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nalysis of R–X oxidative addition
to Pd nanoparticles†

Mikhail V. Polynski, *a Yulia S. Vlasova, bc Yaroslav V. Solovev, d

Sergey M. Kozlov a and Valentine P. Ananikov *bc

Oxidative addition (OA) is a necessary step in mechanisms of widely used synthetic methodologies such as

the Heck reaction, cross-coupling reactions, and the Buchwald–Hartwig amination. This study pioneers the

exploration of OA of aryl halide to palladium nanoparticles (NPs), a process previously unaddressed in

contrast to the activity of well-studied Pd(0) complexes. Employing DFT modeling and semi-empirical

metadynamics simulations, the oxidative addition of phenyl bromide to Pd nanoparticles was

investigated in detail. Energy profiles of oxidative addition to Pd NPs were analyzed and compared to

those involving Pd(0) complexes forming under both ligand-stabilized (phosphines) and ligandless (amine

base) conditions. Metadynamics simulations highlighted the edges of the (1 1 1) facets of Pd NPs as the

key element of oxidative addition activity. We demonstrate that OA to Pd NPs is not only kinetically facile

at ambient temperatures but also thermodynamically favorable. This finding accentuates the necessity of

incorporating OA to Pd NPs in future investigations, thus providing a more realistic view of the involved

catalytic mechanisms. These results enhance the understanding of aryl halide (cross-)coupling reactions,

reinforcing the concept of a catalytic “cocktail”. This concept posits dynamic interconversions between

diverse active and inactive centers, collectively affecting the outcome of the reaction. High activity of Pd

NPs in direct C–X activation paves the way for novel approaches in catalysis, potentially enhancing the

field and offering new catalytic pathways to consider.
1. Introduction

Facile synthesis of functionalized organic molecules is of
paramount importance for the development of personalized
medicine, ne chemical synthesis, advancements in drug
design, and innovative materials, among many other areas.
Within this conceptual demand, activation of the carbon–
halogen (C–X) bond in organic halides (R–X) with subsequent
transfer and functionalization of the organic group (R) is the
basis for many well-recognized synthetic approaches known for
their cost-efficiency, wide scope, and general applicability.1–3
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Activation of the C–X bond occurs through oxidative addition
(OA), initiating a series of transformations in catalyst active
centers.

Developing synthetic methodologies involving OA as an
essential step in the reaction mechanism uncovered dynamic
catalyst interconversions as a common phenomenon.4 Dynamic
catalyst interconversions are now at the forefront of catalysis as
the key concept to developing a new generation of synthetic
technologies and addressing sustainability problems.4–7 This
dynamic behavior was exceptionally evident in one of the
cornerstone classes of organic reactions, Pd-catalyzed (cross-)
couplings.8,9 Previous studies have shown that a “cocktail” of
dynamically interconverting Pd species can easily form under
catalytic conditions, including metal complexes, halides, and
nanoparticles as catalytically active centers or pre-activated Pd
reservoirs, with their activity varying tremendously in some
cases.10–17 The dynamic phenomena occur under homogeneous
and heterogeneous catalysis conditions.7 It has been demon-
strated that oxidative addition of aryl halides plays a central role
in the formation of “cocktail”-type systems.17,18

OA to Pd(0) metal complexes was investigated in experi-
mental, DFT, and combined experimental/theoretical
studies.19–28 However, the high level of reaction mechanism
complexity still drastically challenges our understanding of OA,
even at the level of molecular complexes.29
Chem. Sci., 2024, 15, 9977–9986 | 9977
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Pd NPs have shown remarkable activity in cross-coupling
reactions as versatile and practical catalysts. In many studies,
the activity was associated with Pd leached into the solution, not
with the surface reactions on Pd NPs.9,30–34 At the same time, Pd
nanoparticles are oen formed spontaneously during cross-
coupling reactions.35–39

While OA plays a key role in Pd leaching,17 its mechanism on
the nanoparticle surface remains unexplored since previous
computational and experimental–computational studies
focused on energies of Pd detachment from the NP surface or
cross-coupling reactions on molecular subnanoclusters.40–45 In
the present study, for the rst time, we investigated the oxida-
tive addition of an organic halide to the Pd surface at the nano-
scale. The studied process is relevant to C–C and C–heteroatom
bond formation in applied ne organic synthesis involving
nanocatalysts. Comparison with regular Pd complexes,
including various ligands, highlighted a critical difference in
C–X bond activation at the molecular and nano-scale levels.

