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Alex Aliper,d Alán Aspuru-Guzik*e and Alex Zhavoronkov *c

Large Language Models (LLMs) have substantially driven scientific progress in various domains, and many

papers have demonstrated their ability to tackle complex problems with creative solutions. Our paper

introduces a new foundation model, nach0, capable of solving various chemical and biological tasks:

biomedical question answering, named entity recognition, molecular generation, molecular synthesis,

attributes prediction, and others. nach0 is a multi-domain and multi-task encoder–decoder LLM pre-

trained on unlabeled text from scientific literature, patents, and molecule strings to incorporate a range

of chemical and linguistic knowledge. We employed instruction tuning, where specific task-related

instructions are utilized to fine-tune nach0 for the final set of tasks. To train nach0 effectively, we

leverage the NeMo framework, enabling efficient parallel optimization of both base and large model

versions. Extensive experiments demonstrate that our model outperforms state-of-the-art baselines on

single-domain and cross-domain tasks. Furthermore, it can generate high-quality outputs in molecular

and textual formats, showcasing its effectiveness in multi-domain setups.
1 Introduction

Large-scale pre-training of language models (LMs), such as
BERT,1 T5,2 BART3 and GPT,4 on vast amounts of text data has
yielded impressive results on a variety of natural language
processing (NLP) tasks. These models' success can be attributed
to their ability to learn deeply contextualized representations of
input tokens through self-supervision at scale.1 Recently,
foundation models have built upon the concept of self-
supervised learning by pre-training a single model over unla-
beled data that can be easily adapted to any task.5

The application of neural network architectures and LMs has
signicantly advanced the eld of chemistry, particularly in
domain-specic information retrieval, drug development, and
clinical trial design.6–15 These developments include neural
ta Clara, 95051, CA, USA
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389
molecular ngerprinting, generative approaches to small
molecule design,11–13 prediction of pharmacological properties,
and drug repurposing.13,14 The clinical development of a drug is
a time and money consuming process that typically requires
several years and a billion-dollar budget to progress from phase
1 clinical trials to the patients.16 The use of state-of-the-art
neural network approaches and language models has the
potential to facilitate the drug development process
considerably.

A number of LMs have been proposed for the biomedical
domain, utilizing a variety of model families: for instance,
researchers have developed BioBERT,17 based on BERT with 110
million parameters, and SciFive, based on T5-base and T5-large
with 220 and 770 million parameters respectively, using
biomedical literature from PubMed. NVIDIA has also developed
BioMegatron models in the biomedical domain using a more
extensive set of PubMed-derived free text, ranging from 345
million to 1.2 billion parameters. However, the datasets used in
these models cover mainly biomedical natural language texts
and contain biomedical named entities like drugs, genes, and
cell lines names but omit important chemical structure
descriptions in SMILES format. Enriching biomedical datasets
with chemical structures is an important and challenging task.
Recently, LMs such as Galactica,18 based on transformer archi-
tecture in a decoder-only setup19 with 120 billion parameters in
its largest setup, and MolT5,20 based on T5-base and T5-large,
were proposed to address this limitation. Both modes were
pre-trained with natural language and chemical data, creating
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 A Venn diagram that shows the relationships between fine-
tuning data used in our study and related work. It is important to
highlight that the majority of models typically treat the chemical space
and the semantic space in the natural language domain independently.
Novel cross-domain datasets such as Mol-Instructions25 and MolT5
data20 have asked whether it is possible to unify representations of
natural language and molecules for NLP and molecule generation
tasks within a single model. In this work, we seek to answer this
question.

Fig. 3 A diagram of nach0 which is a text-to-text framework. The
model takes text as input and is trained to generate the desired target
text for each specific task. This unified approach enables us to utilize
the same model architecture, loss function, hyperparameters, and
other components across our diverse range of mono-domain (NLP,
CHEM) and cross-domain (NLP 4 CHEM) tasks.
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a shared representation space, yet were not ne-tuned on
a diverse set of chemical tasks with instruction tuning in
a multi-task fashion. The Venn diagram in Fig. 1 provides
a summary of the existing LMs. Furthermore, simple language
models trained with molecular structures can reproduce
complex molecular distributions,21 and even their 3D structure
of molecules, materials and proteins using a GPT framework.22

In this paper, we propose a unied encoder–decoder trans-
former named nach0 for natural language, chemical general-
ization and cross-domain tasks. We pre-train on both natural
language and chemical data using self supervised learning and
employ nach0 as the foundation model for a wide range of
downstream tasks (Fig. 2). The tasks include well-known NLP
problems such as information extraction, question answering,
textual entailment, molecular structures and description
generation, chemical property prediction, and reaction
Fig. 2 Datasets used for training and evaluation. Colour represents the
type of tasks. Yellow and blue datasets are single-domain, typically
requiring regression/classification losses or generation in the target
domain (natural language or SMILES strings). Gradients from yellow to
blue represent cross-domain generation tasks that require natural
language input and SMILES output, or vice versa.

