (e) Meta-300K datasets with conformational transitions (i)–(iv) highlighted in (b). For rMD17, the pop-
ulations were calculated using all 105 structures in the dataset. Torsional rotation of the carboxylic acid group, u is relatively unhindered and
relatively well-sampled in rMD17. Energy profiles with respect to torsional rotation around (f) 4, and (g) j, obtained from B3LYP-D3/6-31G*
calculations (orange circles) and predicted fromMLPs trained on rMD17 (red lines), MD-300K (blue lines), MD-500K (green lines) and Meta-300K
(black lines) datasets.

Fig. 3 (a) Key conformational transitions (i)–(iv) of paracetamol defining the (4,j)-surface. Relative population densities of the (4,j)-surface for
the (b) rMD17, (c) MD-300K, (d) MD-500K and (e) Meta-300K datasets with conformational transitions (i)–(iv) highlighted in (b). For rMD17, the
populations were calculated using all 105 structures in the dataset. Energy profiles with respect to torsional rotation around (f) 4, and (g) j,
obtained from B3LYP-D3/6-31G* calculations (orange circles) and predicted fromMLPs trained on rMD17 (red lines), MD-300K (blue lines), MD-
500K (green lines) and Meta-300K (black lines) datasets.

© 2024 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2024, 15, 12780–12795 | 12785
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Fig. 4 (a) Key conformational transitions (i)–(iv) of salicylic acid defining the (4,j)-surface. Relative population densities of the (4,j)-surface for
the (b) rMD17, (c) MD-300K, (d) MD-500K and (e) Meta-300K datasets with conformational transitions (i)–(iv) highlighted in (b). For rMD17, the
populations were calculated using all 105 structures in the dataset. Energy profiles with respect to torsional rotation around (f) 4, and (g) j,
obtained from B3LYP-D3/6-31G* calculations (orange circles) and predicted fromMLPs trained on rMD17 (red lines), MD-300K (blue lines), MD-
500K (green lines) and Meta-300K (black lines) datasets.
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with respect to this torsion is reasonably complete and some-
what independent of 4 and j. The rMD17 population density
with respect to the (4,j)-surface (Fig. 2b, 3b and 4b) shows that
although the trans conformer is well sampled in the rMD17
dataset, the cis conformer is entirely absent. Indeed, in the
rMD17 dataset of 105 structures, only 23.9%, 24.1% and 10.4%
of the (4,j)-surface of aspirin, paracetamol and salicylic acid is
sampled, respectively (Table 2).

In addition to testing the aspirin, paracetamol and salicylic
acid MLPs on sub-samples of the reference datasets, they were
separately tested on independently generated datasets repre-
senting full torsional scans around 4 and j. Specically, for
each torsion angle, new datasets containing 72 structures were
obtained from adiabatic scans via the density functional theory
(DFT) at the B3LYP-D3/6-31G* level. The computed DFT
torsional proles predict that, in the gas phase, the trans
conformers have lower potential energies than the cis
conformers by only 4.4, 2.0 and 3.9 kcal mol−1 for aspirin,
paracetamol and salicylic acid, respectively, with transition
Table 2 Proportion (%) of (4,j)-surface sampled in the rMD17 dataset
and the new datasets generated in this work

Dataset Aspirin Paracetamol
Salicylic
acid

rMD17 23.9 24.1 10.4
MD-300K 16.0 18.9 7.6
MD-500K 26.8 24.5 29.4
Meta-300K 100.0 100.0 99.9

12786 | Chem. Sci., 2024, 15, 12780–12795
barriers of 9.7, 13.5 and 16.1 kcal mol−1. Although these acti-
vation energies are unlikely to be crossed in a gas phase MD
simulation of an isolated molecule at 300 K, it is probable that
effects due to entropy, solvation or interactions with other
molecules or surfaces will lower energy barriers or alter the
conformational preference of the molecule. It is therefore
important that MLPs are able to correctly predict the full torsion
scan.