2. Results

We conducted metadynamics (MTD) modeling of oxidative
addition (OA) to truncated octahedral Pd79 and Pd140 nano-
crystallites, along with a smaller Pd55 nanocrystallite, using the
GFN1-xTB Hamiltonian (Pd79 and Pd55: Fig. 1; Pd140: Fig. S2†).
We observed OAs in almost all Pd55 and Pd79 systems within
tens of picoseconds (Fig. S1a† and 1a, respectively). A repre-
sentative case of the PhBr OA to Pd79 is depicted in Fig. 1a(1).
PhBr dissociation occurred at the edge of the nanoparticle.
Subsequently, the Br atom migrated to the (1 0 0) facet and
remained bonded to it. Concurrently, the Ph group exhibited
active migration along the edge between two (1 1 1) facets and
the adjacent (1 0 0) facet, as illustrated in the snapshot struc-
tures at the top of Fig. 1a.

The OA mechanism and post-OA system evolution were
similar across all cases examined. The majority of OA events
occurred at nanoparticle edges. In a few cases involving Pd55,
the OA occurred at the vertex of the nanoparticle, which is also
a site comprised of a Pd atom with a low coordination number
(see details below). Only one OA to Pd140 was observed within
100 ps of sampling due to the increased conguration space
size; this reaction also occurred on the edge (Fig. S2†). In the
Pd55 and Pd140 systems, Ph migrated along the NP edges simi-
larly to the case of Pd79 throughout all MTD simulations
(Fig. 1a, b and S2a†). Aer the OA, Br similarly remained tightly
bound to one of the (1 0 0) facets of Pd140. In contrast, some
mobility of the adsorbed Br was observed on Pd55, with Br
migrating along the (1 0 0) facet, which is larger in Pd55 than in
Pd79 and Pd140 (Fig. 1b).

Fig. 1c presents the free energy proles (FEPs) obtained from
individual MTD runs involving Pd79. The movement of the
dissociated Ph along the edge corresponds to a series of shallow
minima on the right side of the obtained FEPs. Although these
basins are deeper than the “thermal energy”, RT, at 298.15 K
(0.6 kcal mol−1), Ph migration occurs relatively easily. The cor-
responding FEPminima are signicantly higher than the lowest
sharp minimum at approximately 1.9 Å, which corresponds to
9978 | Chem. Sci., 2024, 15, 9977–9986
the undissociated state of PhBr. According to the obtained FEP,
the OA activation free energy does not exceed approximately
11 kcal mol−1, and OA is kinetically feasible at ambient
temperature. OA can lead to the accumulation of tightly bound
Br atoms on the Pd surface, with a preference for the (1 0 0)
surface. This is accompanied by the chemisorption of Ph
groups, which migrate easily near low-coordinate Pd atom sites
such as edges, steps, vertices, etc.

MTD sampling of dissociation trajectories allowed us to
identify transition states relevant to modeled nanoparticles.
Upon examining the MTD trajectories, we determined two
groups of OA processes in the Pd79 system occurring at the edge
of (1 1 1) facets, with variations in the positioning of the Ph
group (Fig. 2a). In the rst group, the Ph group was situated on
the (1 1 1) facet with the Ph–Br bond nearly perpendicular to
the edge (Pd79 fac–ed), whereas in the second group, the Ph
moiety was positioned such that the Ph–Br bond nearly colli-
nearized with the edge (Pd79 ed–ed). The OA of PhBr to Pd55
proceeded via two distinct pathways: in the rst, OA occurred
on the edge (labeled Pd55 ed in Fig. 2a), and in the second, the
vertex Pd atom acted as the reactive center (labeled Pd55 ver).
The TS found during the MTD sampling of the PhBr–Pd140
interaction (Pd140 ed in Fig. 2a) was fully similar to that in the
Pd79 system.

In addition to the OA pathways identied in MTD simula-
tions, we employed the DyNEB method46 to explore several
alternative active centers. Firstly, we examined OA to Pd–phos-
phine complexes: the electron-donating PMe3 and the widely
used relatively weakly electron-donating PPh3. Secondly, we
included [Pd(NEt3)2] into the consideration to model a nitrogen
base added in some coupling reactions conducted under
“ligandless” conditions (the Heck reaction and others). Lastly,
using the DyNEB method, we investigated a hypothetical
pathway in which the reaction occurred on a facet of the Pd79
nanoparticle (labeled Pd55 ed in Fig. 2b). Although the latter
pathway was not observed in the MTD simulations, it can be
used a valuable reference to enhance our understanding of the
effects of nanostructuring on OA to Pd catalysts.