© 2024 The Author(s). Published by the Royal Society of Chemistry
predictions. Inspired by Raffel et al.,2 Chung et al.,23 we follow
the intuition that tasks can be described via natural language
instructions, such as “What reactants could be used to synthe-
size O]C(NC1CCN(Cc2ccccc2)CC1)c1c(Cl)cccc1[N+](]O)[O–]”
or “describe a molecule C1]CC(=CC]C1C[C@H](C(]O)[O–])
N)O”. Prompt design and instruction tuning are employed for
model training using NVIDIA's Neural Modules (NeMo) frame-
work,24 which provides scientists with a way to train and deploy
LLMs using NVIDIA GPUs. Extensive evaluation in both in-
domain and cross-domain setup demonstrates that nach0 is
a powerful tool for the chemistry domain.
Contribution – our contributions are three-fold:

(1) We introduce a biochemical foundation model nach0 and
pre-train base and large versions of nach0 on molecular struc-
tures and textual data from scientic articles and patents.

(2) We ne-tune nach0 in a supervised and multi-task
manner, using a combination of diverse tasks specied
through natural language prompts.

(3) Through the experimental validation on benchmark
datasets, focusing on both single-domain and cross-domain
tasks, we show that our model achieves competitive results
with state-of-the-art encoder–decoder models specialized for
single domain.
2 Methods
2.1 Framework nach0

The aim of nach0 is to create a unied transformer capable of
performing natural language, chemical generalization, and
translation tasks simultaneously. Fig. 3 shows a diagram of our
framework with several input/output examples. The model's
representations are learned from extensive and diverse chem-
ical SMILES data and related textual data from scientic articles
and patents. Similar to Raffel et al.,2 Chung et al.,23 nach0
Chem. Sci., 2024, 15, 8380–8389 | 8381
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follows an encoder–decoder architecture that takes textual
input and generates target responses. To train the model on
a mixture of datasets partitioned into different tasks, we
formulate all the tasks in a “text-to-text” format, where the
model is given some text as a context or condition and produces
the output in a text format. Each dataset is associated with
multiple prompt templates used to format datasets' instances
into input and target pairs. In particular, we train nach0 on
three types of tasks (Fig. 2):

� NLP tasks: named entity recognition (NER), PICO extrac-
tion, textual entailment, relation extraction, sentence similarity,
document classication, question answering (yes/no, multi-
choice, open).

� Chemistry-related (CHEM) tasks: molecular property
prediction, molecular generation, forward reaction prediction,
reagent prediction, retrosynthesis.

� Cross-domain (NLP 4 CHEM) tasks: description-guided
molecule design, molecular description generation.

Fig. 3 shows our model and prompt format. Details on train/
test splits are presented in Table 1. Datasets' descriptions with
example instances are reported in ESI, Section 2.†

Given the presence of textual and molecular modalities,
different tokenization technique is a crucial aspect of dataset
design. One way to represent molecular structures is a simpli-
ed molecular-input line-entry system (SMILES) string.41

SMILES describe a molecule as a sequence of atoms in a depth-
rst traversal order and uses special symbols to depict
Table 1 List of datasets used in our study. We note that ESOL, FreeS
benchmark;26 QM9, MoleculeNet and USPTO_500MT data are collected

Task Dataset Link

NER

BC5CDR-chemical27 https://hugg
BC5CDR-disease27 https://hugg
NCBI-disease28 https://hugg
BC2GM29 https://hugg
JNLPBA30 https://hugg

PICO EBM PICO31 https://githu

Textual entailment
MedNLI32 https://githu
SciTail33 https://githu

Relation extraction ChemProt34 https://githu
DDI35 https://githu
GAD36 https://githu

Sentence similarity BIOSSES37 https://githu
Document classication HoC38 https://githu

Question answering (yes/no)
PubMedQA39 https://githu
BioASQ40 https://githu

Molecular property prediction

ESOL26 https://mole
FreeSolv26

Lipophilicity26

BBBP26

HIV26

BACE26

QM9 (ref. 25) https://githu
Molecular generation MOSES12 https://githu
Forward reaction prediction Mol-Instructions25 https://githu
Reagent prediction
Retrosynthesis
Description-guided molecule design Mol-Instructions25 https://githu
Molecular description generation

8382 | Chem. Sci., 2024, 15, 8380–8389
branching, cycle opening/closing, bond types, and stereo-
chemistry. We use the following tokenization:

� Textual domain sub-word tokens adopted from FLAN-T5
(ref. 23) for natural language sequences.