Although rMD17-trained MLPs were able to reproduce the
DFT torsion scans in well-sampled regions of conformation
space, they were unable to reproduce it in poorly sampled
regions. For the 4-scan, they do not predict physically sensible
energies or forces for the cis conformers or near the energy
barrier (red lines, Fig. 2f, 3f and 4f) resulting in very large MAEs,
in some cases exceeding 100 kcal mol−1 (Å−1). In addition,
rMD17-trained MLPs were also not able to reproduce the j-scan
for salicylic acid (red line, Fig. 4g). The described failures of
MLPs trained on the rMD17 dataset provide the dual motiva-
tions of the present study, namely to (i) enhance current
understanding of the relationship between conformational
sampling in the reference dataset and the stability MD simu-
lations using MLPs, and to (ii) develop a systematic new
methodology for training accurate and stable MLPs for exible
molecules.
3.3 Reference datasets from enhanced conformational
sampling

Due to the limitations of the rMD17 dataset, we pursued a two-
step approach to generate new reference datasets for aspirin,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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paracetamol and salicylic acid. In the rst step, structures were
sampled from a 10 ns MD simulation using the GAFF empirical
potential.77 In the second step, structures sampled every 1 ps
were evaluated via single point calculations at the B3LYP-D3/6-
31G* level,83–86 in order to obtain reference forces and energies.
This two-step approach has the advantage that the complete-
ness of the dataset with respect to conformational sampling can
be readily checked prior to more computationally expensive
evaluation using a DFT functional in the second step. Sampling
from longer MD trajectories than those used to generate the
rMD17 dataset (100–200 ps) also reduces the time correlation of
structures. For each molecule, three separate sampling strate-
gies were employed: (i) MD simulation at 300 K, (ii) MD simu-
lation at 500 K and (iii) metadynamics62,80 simulation at 300 K.
These datasets will be referred to as MD-300K, MD-500K and
Meta-300K, respectively.

By sequentially adding Gaussian functions to a history-
dependent biasing potential, metadynamics penalises previ-
ously well-sampled regions in collective variable space, enabling
a system to escape local energy minima.62 This process can be
exploited to enforce sampling of previously unexplored regions
of the free energy surface, including barrier regions. In biasing
the system away from previously visited structures with respect
to the collective variables, metadynamics is ideally suited to the
task of sampling structures for MLP reference datasets because
it inherently reduces structural redundancy. Biasing potentials
were used here to enhance sampling using a 2D collective
variable with respect to the two torsion angles 4 and j (Fig. 2a,
3a and 4a). Since the goal is to generate structures over the
entire (4,j)-surface rather than obtaining converged free energy
surfaces, the original formulation of metadynamics62,80 was
employed instead of the well-tempered variant.88 In completely
saturating the conformational energy surface with structures in
this manner, any problems pertaining to the underlying quality
of the empirical potential (i.e. sampling the wrong underlying
conformational distribution) are ameliorated.

Irrespective of the sampling methodology, all sub-sample
test sets produce very low MAEs (�1 kcal mol−1 (Å−1)) and
maximum absolute errors (Tables 1 and S1†). Meta-300K or MD-
500K trained MLPs result in slightly larger force and energy
MAEs than MLPs trained using the rMD17 or MD-300K data-
sets. At face value this suggests that the latter MLPs are of
higher quality. However, it should be emphasized that the re-
ported MAEs are associated only with structures in the region of
conformation space that is sampled in their given test set. The
MLPs can more accurately predict the energies and forces of
structures that were sampled in the same manner as the
training set, but this metric is not necessarily representative of
the generalisation error expected for the entire potential energy
surface.

Similar to rMD17, the MD-300K trained MLPs fail to predict
forces and energies in some regions of the torsion scans,
particularly around the cis conformers (blue lines, Fig. 2f, 3f and
4f). This results in MAEs that are signicantly higher than those
obtained using the sub-sample test sets, in some cases
exceeding 10 kcal mol−1 (Å−1). Indeed, the percentage of the
(4,j)-surface sampled in MD-300K is 16.0%, 18.9% and 7.6%
© 2024 The Author(s). Published by the Royal Society of Chemistry
for aspirin, paracetamol and salicylic acid, respectively (Table
2); this is even less than for rMD17, which can be attributed to
a lower simulation temperature. Once again, simulations
employing MD-300K trained MLPs initiated from the cis
conformers fail to extrapolate reasonable forces, predict
unphysical structures and destabilise within just a few time-
steps. Although simulations initiated from the trans conformer
can be stable for long periods, as demonstrated by successful
completion of 25 ns MD simulations, when metadynamics is
employed to promote a conformational change to the cis
conformer, the trajectories become unstable and fail. In addi-
tion, simulations of salicylic acid initiated from the trans
conformer with j = 180° are also unstable. These described
pathological behaviours can once again be explained by the
poor conformational sampling of theMD-300K datasets (Fig. 2c,
3c and 4c).

