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Compounds containing Mn—-O bonds are of utmost importance in biological systems and catalytic
processes. Nevertheless, mononuclear manganese complexes containing all O-donor ligands are still
rare. Taking advantage of the low tendency of the pentafluoroorthotellurate ligand (teflate, OTeFs) to
bridge metal centers, we have synthesized two homoleptic manganese complexes with monomeric
structures and an all O-donor coordination sphere. The tetrahedrally distorted Mn" anion,
[Mn(OTeFs)4]?~, can be described as a high spin d®> complex (S = 5/2), as found experimentally (magnetic
susceptibility measurements and EPR spectroscopy) and using theoretical calculations (DFT and CASSCF/
NEVPT2). The high spin d* electronic configuration (S = 2) of the Mn'" anion, [Mn(OTeFs)s1?~, was also
determined experimentally and theoretically, and a square pyramidal geometry was found to be the most

stable one for this complex. Finally, the bonding situation in both complexes was investigated by means
Received 23rd January 2024 f the Interacting Quantum Atoms (IQA) methodol d d to that of hypothetical
Accepted 26th February 2024 o e Interacting Quantum Atoms methodology and compared to that of hypothetica
mononuclear fluoromanganates. Within each pair of [MnX,]2~ (n = 4, 5) species (X = OTeFs, F), the Mn—

DOI: 10.1039/d4sc00543k X interaction is found to be comparable, therefore proving that the similar electronic properties of the
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Introduction

Manganese is a key element in biological systems," being partic-
ularly relevant in the photosynthesis,** as well as in a diversity of
catalytic processes.”™ One of the facts that makes it especially
interesting is the wide range of oxidation states that it can
present, varying from —III to +VIL.** Whereas high oxidation states
are stabilized by oxo ligands, as in the [MnO,]|” ion or in the
binary Mn,0, fluoride is only able to stabilize medium oxidation
states.”” In fact, manganese fluorides are only known up to
oxidation state +IV in MnF, and in the related [MnF4]*~, although
oxidation state +VII is attained in the oxyfluoride MnO;F."®
Compounds containing Mn-O bonds are involved in cata-
lytic and enzymatic reactions.”>* Notably, the chemistry of
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teflate and the fluoride are also responsible for the stabilization of these unique species.

manganese complexes with oxygen ligands is mainly dominated
by polymetallic species, including oxo ligands in the higher
oxidation states, whereas alkoxides or carboxylates are the
preferred ligands for lower oxidation states.'***** To prevent
aggregation and enable the formation of mononuclear
complexes, bulky alkoxide ligands, as well as fluorinated ones,
constitute suitable ligand scaffolds.”>*¢ In this regard, the pen-
tafluoroorthotellurate group (teflate, OTeFs) also offers unique
possibilities, as it provides an O-donor ligand system with a low
tendency to bridge metal centers.””*® Its electron-withdrawing
properties, similar to those of fluoride, made us envision the
possibility of using this monodentate ligand for the synthesis of
unprecedented  homoleptic  mononuclear = manganese
compounds containing Mn-O bonds, which would be
analogues of the well-studied low-valent fluoromanganates.'®
Here, we report the synthesis of two different manganese teflate
complexes in oxidation states +II and +III, i.e., [Mn(OTeF;5),]*~
and [Mn(OTeF;);]*", and the investigation of their structural
and electronic properties by means of a combined experimental
and theoretical approach.

Results and discussion
Synthesis and characterization of [NEt,],[Mn(OTeF;),]

The manganese(n) compound [NEt,],[Mn(OTeFs),] (1) can be
synthesized by reacting [NEt,],[MnCl,] with AgOTeF; in CH,Cl,

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 Synthetic routes to complexes [Mn(OTeFs) >~ and
IMn(OTeFs)s]?~. The cation is [NEt,]* in all cases.

and after removal of the formed AgCl vig filtration it is isolated
as an off-white solid (Scheme 1). The product exhibits a similar
IR spectrum to the related [NEt,],[M(OTeFs),] compounds (M =
Ni, Co, Fig. $21),2**° indicating the four-coordinate nature of the
manganate anion. The Te-O vibration observed at 854 cm™*
signifies the ionic nature of the Mn-OTeF5 bond.**

Despite numerous attempts under different conditions, only
intergrown and highly twinned crystals of compound 1 could be
obtained, which were not suitable for single-crystal X-ray
diffraction. Gratifyingly, the use of a different cation, namely
[PPh,]", allowed the preparation and growth of single crystals of
[PPh,],[Mn(OTeFs),] (1*). Compound 1* crystallizes in the
tetragonal space group I4,/a (see the ESI{ for details). The
[Mn(OTeF;),]*~ anion (Fig. 1a), which appears well separated
from the [PPh,]" cations, exhibits a distorted tetrahedral
geometry, similar to those observed for the related
[M(OTeFs),]*~ anions (M = Ni, Co0).2>* Nevertheless, the
distortion at the Mn(1) center is much less pronounced in this
case, with a geometry index of 7, = 0.96.*