� Tokenization for SMILES: we annotate each SMILES token
with special symbols: <sm_{token}> and extend the vocabulary
with such tokens.

2.2 Model and training conguration

In our study, we predominantly employ a model featuring the
default T5 architecture, which is derived from Raffel et al.2. Our
experimentation involves two model sizes: a base model con-
sisting of 250 million parameters, characterized by 12 layers,
a hidden state of 768 dimensions, a feed-forward hidden state
of 3072 dimensions, and 12 attention heads; and a larger model
with 780 million parameters, consisting of 24 layers, a hidden
state of 1024 dimensions, a feed-forward hidden state of 4096
dimensions, and 16 attention heads.

For both models, we conduct pre-training with a language
modeling (LM) objective and subsequent ne-tuning. The base
models were trained using NVIDIA A4000 and A5000 GPUs,
while the larger models were trained on NVIDIA's DGX cloud
platform. Both the pre-training and ne-tuning stages were
executed using the subsequent hyperparameters: a batch size of
1024, a learning rate set to 1 × 10−4, and a weight decay of 0.01.
The pre-training stage lasted for a single epoch, whereas the
ne-tuning stage for 10 epochs.
olv, lipophilicity, BBBP, HIV, BACE are included in the MoleculeNet
from Mol-Instructions.25

Train/test split

ingface.co/datasets/bigbio/blurb/viewer/bc5chem Predened
ingface.co/datasets/bigbio/blurb/viewer/bc5disease Predened
ingface.co/datasets/bigbio/blurb/viewer/ncbi_disease/ Predened
ingface.co/datasets/bigbio/blurb/viewer/bc2gm Predened
ingface.co/datasets/bigbio/blurb/viewer/jnlpba Predened
b.com/bigscience-workshop/biomedical Predened
b.com/bigscience-workshop/biomedical Predened
b.com/bigscience-workshop/biomedical Predened
b.com/bigscience-workshop/biomedical Predened
b.com/bigscience-workshop/biomedical Predened
b.com/bigscience-workshop/biomedical Predened
b.com/bigscience-workshop/biomedical Predened
b.com/bigscience-workshop/biomedical Predened
b.com/bigscience-workshop/biomedical Predened
b.com/bigscience-workshop/biomedical Predened
culenet.org Predened

b.com/zjunlp/Mol-Instructions Random
b.com/molecularsets/moses Predened
b.com/zjunlp/Mol-Instructions Random

b.com/zjunlp/Mol-Instructions Random

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Input request from a human (gray color) and nach0's response
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To execute the pre-training phase of our model with the LM
objective, we leveraged two textual data sources in addition to
one chemical data source. These textual data sources encom-
passed abstract texts extracted from PubMed and patent
descriptions derived from USPTO. All the textual data under-
went a ltering process, eliminating documents that were not
related to the chemistry domain. Consequently, the number of
documents was curtailed to 13m for abstracts and 119k for
patents. The chemical data component was sourced from the
ZINC dataset, encompassing approximately 100 million docu-
ments. In aggregate, the textual data set contained 355m tokens
for abstracts and 2.9b tokens for patents, whereas the chemical
data encompassed 4.7b tokens.

The entirety of the investigations in this paper was con-
ducted using the multi-task model, with the exception of the
ablation part. Each multi-task model underwent ne-tuning by
leveraging the entire spectrum of available datasets, encom-
passing all domains, as elucidated in Section 1. For data mixing
and balancing we followed the “Examples-proportional mixing
strategy” from Raffel et al.2. The outcomes of these models are
explicitly detailed in Section 3. Conversely, in the context of
ablation studies, ne-tuning was specically performed
utilizing only those datasets relevant to the corresponding
domain, as detailed in the discussion.
(blue color).
2.3 NeMo, parallel training, NVIDIA cluster

The training was performed using NVIDIA NeMo toolkit,42

which consists of pre-built modules for end-to-end workows in
Automatic Speech Recognition (ASR), NLP, and Text-to-Speech
(TTS) synthesis. NeMo uses PyTorch Lightning for optimized
multi-node/multi-GPU (MNMG) mixed-precision training. In
this work, we leveraged the NeMo NLP collection to train and
evaluate our LMs. We trained our model on a variety of tasks
such as information extraction, question answering, molecular
property prediction, and description-guided molecule design
using the NeMo toolkit. A custom connector was added to
extend the vocabulary size of the pre-trained model when
continuing the training of the model with chemistry and
biomedical datasets. The original vocabulary was extended to
match the target vocabulary which was larger. The corre-
sponding embedding matrix was initialized with learned
embeddings of the original model. The extra tokens were
initialized by re-using the rst embeddings.