When MD-500K trained MLPs are evaluated using the
torsion scan test sets, the force and energy MAEs are in general
signicantly improved compared to rMD17 and MD-300K
(Table 1). This can be attributed to improved conformational
sampling due to a higher temperature (compared to MD-300K)
and longer simulation time (compared to rMD17). The coverage
of the (4,j)-surface in MD-500K increases to 26.8%, 24.5% and
29.4% for aspirin, paracetamol and salicylic acid, respectively
(Table 2). For salicylic acid, forceMAEs for the 4-scan test set are
reduced from 20.28 to 0.19 kcal mol−1 Å−1 and energy MAEs
from 11.50 to 0.05 kcal mol−1 compared to MD-300K (Table 1).
This improvement is because the higher temperature enables
the system to escape the trans conformational minimum and
numerous structures representing the cis conformer are
generated in the reference dataset (Fig. 4d). Consequently, the
4-scan is well reproduced (green line, Fig. 4f) and stable MD
simulations of this conformer can be performed. For aspirin,
a small number of structures representative of the cis conformer
are generated and, although the MD simulation does not
immediately fail when initiated from this conformer, they
become unstable aer just a few picoseconds. In addition,
although the energy prole around the cis conformer is
improved relative to rMD17 and MD-300K, the relative energy of
this conformer is still overestimated by ∼6 kcal mol−1 (green
line, Fig. 2f). For paracetamol, the higher temperature used to
sample structures in the MD-500K dataset does not improve
conformational sampling (Fig. 3d). Hence, like rMD17 and MD-
300K, the 4-scan cannot be reproduced in the region of the cis
conformer (green line, Fig. 3f) and simulations initiated from
this conformer fail immediately. Overall, although increasing
the simulation temperature from 300 K to 500 K does improve
conformational sampling of exible molecules in some
instances, it does not guarantee complete conformational
sampling or reliably produce simulation-ready MLPs.

However, for all three molecules, Meta-300K trained MLPs
can predict with high accuracy the torsional energy proles for
both 4 (black lines, Fig. 2f, 3f and 4f) and j (black lines, Fig. 2g,
3g and 4g). These MLPs yield very low force and energy MAEs
(Table 1) on the torsion scan test sets, unlike those trained on
rMD17, MD-300K and MD-500K, with mean barrier height
errors of 0.15 kcal mol−1 compared to the DFT reference. The
Chem. Sci., 2024, 15, 12780–12795 | 12787
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excellent prediction accuracy of Meta-300K trained MLPs is due
to comprehensive conformational representation in the refer-
ence dataset. The coverage of the (4,j)-surface is now 100% due
to the metadynamics-enhanced sampling (Table 2). Since the
total number of structures is the same for all datasets, the
number representing the trans conformers is lower in Meta-
300K compared to MD-300K. To see how this affects test error
performance in these minima, Meta-300K trained MLPs were
assessed using the MD-300K test sets, which contain mostly or
entirely trans structures. Using this consistent test set, the Meta-
300K force MAEs were 0.22, 0.27 and 0.23 kcal mol−1 Å−1 for
aspirin, paracetamol and salicylic acid, compared to the MD-
300K MLP MAEs of 0.15, 0.19 and 0.06 kcal mol−1 Å−1 (Table
1). For energies, the MAEs were 0.16, 0.05 and 0.06 using the
Meta-300K trained MLP, compared to MAEs of 0.03, 0.03 and
0.01 kcal mol−1 using the MD-300K MLP (Table 1). It is clear
that the trade-off for the conformational generalisability of
MLPs trained on Meta-300K is their somewhat diminished test
error performance for otherwise well-sampled minima, due to
a reduction in the number of structures in these regions.
3.4 MD simulations using conformationally generalisable
MLPs

Crucially, Meta-300K trained MLPs are sufficiently robust that
25 ns equilibrium MD simulations initiated from any
conformer can be performed successfully without generating
any unphysical structures; this includes commencing trajecto-
ries from cis (4 = 0°) conformers, which were unstable using
MLPs trained on the other datasets. In order to demonstrate the
power of this new strategy, Meta-300K trained MLPs were
employed in well-tempered metadynamics simulations to
Fig. 5 Relative population densities (left) and free energies (right) for th
aspirin, (b) paracetamol and (c) salicylic acid calculated using the (i) Me
of kcal mol−1.