The focal point of this study is the computed free energy
proles of OA to Pd79 and molecular complexes depicted in
Fig. 3. The corresponding numerical values are given in Table
S1.† The process begins with the formation of the pre-OA
complex 10. Pd79 was selected to compare the adsorption
affinity of PhBr towards Pd nanoparticles vs. the thermody-
namic effect of 1 / 10 in the case of molecular complexes
[PdL2]. The adsorption of PhBr onto Pd79 is markedly exergonic,
with DG1/10 being lower than −46.9 kcal mol−1. This result
indicates a probable intensive coverage of Pd NP precatalysts by
the aryl halide during coupling reactions.

The transition 1 / 10 is endergonic for [Pd(PMe3)2] (DG1/10

= 5.0 kcal mol−1) and exergonic for [Pd(NEt3)2] and [Pd(PPh3)2],
with DG1/10 being equal to −12.0 and −1.9 kcal mol−1. In the
case of phosphine ligands, PhBr in 10 binds to [PdL2] only
through the Br atom, and there is considerable translational
and rotational entropy loss. For 10 with L = NEt3, a strong Pd–p
bond forms between the aryl halide and the [PdL2] moiety,
effectively counterbalancing the entropic loss.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (a) Collective variable (C–Br distance) evolution during the metadynamics simulations of the Pd79 system; (b) selected case of the
collective variable evolution in the Pd55 system; (c) free energy profiles obtained from the metadynamics runs of PhBr OA to Pd79. The color
scheme is as follows: Pd – dark cerulean; Br – dark red; C – grey; H – white.
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The comparison of the DFT-calculated activation energies of
oxidative addition is given in Table S1,† and the corresponding
plot is given in Fig. 3. Since the transition 1 / 10 was exergonic
in the cases of Pd79, [Pd(NEt3)2], and [Pd(PPh3)2], we regarded
DG‡

10/TS1 as the OA activation energy for these species. For
[Pd(PMe3)2], however, DG

‡
10/TS1 was considered as the activation

energy instead of DG‡
10/TS1 due to the positive value of DG1/10.

In all the molecular complexes, classic three-center Br–Pd–C
transition states were identied (Fig. 2), characterized by imaginary
© 2024 The Author(s). Published by the Royal Society of Chemistry
modes representing the migration of Ph to Pd and the Ph–Br bond
cleavage. The activation barriers of the OA to [Pd(PMe3)2] and
[Pd(PPh3)2] did not surpass 12.6 kcal mol−1, aligning well with the
typically facile OA to complexes of Pd(0) with two non-overly
sterically hindered phosphine ligands. The OA of PhBr to
[Pd(PPh3)2] proceeded with DG‡

10/TS1 equal to 9.7 kcal mol−1. It is
important to note the detachment of the second NEt3 from the Pd
center in the transition state, whereas both the initial and nal
states, 10 and 2, featured NEt3 attached to Pd.
Chem. Sci., 2024, 15, 9977–9986 | 9979
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Fig. 2 (a) Optimized structures of the OA transition states along with pre-reaction and post-reaction states in the PhBr interactions with Pd55,
Pd79, and Pd140 nanoparticles, derived from metadynamics simulations. Intermediate 3, identified during the MTD sampling, is discussed in the
text. (b) Optimized structures of the intermediates in the pathways involving Pd79 (facet active site) and [PdL2] (L = NEt3, PMe3, and PPh3),
elucidated in nudged elastic band calculations. The color scheme is as follows: Pd – dark cerulean; Br – dark red; P – orange; N – blue; C – grey;
H – white. Intermediate and transition states are numbered according to the scheme in Fig. 3. All optimizations were performed using DFT (see
Section S1† for details).
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The calculated activation energies of PhBr OA to Pd79 are
comparable to or lower than those involving molecular Pd
complexes, with DG‡

10/TS1 being equal to 13.4, 11.4, and
6.0 kcal mol−1 for Pd79 fac, Pd79 fac–ed, and Pd79 ed–ed,
respectively. Evidently, the edge is a highly reactive site with the
activation barrier for the Pd79 ed–ed transition state well below
those observed with the [PdL2] complexes. Furthermore, the
formation of the pre-reaction state 10 in pathway Pd79 ed–ed is
also the most exergonic among these three model reaction
9980 | Chem. Sci., 2024, 15, 9977–9986
channels. Therefore, we may expect the preferable reactivity via
the ed–ed channel. It should also be noted that the (1 1 1) facet
exhibited the lowest activity in the model OA process, indicating
that oxidative addition preferentially occurs at the edges of Pd
nanoparticles.