Data was parsed using mem-map datasets from the NeMo
toolkit to allow efficient data handling. The mem-map dataset
relies on memory mapping directly to les, allowing the
handling of very large datasets with small memory footprints
and optimal reading speed. The data was loaded as raw text les
and the tokenization occurred on-the-y. Pre-fetching of the
data mitigated the effects of online tokenization when
compared to pre-tokenized data. The model was trained using
tensor and pipeline parallelism,43 both of which are model
parallel methods for distributed training and are implemented
in the NeMo toolkit for efficient scaling of large language model
training.
© 2024 The Author(s). Published by the Royal Society of Chemistry
3 Results and discussion
3.1 Use case: end-to-end drug discovery

In the rst case study, we generate molecular structures against
diabetes mellitus (DM) using just one model, nach0: discover
biological targets with potential therapeutic activity, analyze the
mechanism of action, generate molecular structure, propose
one-step synthesis, and predict molecular properties. In a series
of questions, we generate the model's responses using top-p
sampling with values from 0.3 to 0.7 and step equals 0.05 and
ask an expert chemist to pick the best response (Fig. 4). In total,
we generate 200 SMILES on the molecule generation prompt
and select one structure, CC(C)(C)NC(]O)CN1CCC(C(]O)
Nc2cccc(–c3nc4ccccc4n3Cc3cc ccc3)c2)CC1, as the most prom-
ising based on a chemical expert knowledge perspective. This
semi-automated approach is efficient for discovering novel
molecules and assessing their properties. We predict that
further iterations of this model will require less supervision,
and medicinal chemists will start using it as a side-car for
generating and validating ideas.
3.2 Use case: Chemistry42 generative model

Chemistry42 is Insilico Medicine's AI drug discovery platform
that efficiently generates novel active molecules using 42
generative models.44 In this experiment, we apply nach0 to one
of the published case study setups available on demand at
https://demo.chemistry42.com—structure-based design of
Janus kinase 3 inhibitors. In Chemistry42, we use 3LXK crystal
structure, pharmacophore hypothesis, and a set of
Chem. Sci., 2024, 15, 8380–8389 | 8383
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physicochemical properties to set up the search space for the
generative models. All generative models search the chemical
space to nd the best possible structures.

Chemistry42 provides a set of lters ans reward modules.
The 2D modules comprise of various tools including Medicinal
Chemistry Filters (MCFs), Lipinski's Rule of Five (Ro5), and
descriptors for drug-likeness, weighted atom-type portion, drug-
likeness and novelty, the synthetic accessibility (SA) scores.
Additionally, Chemistry42 use the Self-Organizing Maps (SOM)
classier module to navigate the generation of molecular
structures towards a specic target class in the chemical space.
The structure morphing module, another integral part of 2D
modules, is utilized to tackle metabolic instability issues.

The 3D modules include the ConfGen module, which is
responsible for generating conformational ensembles for each
molecular structure. Subsequently, these molecules are ranked
based on their intrinsic rigidity using a exibility assessment
tool. The 3D similarity between the generated structures and
a reference molecule is evaluated using the 3D-Descriptors
Module. The pharmacophore module is then used to nd any
matches with the specied pharmacophore hypothesis. The
shape similarity module plays its part in evaluating the 3D
shape similarity to a reference molecule. Lastly, the pocket
module and the Pocket–Ligand Interaction (PLI) modules are
used to assess how well the molecules t the chosen binding
site.

In this experiment, we replaced all 42 generative models with
nach0 and generated a set of structures using a prompt
“Generate a random druglike small inhibitor molecule for the
Janus kinase 3 JAK3 that contains a classic kinase hinge binding
motif”. Note that nach0 does not have access to the specic
crystal structure and other required properties, so the model
generated molecules using solely its knowledge about JAK3.

In Table 2, we compare generation results using a combina-
torial generator,45 Chemistry42,44 and our model. In just 45
Table 2 Comparison between nach0 and Chemistry42 models on
JAK3 inhibitors generation. nach0 can discover multiple molecules
passing all constraints, even though it only uses implicit knowledge
about the protein target. Discovery rate (percentage of good mole-
cules from all generated molecules) indicates that our models acts
better than random combinatorial generator when solving the
problem

Combinatorial
generator nach0 Chemistry42

Time 24 hours 45 minutes 72 hours
Total molecules 73 000 7200 382 000
Good molecules 30 8 5841
Discovery rate 0.04% 0.11% 1.53%