12788 | Chem. Sci., 2024, 15, 12780–12795
compute the conformational free energy surfaces with respect
to the (4,j)-surface, F(4,j), for each molecule (Fig. 5). For
purposes of comparison, F(4,j) was also calculated using the
empirical GAFF potential. Obtaining reliable conformational
free energy surfaces of exible molecules necessitates simula-
tions that are not only accurate, but also stable with respect to
conformational change. To obtain converged free energy
surfaces (Fig. 5), 25 ns of stable simulation was required, far
exceeding the timescales accessible to ab initio MD. Successful
completion of these simulations is an excellent demonstration
of the stability of the Meta-300K trained MLPs even in the
regions around activation energy barriers, and the rst exam-
ples of their kind using MLPs in the literature. F(4,j) plots
could not be calculated using the rMD17, MD-300K and MD-
500K trained MLPs due to their instability for certain
conformers and near energy barriers. As well as the equilibrium
and two-dimensional metadynamics simulations, separate
simulations were performed with one-dimensional collective
variables, corresponding to rotation around 4 or j. The one-
dimensional free energy proles for each molecule are shown
in ESI (Fig. S2†). Meta-300K trained MLPs were stable in all
simulations and no unphysical structures were observed. In
total, these simulations amount to more than 100 ns of stable
simulation time per molecule, sampling the entire conforma-
tional free energy surface of these small organic molecules in
vacuo, including various conformational minima and free
energy barriers.

Signicant differences are revealed between F(4,j)
computed via the empirical GAFF potential (Fig. 5ii) and the
PairFE-Net based MLPs (Fig. 5i). For aspirin (Fig. 5a), although
the empirical potential predicts the relative energies of the trans
e (4,j)-surface from well-tempered metadynamics simulations for (a)
ta-300K trained MLP and (ii) GAFF. Free energy surfaces are in units

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Mean and maximum absolute errors for forces and energies
evaluated over 1000 structures generated from the well-tempered
metadynamics simulations with the Meta-300K trained MLP

Molecule

Force (kcal mol−1 Å−1) Energy (kcal mol−1)

Mean Maximum Mean Maximum

Aspirin 0.37 6.33 0.15 0.79
Paracetamol 0.34 4.68 0.07 0.48
Salicylic acid 0.34 6.48 0.11 0.56
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(4 = 180°) and cis (4 = 0°) conformers correctly, the free energy
barrier for the trans–cis conformational transformation is
underestimated. For paracetamol, the MLP simulation shows
that the free energy of the cis (4 = 0°) conformer is lower by
1.0 kcal mol−1 (Fig. 5b). This is in contrast to the potential
energy, for which the trans (4 = 180°) conformer is
2.0 kcal mol−1 lower than the corresponding cis conformer
(Fig. 3f) in agreement with the literature.90 This contrast
suggests that entropy plays a key role in determining the
conformational preferences of paracetamol. This important
entropic contribution arises from the signicant interdepen-
dency of the two torsional motions in paracetamol. Specically,
in the trans conformer, rotation with respect to j is limited
where the heavy atoms are coplanar. On the other hand, in the
cis conformer, j-rotation is relatively unhindered (Fig. S3†).
This example clearly demonstrates the importance of perform-
ing MLP-based MD simulations that combine (i) quantum
chemical accuracy, to distinguish between energetically similar
conformers; and (ii) sufficient stability to perform the long
simulations required to sample adequately the torsional space
of the exible molecule, enabling free energies to be accurately
computed. In contrast to the MLP, the empirical potential
predicts that the free energy of the trans conformer of para-
cetamol is lower than cis by 1.2 kcal mol−1. For salicylic acid, the
free energy surface F(4,j) predicted by the empirical potential is
qualitatively different from the MLP-derived surface (Fig. 5c),
incorrectly predicting a signicant conformational minimum at
j= 180°, more stable than j = 0°, which is not seen in the MLP
free energy surface. The trans (4 = 180°) conformer is stabilised
by a hydrogen bond between the hydroxyl and carboxylic acid
functional groups via the carbonyl oxygen.