Fig. 3 and the last columns of Table S1† show that the
transitions 10 / 2 and 1 / 2 with all the molecular complexes
are highly exergonic. In the case of Pd79, the notable exer-
gonicity of 1/ 2 is primarily due to the substantial exergonicity
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Reaction scheme and the free energy profile. Optimized
structures of the intermediates are shown in Fig. 2. See Table S1† for
numerical data.

Table 1 Computed free (activation) energies of oxidative addition to
Pd55, Pd79, and Pd140 for the sites having the lowest DG‡

10/TS1 for each
NP

System DG‡
10/TS1 DG10/2

Pd55 ed 7.5 −6.0
Pd79 ed–ed 6.0 −3.8
Pd140 ed 3.9 −9.7

Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
M

ay
 2

02
4.

 D
ow

nl
oa

de
d 

on
 8

/1
0/

20
24

 1
:5

0:
47

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
of PhBr adsorption (1/ 10). The DG10/2 values for the Pd79 fac–
ed and fac channels are positive (1.9 and 3.2 kcal mol−1,
respectively), while DG10/2 for ed–ed is negative, being
−3.8 kcal mol−1. However, state 2 in the Pd79 fac–ed and ed–ed
channels does not correspond to the structures of the OA
products observed in the MTD runs (see Fig. 1a). In particular,
we can see that most structures of the post-OA complexes at the
top of Fig. 1a have Br and Ph chemisorbed on two adjacent (1
0 0) facets.

Such a structure resulting from the facile migration of Br and
Ph to the (1 0 0) facets is depicted in Fig. 1a as 3. The values of
DG10/2 are negative for all three reaction channels. This
suggests that the accumulation of chemisorbed Ph and Br (the
products of 10 / 3) can be thermodynamically favorable when
higher surface energy (1 0 0) facets are available on the NP
surface along with edges between (1 1 1) facets. The availability
of (1 0 0) surfaces was previously associated with a higher
propensity for Pd leaching and activity in Suzuki cross-
coupling.34 This nal product 3 differs signicantly from
species 2 in molecular complexes; in the NP system, the Ph and
Br groups are separated, whereas in the molecular complexes,
they remain bonded to a single Pd center.

By comparing DG‡
10/TS1 and DG10/2 in Pd55, Pd79, and Pd140

systems, we can assess the effect of the nanoparticle size on the
kinetic and thermodynamic feasibility of PhBr oxidative
© 2024 The Author(s). Published by the Royal Society of Chemistry
addition. The lowest DG‡
10/TS1 values for each NP are presented

in Table 1, while Table S1† contains all the computed values.
The DG‡

10/TS1 values indicate that the activity of the edge sites
increases with the increase of the nanoparticle size. The non-
monotonous behavior of DG10/2 with the increase of the
nanoparticle's size is also evident, while all DG10/2 in Table 1
are negative. Given that the post-OA migration of Ph was
observed in all MTD simulations (see Fig. 1, S1 and S2†), and
that process 10 / 3 was highly exergonic in the Pd79 system, we
may expect the high propensity of Pd NPs to undergo the OA of
PhBr when there is a sufficient surface density of edge sites and
presence of (1 0 0) surfaces. At the same time, the fraction of
edge atoms is smaller in larger nanoparticles; hence, the density
of active sites decreases with the increase in the size.

Although previous experimental studies associated OA of
PhBr with the leaching of Pd into the solution,11,18,47 within the
context of this study, we can only hypothesize that Ph and Br on
the surface may kinetically facilitate this process. Notably, our
earlier analysis, which considered only thermodynamic factors,
indicated that OA leads to negative (favorable) formation ener-
gies of molecular forms (metal complexes) of leached Pd in
solution.17 Additionally, the spontaneous formation of Pd NPs is
a common phenomenon in coupling reactions where the (pre)
catalyst is initially introduced as ametal complex. Therefore, OA
to Pd NPs should be recognized as a crucial mechanistic step.
OA to Pd NPs is as kinetically feasible as the OA to Pd(0)
complexes, reinforcing the concept of the catalytic “cocktail”, in
which a variety of potentially active and inactive interconverting
centers contribute to the overall reaction outcome.
3. Discussion and conclusions

The conclusions of this study are schematically depicted in
Fig. 4, which highlights the interplay of the elucidated trans-
formations in the (cross-)coupling catalysis of reactions
involving aryl halides. In our DFT modeling, we analyzed the
activity of the nanoparticles ranging from ∼1.08 (Pd55) to
∼1.56 nm (Pd140). We focused primarily on the edges between
their (1 1 1) facets that exhibit the highest thermodynamic
stability;48 however, we recognize that other centers containing
low-valent Pd atoms (e.g., various vertices and kinks) could also
be active in OA.