Best molecule

8384 | Chem. Sci., 2024, 15, 8380–8389
minutes (consisting of 15 minutes for generation and 30
minutes for scoring in Chemistry42), our model discovered 8
molecules satisfying all the 2D and 3D requirements; see Iva-
nenkov et al.44 for more details on requirements. All these
structures have a hinge binder and properly bind in the active
site. While our model can discover multiple molecules satis-
fying all constraints, the discovered structures are currently
worse than those found in 72 hour generations in Chemistry42,
since nach0 does not yet learn from the reinforcement learning
feedback during generation and because it does not have exact
knowledge of the experiment setup. In future work, we will
expand our model with reinforcement learning capabilities to
improve generation quality.
3.3 Comparison of multi-task models

Table 3 compares nach0 base and large models with two exist-
ing NLP encoder–decoder models (general-domain FLAN23 and
domain-specic SciFive46), and a multi-domain encoder–
decoder model MolT5.20 The table contains metrics for each
task and model, with the results of the top-performing base
model emphasized in bold. First, FLAN base and nach0 base
exhibit similar results on NLP tasks on average, demonstrating
superior performance on different tasks. With single-domain
models for tasks such as NER or NLI, where molecule infor-
mation is not required, traditional LMs may indeed provide the
best results. However, when it comes to molecular tasks that
involve molecular data, nach0 has distinct advantages over
similar-scale models due to its specialized architecture and
ability to effectively incorporate and process molecule-related
information. In particular, nach0 benets from training on
diverse datasets and the proposed tokenization approach, out-
performing baselines (including FLAN) with a signicant gap in
molecular tasks. For regression tasks, nach0 shows the best
results on both RMSE and R2 scores. Moreover, in the molecular
generation task, nach0 substantially surpasses FLAN by the FCD
metric, which assesses the closeness of the generated molecules
distribution to the ground truth. We added this explanation to
the manuscript. Second, as expected, large nach0 performed
best among all the models. In terms of base models, nach0 base
achieved the best results on chemical and cross-domain tasks
over existing models, conrming that pre-training on two types
of data with different tokens can be effective.

Furthermore, we conducted zero-shot experiments involving
nach0, FLAN, and SciFive (all base versions) in an information
retrieval task. The objective was to detect whether an abstract is
relevant to a given disease or gene query. The dataset used for
these experiments, along with its specic details, can be found
in Tutubalina et al.47. In these experiments, we employed the
following prompt: “Given the following passage, answer the
question: is the following text related to the synonym? Passage:
text”. To evaluate the models' performance, we utilized preci-
sion (P), recall (R), and F-measure (F1). Our ndings indicate
that nach0 achieved an F1 score of 82.24% (with a recall of
96.32% and precision of 71.76%), while FLAN and SciFive
achieved F1 scores of 82.24% and 77.20%, respectively.
However, it is worth noting that the supervised BERT-based
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc00966e


Table 3 Full results of nach0 on NLP, CHEM and cross-domain tasks in comparison with FLAN (250m parameters), SciFive (220m parameters),
MolT5 (220mparameters). All models are trained in amulti-task fashion. Bold number is the highest score on each dataset and the italic stands for
the second best result over base models only. We mark the results of nach0 large with bold and italic to indicate improvements over nach0 base

Dataset Metric

MolT5 SciFive FLAN nach0

Base Large

BC5-chem

F-1[

77.82% 91.02% 88.03% 90.96% 92.78%
BC5-disease 71.62% 82.24% 78.29% 81.67% 85.51%
NCBI-disease 74.96% 84.22% 81.37% 84.30% 85.82%
BC2GM 53.47% 69.55% 62.53% 71.12% 80.41%
JNLPBA 63.06% 72.99% 70.74% 73.70% 79.80%
EBM PICO F1[ 67.37% 67.32% 69.48% 67.60% 94.44%
MedNLI

Accuracy[
58.69% 70.29% 79.66% 73.40% 89.22%

SciTail 56.54% 80.73% 90.68% 84.12% 93.87%
ChemProt

F-1[
70.52% 75.83% 84.38% 83.61% 94.46%

DDI 56.02% 59.53% 85.96% 88.69% 93.13%
GAD 52.10% 64.53% 66.93% 75.47% 78.24%
BIOSSES Pearson[ 24.55% 56.51% 61.21% 52.58% 52.37%
HoC F-1[ 70.24% 72.49% 72.37% 80.40% 85.86%
PubMedQA F-1[ 49.12% 59.44% 62.80% 58.76% 74.21%
BioASQ 61.71% 80.29% 87.14% 79.43% 89.21%
MedMCQA and MMLU Accuracy[ 25.97% 25.06% 25.42% 26.61% 46.10%
MedMCQA-open BLEU-2[ 4.52% 5.83% 5.10% 6.30% 2.26%
Reagent prediction Accuracy@top1[ 1.10% 3.80% 4.00% 6.30% 13.08%
Retrosynthesis Accuracy@top1[ 15.00% 31.00% 31.00% 53.00% 56.26%
Forward reaction prediction Accuracy@top1[ 27.00% 60.00% 59.00% 88.00% 89.94%
BACE BA[ 0.58 0.65 0.65 0.74 0.71
BBBP BA[ 0.55 0.66 0.6 0.67 0.68
HIV BA[ 0.5 0.53 0.53 0.56 0.60
HFE R2[ −0.36 0.51 0.55 0.77 0.78