Following convention, the mean and maximum errors re-
ported in Tables 1 and S1† were calculate using test structures
sampled from our reference datasets (i.e. generated from gas-
phase simulations with GAFF). However, these simulations
sometimes generate very high-energy structures, particularly at
high temperature or with metadynamics. The torsion proles
are correctly reproduced in spite of these outlier structures and
off-equilibrium structures such as these may even improve the
robustness of the trained MLPs in MD simulations.49 However,
in order to obtain test errors more representative of those
experienced under simulation conditions we constructed new
reference test sets from the structures generated in the 25 ns
well-tempered metadynamics simulation runs. The trajectories
were sampled every 25 ps, producing a test set containing 10 000
structures and then evaluated at the same level of theory as the
training datasets. In terms of the MAEs, the performance of the
Meta-300K trained MLPs on the MLP-generated test sets (Table
3) is similar to the GAFF-generated test sets (Table 1). However,
for aspirin and salicylic acid these structures produce signi-
cantly smaller maximum absolute errors than the GAFF-
generated structures (Table S1†). This is because the MLP
trajectories do not produce occasional very high-energy struc-
tures that are poorly predicted by the trained model. The
distribution of test errors, which is an important consideration
in achieving a stable simulation trajectory, can be conveniently
visualised for the MLP-generated test sets using kernel density
© 2024 The Author(s). Published by the Royal Society of Chemistry
estimation (Fig. 6),91 which clearly demonstrates the failure of
MD-300K and MD-500K to predict energies and forces for all
three molecules. This is in contrast to the performance of the
Meta-300K trained MLPs, which show narrower error
distributions.

Structures in the Meta-300K dataset were sampled using
a biasing potential constructed from Gaussian functions with
heights, h, of 0.24 kcal mol−1. To further illustrate the impor-
tance of adequate conformational sampling in training datasets
on simulation stability, additional datasets for aspirin were
prepared by sampling structures using metadynamics biasing
potentials with h = 0.06, 0.12 and 0.18 kcal mol−1. These
datasets have (4,j)-surface coverages of 97.8%, 99.6% and
99.9%, respectively. For h = 0.06 kcal mol−1 although the
coverage using metadynamics simulations is still vastly
improved compared to the rMD17, MD-300K or MD-500K
datasets, a well-tempered metadynamics simulation using
trained MLPs became unstable aer less than 1 ns and as
a result the conformational energy surface could not be reliably
calculated. This instability arises due to one small poorly
sampled region, accounting for just 2.2% of the (4,j)-surface
(Fig. S4†). The other additional datasets (with h = 0.12 and
0.18 kcal mol−1) did not generate instabilities over the course of
25 ns. This demonstrates that conformational coverage needs to
be approximately 100% to guarantee the stability of trained-for-
purposeMLPs such as PairFE-Net. Although simulation stability
appears to be strongly dependent on the biasing potential used
to generate the dataset, the force and energy MAEs appear
insensitive to h (Table S2†), once again demonstrating that low
sub-sample test set errors alone are insufficient to demonstrate
the quality of an MLP with respect to stability.

The nding that the MLPs become unstable with only
a small gap in conformational coverage demonstrates that the
MLP must be able to predict forces of the key conformers but
also barrier regions that may be visited during the simulation.
To further illustrate this point, we consider possible alternative
approaches to metadynamics for constructing robust reference
datasets. One possible option is to combine structures from
simulations sampling the individual conformational minima
with a few structures along the transition path separating these
minima. To test this possibility, we constructed an additional
training dataset for paracetamol, consisting of 3928 trans
structures, 3928 cis structures and 72 structures from each of
the 4 and j dihedral scans and then trained a model according
to the same procedure outlined in Section 2.2. The population
Chem. Sci., 2024, 15, 12780–12795 | 12789
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Fig. 6 Kernel density estimations of the distribution of (a) energy and (b) force errors for aspirin (blue), paracetamol (red) and salicylic acid (green)
using (i) MD-300K, (ii) MD-500K and (iii) Meta-300K trained MLPs, evaluated on structures generated from well-tempered metadynamics
simulations using the Meta-300K trained MLP.
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density map of this dataset is shown in Fig. S5.† When the
model was evaluated on the Meta-300K test set, it yielded force
and energy MAEs of 1.5 kcal mol−1 Å−1 and 3.3 kcal mol−1