The combination of manganese and the teflate ligand was
already known, yet only with manganese in oxidation state +I in
compound [Mn(CO)s5(OTeFs)].**** The uniqueness of the
[Mn(OTeFs),]>~ anion lies in the presence of four single Mn-O
bonds, compound 1* actually entailing the first example of

a) , b)
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a homoleptic mononuclear Mn(u) species with four monodentate
O-donor ligands. A compound close to this situation is the
coordination polymer [Mn(pyc)a(u-SO4)-H,0le (pyc = 4-
carboxy-1-methylpyridinium), where each Mn(u) center is coor-
dinated by four pyc ligands in an almost square planar
arrangement, but these subunits are connected by 7*u,-SO4
bridges.** Noteworthily, in this context, compound
[Mn"(pin®),]*~ (pin" = perfluoropinacolate) was recently re-
ported, containing two chelating ligands.*” This compound
exhibits a pseudotetrahedral geometry around the metal center
with a much more prominent distortion (t, = 0.43) than the
anion in compound 1* (Fig. 1a), probably because of the two
chelating ligands. In our case, a perfectly tetrahedral geometry at
the metal center should be expected, yet it is slightly distorted
probably due to steric reasons. These structures are unusual, as
most of the known manganese(i) complexes with O-donors are
heteroleptic, ranging from mono- and dinuclear coordination
compounds to clusters of different sizes, or even polymeric chain
structures.'**?* In this regard, also Mn(u) complexes containing
two alkoxido or aryloxido ligands and additional solvent mole-
cules are known.***° In our case, the use of a non-donor solvent
has further helped isolate the homoleptic species, which in
conjunction with the low tendency of the teflate to bridge metal
centers gives rise to the monomeric nature of the compound.

The existence of a Mn(u) center within the anion
[Mn(OTeF;5),]>~ (see the ESI{ for bond valence sum analyses)
was confirmed via electron paramagnetic resonance (EPR)
spectroscopy. The X-band EPR spectrum of 1 recorded at room
temperature in CH,Cl, (Fig. 1b) does not show six distinct lines,
as would be expected for an I = 5/2 nucleus. Only the corre-
sponding W-band spectrum (Fig. S101) reveals the expected
hyperfine splitting and gives g5, = 2.000 (A(**Mn) = 255 MHz),
as expected for a high spin (HS), mononuclear Mn(u) complex.**
We attribute the unresolved hyperfine splitting at the X-band to
a yet unknown broadening mechanism involving the metal
center and the [OTeF;]™ ligand.

Due to the stabilization of the half-filled d shell and the low
charge of the metal center, typically Mn(u) complexes exhibit
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(a) Molecular structure of the [Mn(OTeFs)4]~ anion in the solid state as found in crystals of 1*. The [PPh,]* cations have been omitted for

clarity. Displacement ellipsoids are set at 50% probability. Selected bond lengths [pm] and angles [°]: Mn—-O 202.1(3), O-Mn-0 112.23(11)/
104.1(2). For crystallographic details see the ESI.{ (b) X-band EPR spectrum of 1 in DCM (5.0 mM) at 293 K. The spectrum yields gegs = 2.02. The
rather high g-value is attributed to the contribution of the zero-field splitting, and the unresolved lines to a yet unknown broadening mechanism.

(c) Experimental uegs versus T plot and fit for compound 1.
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a HS configuration (S = 5/2),*> Mn(u) centers in low spin (LS)
configurations being very scarce.'*** Additionally, because of
the weak/medium-field character of the teflate ligand, a HS is
expected for 1 all the more.* In line with this, 1 was determined
to have an effective magnetic moment of u.¢ = 5.87 ug (Fig. 1c),
being very close to the spin-only value of a d®> HS system, i.e.,
Us.o. = 5.92 ug. This excellent agreement can be explained by the
lack of orbital contribution to the magnetic moment due to the
HS electronic configuration leading to a °S ground term,*
similarly to the [MnX,]>~ anions (X = Cl, Br, I).* The magnetic
data were successfully simulated, as shown in Fig. 1c and the fit
parameters for 1 are reported in the ESI.T Typically the magnetic
anisotropy of a HS Mn(u) center is characterized by a small zero-
field splitting (corresponding D values < 1 cm™')* and indeed
a D = 0.62 cm™ " was inferred for 1.