RMSEY 1.1 0.4 0.37 0.19 0.19

HOMO–LUMO
R2[ 0.98 0.99 0.99 1.00 1.00
RMSEY 0.0008 0.0003 0.0003 0.0001 0.0001

LOGD
R2[ −0.6 −0.27 −0.32 0.28 0.28
RMSEY 2.4 1.9 1.9 1.1 1.1

LOGS
R2[ −0.49 0.31 0.001 0.48 0.48
RMSEY 1.4 0.63 0.91 0.48 0.48

MOSES

Valid[ 98.30% 95.79% 97.63% 99.86% 99.93%
Unique@10000[ 99.93% 99.94% 99.95% 99.92% 99.97%
FCD/testY 0.5212 0.5778 0.5289 0.3106 0.3038
SNN/test[ 0.5745 0.5688 0.5742 0.6118 0.6222
Frag/test[ 0.9974 0.9967 0.9965 0.9985 1.00
Scaf/test[ 0.8748 0.8737 0.8823 0.9205 0.9292
IntDiv[ 0.8460 0.8464 0.8462 0.8478 0.8585
Filters[ 98.89% 98.67% 98.68% 99.54% 99.67%
Novelty[ 93.92% 93.98% 93.67% 87.60% 93.87%

Description-guided molecule design BLEU-2[ 30.32% 44.17% 43.64% 48.97% 48.76%
Molecular description generation BLEU-2[ 35.61% 39.56% 38.58% 43.91% 41.73%
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pipeline from Tutubalina et al.47 achieved a higher F1 score of
88.81%. Based on these results, we can conclude that these
models exhibit the ability to perform slightly different NLP tasks
in a zero-shot setup. However, they still fall signicantly behind
supervised models in terms of performance.
3.4 Ablations

To examine the impact of cross-domain data on multi-task ne-
tuning, we conducted training on mono-domain data. The
results of four pre-trained checkpoints (SciFive, FLAN, MolT5,
nach0) ne-tuned exclusively on NLP data are presented in ESI,
Section 1.† When considering average performance on the NLP
© 2024 The Author(s). Published by the Royal Society of Chemistry
group, nach0, SciFive, and FLAN exhibit similar results, MolT5
achieves lower scores compared to the other models.

Next, we investigate how chemical tasks groups combination
effects on joint model performance in comparison with indi-
vidual models trained on each separate chemical tasks group—
on predictive tasks group, on reaction tasks group and molec-
ular generation/cross-domain tasks group. We perform the
same experiments with MolT5 model to elaborate on how pre-
training data and special chemical tokens affect the quality of
the model on chemical tasks.

The results of this ablation study can be found in Table 4 and
show that nach0 benets from combining chemical tasks
Chem. Sci., 2024, 15, 8380–8389 | 8385
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Table 4 Performance of nach0 on chemical tasks groups in comparison with MolT5. We list the scores for each task (see ESI about datasets and
metrics). Bold number is the best result on each dataset. All models are base models

Dataset Metric

nach0 MolT5

All Pred. React. Mol. gen. All Pred. React. Mol. gen.

Prediction tasks
BACE BA[ 0.74 0.67 — — 0.58 0.52 — —
BBBP BA[ 0.67 0.62 — — 0.55 0.57 — —
HIV BA[ 0.56 0.65 — — 0.5 0.51 — —
HFE R2[ 0.77 0.015 — — −0.36 −0.74 — —

RMSEY 0.19 0.81 — — 1.1 1.4 — —
HOMO–LUMO R2[ 1.0 1.0 — — 0.98 0.94 — —

RMSEY 1 × 10−4 1 × 10−5 — — 7 × 10−4 2 × 10−4 — —
LOGD R2[ 0.28 0.27 — — −0.6 −2.9 — —

RMSEY 1.1 1.1 — — 2.4 5.7 — —
LOGS R2[ 0.48 0.32 — — −0.49 −1.2 — —

RMSEY 0.48 0.62 — — 1.4 2.0 — —

Reaction tasks
Reagent prediction Accuracy[ 0.063 — 0.14 — 0.011 — 0.13 —
Retrosynthesis Accuracy[ 0.53 — 0.39 — 0.15 — 0.39 —
Forward reaction prediction Accuracy[ 0.88 — 0.89 — 0.27 — 0.89 —