respectively, far higher than those obtained using the Meta-
300K trained MLP (0.3 kcal mol−1 Å−1 and 0.2 kcal mol−1).
Using this MLP, equilibrium MD simulations were initiated
from the cis and trans minima as well as a well-tempered met-
adynamics simulation. Although the simulation in the cis
minima was stable for at least 25 ns, the trans and well-
tempered metadynamics simulations failed catastrophically
aer only 1.4 and 0.1 ns, respectively. This demonstrates that
a small number of structures in the transition region is not
sufficient for stable MD trajectories across the entire confor-
mational surface, further emphasizing the need for reference
datasets such as Meta-300K with complete conformational
12790 | Chem. Sci., 2024, 15, 12780–12795
coverage. Another alternative to metadynamics might be to
dene a grid in 2D conformational space and then use a brute
force sampling approach by initiating simulations at each grid
point with restraints. We believe our approach, based on
enhanced sampling with a 2D collective variable, is superior
because (i) the structures are obtained from a single simulation
potentially lowering the computational expense of model
training due to reducing the structural redundancy of the
reference dataset, (ii) is more user-friendly and (iii) can easily be
extended to more complex conformational surfaces using
a higher dimensionality collective variable.

The use of a computationally inexpensive empirical potential
was found to be a viable approach for sampling reference
dataset structures and the quality of the trained MLP is some-
what independent of the level of theory used to sample
© 2024 The Author(s). Published by the Royal Society of Chemistry
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conformation space. Our approach relies on reasonable
sampling overlap of the empirical potential with the individual
equilibrium bond distances and angles at the reference level of
theory. For example, for salicylic acid, GAFF predicts average
bond distances within 0.01 Å of the B3LYP-D3/6-31G* optimised
structure and there is considerable sampling overlap (Fig. S6†).
For the conformational degrees of freedom, even if the chosen
empirical potential did not correctly sample the underlying
equilibrium probability distribution, an approach based on
metadynamics ensures that, in saturating the conformational
free energy surface with deposited Gaussian functions, all
conformers are well-represented in the reference datasets
(Fig. 2e, 3e and 4e). For salicylic acid, an empirical potential
predicts a signicant free energy minimum (Fig. 5cii) not
present in the MLP free energy surface (Fig. 5ci), despite the
MLP being trained on structures generated using the empirical
potential. Conformationally generalisable MLPs also have the
advantage that if external effects, for instance due to intermo-
lecular interactions, change the relative preferences for
different conformational states, the MLP is still be stable and
accurate.

The differences between MLP and empirical potential free
energy surfaces seen here, which could lead to the incorrect
identication of the most stable conformers of drug molecules,
can be attributed to larger errors associated with the empirical
potential: this point is demonstrated by evaluating the empir-
ical potential force errors relative to the DFT reference. The
force MAE for the GAFF potential from an equilibrium simu-
lation of the aspirin trans conformer was 10.2 kcal mol−1 Å−1,
increasing to 12.2 kcal mol−1 Å−1 in a 300 K metadynamics
simulation; this is accompanied by a signicant increase in the
number of large force outliers (Fig. S7†). In this respect, the
Meta-300K trainedMLPs result in at least an order of magnitude
improvement in force predictions. The trade-off for this
improvement in accuracy relative to the empirical potential is
just a two-fold increase in total MD simulation time.

An alternative to calculating F(4,j) using the Meta-300K
trained MLPs could be to compute a free energy correction
term92,93 from the Zwanzig equation using the difference in
empirical potential, EMM, and quantum mechanical energies,
EQM, according to

DFMM/QM = −RThexp(−(EQM − EMM)/RT)iMM (11)

where h.iMM denotes an ensemble average over the empirical
potential MD simulation. For salicylic acid, eqn (11) was used to
correct F(4,j) calculated using GAFF (Fig. S8†), using the
B3LYP-D3/6-31G* single-point energies for the 10 000 structures
in the Meta-300K training dataset. Although this improved the
qualitative agreement with the MLP calculated F(4,j), the GAFF-
corrected surface signicantly overpredicts the trans to cis
barrier. This is due to very large values of EQM − EMM arising
from incomplete sampling and the poor phase space overlap
between the two methods when far from the conformational
minima. This example demonstrates the importance of the
availability of a high-quality MLP, which signicantly improves
© 2024 The Author(s). Published by the Royal Society of Chemistry
sampling compared to large-scale DFT calculations, allowing
accurate free energy surfaces to be computed.