To further understand the nature of the [Mn(OTeFs),]*~
anion, we investigated its electronic structure by means of
a theoretical study. First, we performed a DFT structure opti-
mization of the sextet ground state by using B3LYP-D3B]J, M06,
MO06-L and TPPSh functionals. All of them provided similar
geometries with structural parameters t, = 0.99 (B3LYP-D3B],
Mo06 and TPPSh) or t, = 0.98 (M06-L), which are in good
agreement with the experimental one (vide supra). Given the
problems that might arise when studying the electronic struc-
ture of first-row transition metals by means of DFT,** we also
applied multi-reference calculations. Namely, on the B3LYP-
D3BJ-optimized structure, we combined the state-average
complete active space self-consistent field (SA-CASSCF) that
accounts for static electron correlation,®® with n-electron
valence state perturbation theory (NEVPT2)*'"** to account for
dynamic electron correlation. In the active space, we incorpo-
rated the Mn-O bonding orbitals based on the 3d orbitals, along
with the primarily 3d orbitals of the metal and the corre-
sponding 4d orbitals, to accurately consider the effects of
double-d shell correlation.>**¢ As a result, we obtained an active
space composed of 11 electrons in 13 molecular orbitals, SA-
CASSCF(11,13)/NEVPT2 (Fig. S117). As anticipated, the ground
state corresponds to the sextet based on the °A; term, where the
five 3d orbitals of the manganese are partially occupied. Note
that this configuration has a weight of 98.8%, which allows for
the consideration that the sextet ground state has a prominent
single-reference character. The first excited state would corre-
spond to a quartet that lies 286 k] mol™* above in energy (see
Table S67 for the full set of states). Overall, this picture justifies
the use of DFT.

Synthesis and characterization of [NEt,],[Mn(OTeF;)s]

The reaction of [NEt,],[MnCl,] with ClOTeF; takes place with
oxidation of the Mn(u) center to Mn(m) and coordination of five
teflate ligands to the metal center (Scheme 1). Compound
[NEt,],[Mn(OTeFs)s] (2) is selectively formed as a deep blue
solid, whereas Cl, is released as a yellow gas. The role of
ClOTeF; as an oxidizer towards various metals has been previ-
ously reported, e.g. in the preparation of [Mo(OTeFs)q]*” or
[ReO(OTeFs),].*®* This behavior is in contrast with the
synthesis of the related [NEt,],[M"(OTeFs;),] salts (M = Ni, Co),

5566 | Chem. Sci, 2024, 15, 5564-5572
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in which the oxidation state and coordination number of the
metals remain unaltered upon reaction of the corresponding
[NEt,,[M"Cl,] salt with neat CIOTeFs5.>** Interestingly,
compound 2 can also be obtained by oxidation of 1 with
ClOTeFs5, which is advantageous, as a much lower amount of
hypochlorite is needed. In this case, the IR spectrum (see Fig.
S4t) exhibits a broad band at 827 cm ™ for the Te-O vibrations,
denoting the ionic nature of the Mn-OTeF; bond also in the
Mn(m) species.*

All attempts to prepare crystals of 2 proved to be of an overall
low quality, resulting in an aggregation of different components
that made it difficult to treat the structure as a non-merohedral
twin, additionally characterized by severe disorder. Unfortu-
nately, although the use of the [PPh,]" cation seemed promising
after the successful crystallization of 1*, this cation proved to be
unstable in the presence of ClOTeFs. Therefore, only the
connectivity in compound 2 could be established from our
crystallographic analysis. Compound 2 consists of two [NEt,]"
cations and the [Mn(OTeFs)s]>~ anion, without any significant
interaction among them. Interestingly, the [Mn(OTeF;)s]>~
anion shows a monomeric structure with a {MnOs} core dis-
playing an overall square pyramidal geometry (Fig. 2). Such an
isolated core in a homoleptic complex with monodentate
ligands is without precedence in the literature: the vast majority
of species containing {MnOs} cores are clusters and polynuclear
species, including both homo- and heterometallic compounds.
Mononuclear representatives contain either chelating
ligands®*** or solvent molecules®*®” completing the coordi-
nation sphere, yet none of them has the same O-donor ligand
occupying the five coordination sites around the manganese
center.

An effective magnetic moment p.¢ = 5.48 up was determined
for compound 2 (Fig. 2). This is higher than the spin-only value
of uso = 4.90 up expected for four unpaired electrons at
a Mn(III) center (S = 2) and also than the value found in the
structurally related®*7° [MnCl;]*>~ anion.”*”® Nevertheless, it is
comparable with the magnetic moments determined for other

Q —o
[NEt,J,[Mn(OTeF;)q] (2)
Hefr = 5.48 g

oy gl

1 5 1 1 1
0 100 300
TIK]

Fig. 2 Experimental uegs versus T plot and fit for compound 2. A
schematic representation of the [Mn(OTeFs)s]2~ anion in the solid state
is shown inside the frame, with the first coordination sphere of the
Mn(in) center highlighted.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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square pyramidal dianionic {Mn™0;} complexes,*” and it clearly
demonstrates a high-spin configuration that is in line with the
weak/medium-field character of the teflate ligand.> The fact
that 2 contains a Mn center in the oxidation state +III was
further confirmed by the results of a bond valence sum analysis
(see the ESIY).