Molecular generation and cross-domain tasks

Molecule generation

Validity[ 99.86% — — 99.99% 98.3% — — 0.0%
Unique@10 000[ 99.92% — — 99.81% 99.93% — — N/A
FCD/testY 0.3106 — — 0.2411 0.5212 — — N/A
SNN/test[ 0.6118 — — 0.6551 0.5745 — — N/A
Frag/test[ 0.9985 — — 0.9988 0.9974 — — N/A
Scaf/test[ 0.9205 — — 0.9403 0.8748 — — N/A
IntDiv[ 0.8478 — — 0.8493 0.846 — — N/A
Filters[ 99.54% — — 99.95% 98.89% — — N/A
Novelty[ 87.6% — — 64.34% 93.92% — — N/A

Description-guided molecule gen. BLEU-2[ 48.97% — — 52.90% 30.32% — — 30.78%
Molecular description generation BLEU-2[ 43.91% — — 46.22% 35.61% — — 31.32%
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group—model trained on the whole set of chemical data
without NLP outperforms in total set of metrics models trained
on distinct task groups. It is important to mention that despite
the joint model showing worse metrics than the model trained
only on molecular generation and cross-domain tasks, it works
better since it does not overt on training data—the novelty
metric is more prevail here over all other molecule generation
metrics.

Also, experiments show that the special chemical tokens and
pre-training on both natural language and chemical data
improve the model quality—nach0 outperforms MolT5 baseline
or show equal metrics on each chemical task group. We miss
some MolT5 metrics on molecule generation task since it
produces non-valid SMILES sequences.
3.5 Comparison with ChatGPT

Recently, a comprehensive benchmark for biomedical text
generation and mining problems with ChatGPT was conducted,
revealing its poor performance on several biomedical NLP
benchmark datasets.48,49 Chen et al.49 specically evaluated
ChatGPT on a BLURB benchmark,50 which encompasses BC5-
chem, BC5-disease, NCBI-disease, BC2GM, JNLPBA, EMB-
PICO, ChemProt, DDI, GAD, BIOSSES, HoC, PubMedQA,
8386 | Chem. Sci., 2024, 15, 8380–8389
BioASQ. In particular, ChatGPT got an average BLURB score of
48.27 on NER, while ne-tuned BERT achieved 86.27. For more
details on evaluation scores, please refer to Chen et al.49.

In our evaluation setup, we focus on three specic datasets:
EMB-PICO, MedMCQA-open, and molecular description
generation (Mol-Instructions). The inclusion of EMB-PICO
dataset was driven by its practical importance. This dataset
involves the task of identifying and extracting specic frag-
ments of text related to the population/patient/problem (P),
intervention (I), comparator (C), and outcome (O) elements
from unstructured biomedical texts, such as research articles
and clinical trial reports. It is worth noting that the clinical trial
domain holds particular signicance for inClinico, a trans-
former-based articial intelligence soware platform designed
to predict the outcome of phase II clinical trials.10 The molec-
ular generation task is relevant to the Chemistry42 platform.44

To evaluate the zero-shot performance, we had to limit the
evaluation to a subset of 2000 samples from the test set for each
of the three datasets, considering the computational
constraints of ChatGPT. As well we utilized the GPT-3.5-turbo
model through the OpenAI API and multi-task nach0 base for
evaluation purposes. In the case of the PICO dataset, ChatGPT
achieved a word-level F1 score of 64.43%, comparable to the
results obtained by ne-tuned nach0 base on this subset (F1
© 2024 The Author(s). Published by the Royal Society of Chemistry
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score of 67.60%). For MedMCQA-open, ChatGPT achieved
a BLEU2 score of 1.68%, while the ne-tuned nach0 base
attained a BLEU2 score of 6.30%. In the molecular description
generation task, ChatGPT achieved a BLEU2 score of 2.23%,
whereas the ne-tuned nach0 base excelled with a BLEU2 score
of 42.80%. Based on our preliminary ndings, it is evident that
utilizing ChatGPT directly leads to subpar performance
compared to models trained specically on the domain-specic
dataset, how it was done in nach0.
3.6 Discussion

In this study, we pretrained and ne-tuned T5models, which have
an encoder–decoder architecture. Nevertheless, a broad range of
model families, including T5, BERT-based BioMegatron,51

decoder-only PaLM52 and GPT,4 exist. To determine the most
suitable architecture for pre-training and ne-tuning on chemical-
related data, it may be necessary to evaluate these alternatives. We
suggest it as a potential topic for future research.