4. Conclusions

We have shown that, when the test set has a narrow confor-
mational distribution, MAEs can present a misleading repre-
sentation of the true generalisation error for exible molecule
MLPs. When conformational sampling of reference datasets is
improved, prediction accuracy using the independently gener-
ated torsion scan test sets improves but prediction accuracy
using sub-samples of the reference dataset worsens. This
observation highlights an important trade-off when training
exible molecule MLPs. If MLPs are trained with the sole
objective of obtaining low sub-sample MAEs, this may hinder
the ability to perform stable simulations for all conformers,
because this objective is most easily achieved using datasets
with limited conformational sampling and high structural
redundancy. This was observed with the rMD17 and MD-300K
datasets, which proved to be the least stable when used in
MD simulations when assessed over the full conformational
distribution. By contrast, MLPs trained on reference datasets
with the most complete conformational sampling (Meta-300K)
generally have larger sub-sample test set errors but are much
more stable in MD simulations. Whilst we have clearly found
that poor MLP performance can be directly attributed to
incomplete sampling when training PairFE-Net, other MLP
schemes31,35,36 may prove to be more robust in this regard.
However, we have encountered similar error proles when we
have attempted to train MLPs using other schemes with rMD17
or MD-300K compared to our Meta-300K dataset.

Our observations complement those of Fu et al.,48 who
demonstrated that achieving low test set MAEs was not a suffi-
cient condition for obtaining MLPs capable of producing stable
trajectories or reproducing simulation-based metrics. Impor-
tantly, Meta-300K trained potentials are stable and accurate
aer initial training and need no further renement or active
learning approach to ensure stability. This study highlights the
importance of training MLPs on datasets containing all relevant
conformers, such as the Meta-300K datasets published in this
work; or at least testing MLPs on independently prepared
external datasets, because sub-samples test sets will inherit the
same sampling deciencies present in the training set. Finally,
also we encourage the reporting of error distributions on MLP
generated structures, such as those in Fig. 6, when evaluating
MLP performance, as these will ultimately determine the
stability of simulations. This suggestion resonates with the
recent work of Vita et al.,94 who proposed evaluation of the loss
landscape, to establish the difference in extrapolation abilities
of MLPs with similar test errors.

In this work, we have demonstrated that an essential
consideration for performing MD simulations of exible
molecules using MLPs is training set selection. Enhanced
sampling is key to preparing reference datasets with adequate
conformational representation. MLPs trained on Meta-300K
datasets have the appealing twin characteristics of enabling
stable long timescale MD simulations such that conformational
Chem. Sci., 2024, 15, 12780–12795 | 12791
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free energy surfaces for example can be calculated; while also
inheriting the quantum chemical accuracy of the reference level
of theory. The computational effort to obtain these insights
directly from numerically very intensive AIMD simulations
would be orders of magnitude greater and intractable without
access to large-scale supercomputing resource. The fact that the
Meta-300K trained MLPs can accurately reproduce the torsional
energy scans and be used in long and stable MD simulations is
a post hoc justication for our approach to generating reference
datasets. It also suggests that a global scheme based on nuclear
repulsion force input features can correctly resolve states along
the transition paths dened by torsional rotations.

Our key ndings have far-reaching implications for the
future development of global MLPs to compute structural,
dynamical and thermodynamical properties of exible mole-
cules from molecular simulation. We note equivariant neural
networks with multiple message passing layers, which can have
large receptive elds, as an alternative to global MLPs. When
accurate and stable small molecule MLPs are deployed in the
condensed phase,68,74 they have the potential to guide innova-
tion in design across a wide variety of applications, from ther-
apeutics and polymers to ionic liquids and environmental
contaminants. Related future work should focus on strategies to
remove structural redundancies from reference datasets and
the use of generalisable collective variables (e.g. those based on
the RMSD or distance matrix95,96), which may pave the way to
a fully automated pipeline for generating robust reference
datasets for exible molecules. Finally, the method we have
implemented in this study could be extended to molecules
containing more complex conformational surfaces by using
higher dimensional collective variables during dataset genera-
tion, moving towards molecules at the limit of Lipinski's Rule of
Five.
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D. J. Cole and G. Csányi, MACE-OFF23: Transferable
Machine Learning Force Fields for Organic Molecules,
arXiv, 2023, preprint, arXiv:2312.15211, DOI: 10.48550/
arxiv.2312.15211.

16 V. L. Deringer, M. A. Caro and G. Csányi, Machine Learning
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39 V. L. Deringer, A. P. Bartók, N. Bernstein, D. M. Wilkins,
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