Pd nanoparticles featuring a sufficient surface concentration
of low-coordinated atoms, such as facet edges, and atoms on
higher-surface energy facets, such as (1 0 0), can undergo
oxidative addition of aryl halides. The presented DFT modeling
suggests that OA to Pd nanoparticles is well comparable to OA to
Chem. Sci., 2024, 15, 9977–9986 | 9981
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Fig. 4 The interplay of oxidative addition in catalyst interconversions in the course of (cross-)couplings with Pd(0) nanoparticles and molecular
complexes. See Fig. 2 for more detailed structures and Fig. 3 for reaction (activation) free energies. The arrowed circles represent (possible)
participation in the catalytic cycle (see text for discussion).
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Pd(0) complexes by its activation barrier and also being ther-
modynamically favorable. (1 1 1) terraces on Pd nanoparticles
also showed relatively high activity, though lower than that of
the considered edge sites. OA to all nanoparticles was both
kinetically facile at 25 °C and thermodynamically favorable.

For the rst time, the present study revealed the critical
difference between the OA involving monometallic centers, i.e.,
molecular complexes, and metal nanoparticles. Classic OA to
a monometallic Pd center proceeds as reversible coordination
of Ph–Br followed by three-center interaction and breakage of
C–Br bond with both Ph and Br groups remaining in close
proximity. In contrast, OA to Pd NPs involves practically irre-
versible trapping of Ph–Br on the metal surface followed by
facile C–Br bond breakage and separation of Ph and Br from
each other via multicentered interactions on the surface.

The debate49 about the occurrence of a (cross-)coupling
process at the nanoparticle surface continues in recent litera-
ture, with works reporting the reaction at the metal surface,50,51

exclusively in solution,33,52 or in both modes, depending on the
reaction conditions.53 Here, we show that the OA stage alone
would not hamper (cross-)coupling at the nanoparticle surface,
according to its calculated reaction (activation) free energies
that are comparable with those related to Pd(0) complexes.
Another important point is that the type of the ligand, Pd liga-
tion state, type of the organic substrate, and even the solvent
can strongly affect the mechanism, kinetics, and selectivity of
OA to metal complexes.23,28,29,54–61 Therefore, the relative activity
of Pd complexes and nanoparticles in OA depends on the choice
of reference ligand. The rate of the OA to Pd complexes bearing
some designer ligands may surpass that to Pd NPs. In addition,
9982 | Chem. Sci., 2024, 15, 9977–9986
mass transfer effects may be at play in the case of aryl halides
OA to Pd NPs. A denitive answer to the question of the feasi-
bility of truly heterogeneous (cross-)coupling on Pd(0) surface
requires further investigation, particularly regarding the surface
activity of Pd NPs in other coupling steps, such as trans-
metalation and reductive elimination.

The discussions in the present study highlight many signif-
icant phenomena related to coupling reactions involving Pd
nanoparticles that require further elucidation. This nding
emphasized that our understanding of oxidative addition is still
evolving and incomplete.
4. Computational details

GFN1-xTB62 was utilized for MTD simulations and thermochem-
ical correction calculations in ASE.63 The GBSA solvation model
parameterized for GFN1-xTB was employed to account for solvent
effects.64MTD simulations were conducted usingDFTB+ 22.2 (ref.
65) and PLUMED 2.8.2.66,67 DFT calculations were carried out
using the revPBE functional68 with the D3(BJ) correction69,70 in
VASP 6.3.2.71Core electron density wasmodeled using PAW.72 The
single-point Hessian (SPH) method73 implemented in the xtb
program64 was used to perform thermochemical calculations.
Additional computational details are provided in the ESI.†
ChatGPT 4 was used for initial text proofreading.
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Ramı́rez, Unifying Views on Catalyst Deactivation, Nat.
Catal., 2022, 5(10), 854–866, DOI: 10.1038/s41929-022-
00842-y.

7 A. S. Galushko and V. P. Ananikov, 4D Catalysis Concept
Enabled by Multilevel Data Collection and Machine
Learning Analysis, ACS Catal., 2023, 14, 161–175, DOI:
10.1021/ACSCATAL.3C03889.

8 D. B. Eremin and V. P. Ananikov, Understanding Active
Species in Catalytic Transformations: From Molecular
Catalysis to Nanoparticles, Leaching, “Cocktails” of
Catalysts and Dynamic Systems, Coord. Chem. Rev., 2017,
346, 2–19, DOI: 10.1016/j.ccr.2016.12.021.

9 A. M. Trzeciak and J. J. Ziółkowski, Monomolecular
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