There have been several efforts to train large language
models (LLMs) on biomedical corpora, particularly on PubMed.
Notable examples include BioGPT (347m and 1.5b),53 Pub-
MedGPT (2.7b),54 and Galactica (120b).18 Through our experi-
ments with scaling from a base model (250m) to a large model
(780m), we demonstrated the benets of scale on several data-
sets. Based on our ndings, we can conclude that scaling can
further enhance the chemical capabilities of models, particu-
larly in terms of generation and reasoning skills.

3.6.1 Limitations
Key LLM capabilities for chemistry. Although our LM was able

to reach state-of-the-art performance on several chemistry-
related benchmarks, our human evaluations clearly suggested
that these models are not at the chemist expert level. In order to
bridge this gap, several new LLM capabilities need to be
researched and developed including (i) knowledge alignment
between textual and chemical sources as well as domain-
specic knowledge graphs; (ii) ability to perform chemical
reasoning and provide explanations for their predictions; (iii)
ability to learn from and adapt to feedback from human experts,
(iv) ability to generate novel chemical reactions and materials.

Molecular representations. One limitation of our LM is its
focus on string representations of molecules, specically the
SMILES notation. Although SMILES is a widely used notation
for representing molecules, it provides only 2D information of
themolecule, missing the 3D geometry and spatial arrangement
of atoms and bonds in a molecule. This can result in inaccur-
acies in predicting molecular properties and interactions. To
address these limitations, it would be benecial to incorporate
additional modalities of molecules, such as the molecular
graphs in terms of 2D or 3D representations, in the training of
the language model.

Another signicant drawback of the SMILES format is the
absence of a one-to-one translation between molecules and
SMILES strings. Typically, a molecule can have multiple SMILES
representations that differ from each other due to factors such
as the starting atom, molecular graph traversal, and kekuliza-
tion. In practice, SMILES strings are oen converted to
© 2024 The Author(s). Published by the Royal Society of Chemistry
a canonical form using an unambiguous algorithm. A molec-
ular representation called SELFIES55,56 was dened from scratch
to be attractive as a sequential representation for molecules. All
random SELFIES are valid molecular representations. SELFIES
was extended to treat molecular groups as well.57 As SELFIES
have been repeatedly shown to have advantages over other
representations in the context of generative models, exploring
their use as the main representation for a language model is
a future potential direction.

Prompt design. Our language model has a limitation in that it
heavily relies on the quality and specicity of the prompts, as
well as the potential for biases in both the training data and the
prompts themselves. To enhance the performance of the model,
incorporating domain-specic and information-rich prompts is
essential. One potential approach to achieving this is by
leveraging the knowledge of domain experts to design effective
biomedical prompts. Yet, over-reliance on domain-specic
prompts may lead to a lack of diversity in the model's
responses, which can limit its usefulness.

Chemical diversity. Mol-Instructions includes cross-domain
datasets that consist of compounds and their corresponding
descriptions collected from PubChem. PubChem is a publicly
available database administered by the National Center for
Biotechnology Information (NCBI). It is important to note that
the datasets primarily encompass current drugs and known
chemical probes, representing only a fraction of the vast pre-
dicted chemical space. Furthermore, these datasets do not
encompass testing on novel chemical diversity distinct from
molecules documented in the literature.

4 Conclusion

Our study integrates a diverse range of one-domain and multi-
domain task types and biomolecular text instructions to
address the landscape of chemical research on drug design,
reaction prediction, and retrosynthesis and leverage the
advancements in NLP and LLMs. The multi-domain training
approach allows our model, nach0, to leverage a broader
understanding of both chemical and linguistic knowledge.
Extensive experiments and two case studies demonstrate that
nach0's capabilities in translating between natural language
and chemical language enable it to tackle tasks effectively.
Considering the unique training methodology and the broader
scope of tasks that our model can effectively handle, we believe
our work presents a signicant contribution to the eld.

Based on our ndings, we foresee several promising direc-
tions for future research. One direction could involve such as
protein sequences, which would require adding special tokens
into the model similar to SMILES. This task could be easily
achieved with group SELFIES. Newmodalities require collecting
diverse tasks with natural language prompts for ne-tuning. A
second direction involves extending NLP datasets and con-
ducting zero-shot evaluations to assess the reasoning and
generalization capabilities of nach0. Finally, exploring the
fusion of information from textual sequences and relevant
knowledge graphs as input in a self-supervised approach
remains an area to be explored.
Chem. Sci., 2024, 15, 8380–8389 | 8387
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Code availability

The nach0 framework is available for research purposes: nach0
base is available via https://huggingface.co/insilicomedicine/
nach0_base; nach0 large is available via https://huggingface.co/
insilicomedicine/nach0_large; for pre-processing scripts, see
https://github.com/insilicomedicine/nach0.

Data availability

All datasets used in the study for pre-training and ne-tuning
are publicly available.
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