To gain further insights into the geometry of the
[Mn(OTeFs)s]”~ anion beyond the limitations of our crystallo-
graphic data, we undertook a theoretical analysis. As five-
coordinate transition-metal complexes can exhibit two
different geometries: square pyramidal (SPY-5) and trigonal
bipyramidal (TBPY-5),”* we considered both structural possi-
bilities for our calculations. All the optimizations converged to
the experimentally observed square pyramid, regardless of the
starting structure. Interestingly, we found two intimately
related, although slightly different, SPY-5 structures, whose
energy difference is lower than 1.0 k] mol " for the B3LYP-based
methodology. In order to obtain a structure with the TBPY-5
geometry, geometrical constraints had to be imposed (see the
ESIt for additional details). Nevertheless, the obtained TBPY-5
structure (for B3LYP-D3B]J) is almost isoenergetic, being only
6.4 k] mol™" higher in energy. In general, the same trend is
observed when using M06-L, M06 and TPSSh (Table S97). Both
optimized structures at B3LYP-D3BJ, with indicated bond
lengths, calculated geometry indices 75,”° and relative energies
are shown in Fig. 3.

Furthermore, although the HS d* electronic configuration of
our system is the most common one for the electronic ground
state of a Mn(m) center,** the existence of complexes exhibiting
spin crossover (SCO) that involve an intermediate spin (IS)
configuration (S = 1, two unpaired electrons) or even with the LS
configuration (S = 0) has been reported for some systems.”***
Therefore, despite SCO not being experimentally observed for
compound 2, we optimized the structure at the DFT level (by
using the same functionals as for the Mn(u) species), consid-
ering not only the HS state as described above but also the IS

a) Square pyramid
(SPY-5), t; = 0.05

b) Trigonal bypiramid
(TBPY-5), 75 = 0.96

AE = 6.4 kJ mol™

AE =0 kJ mol™

Fig. 3 DFT structures of the [Mn(OTeFs)s|>~ anion optimized at the
B3LYP-D3BJ level of theory and calculated relative energies. (a) Square
pyramidal structure. Selected bond lengths [pm]: Mn—-01 191.07, Mn—
02 190.79, Mn-03 191.18, Mn-04 190.01, and Mn-05 201.41. (b)
Trigonal bipyramidal structure, obtained after imposition of geomet-
rical constraints. Selected bond lengths [pm]: Mn—0O1 188.60, Mn—-02
188.15, Mn-03 196.00, Mn-04 196.38, and Mn-05 197.36.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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3d

x2—y?

Fig. 4 Schematic representation of the energy diagram of the SA-
CASSCF(12,14) MOs mainly composed of Mn 3d orbitals for the
[IMn(OTeFs)s)?~ anion.

and LS states. While there was significant dispersion in the
relative energies of the various spin states, all the functionals
revealed a HS quintet ground state. The energy difference to the
IS state is in the range 94.7-188.5 k] mol™* (depending on the
functional), being 94.7 k] mol " for TPSSh, which has generally
been ranked as a suitable choice for the study of the electronic
structure of Mn complexes.*”*>** Note that this value is close to
the B3LYP one, which is 112.8 k] mol™.

As a further check of consistency we applied multi-reference
SA-CASSCF(12,14)/NEVPT2 calculations on the global minimum
structure. Consistent with the calculations performed for the
[Mn(OTeFs),]*~ anion, our active space comprised Mn-O
bonding orbitals that exhibit substantial involvement of Mn 3d
orbitals. Additionally, we considered the five 3d-based orbitals
that prominently incorporate Mn and the corresponding 4d
orbitals in order to account for the double-shell effect (Fig.
S127). According to the NEVPT2 calculations, a quintet ground
state was determined, where the Mn 3d,:_,> orbital is unoccu-
pied (Fig. 4). This specific configuration holds a weight of
96.6%, indicating that the state can be described as a single-
reference state in broad terms. All other states are provided in
Table S7,T in which it can be seen that the lowest triplet state is
217.8 k] mol * higher in energy, and this difference increases to
333.6 k] mol ! for the lowest singlet. The HS quintet state is also
in agreement with the weak/medium-field character of the
teflate ligand,* as well as with our magnetic measurements
(vide supra).

Chemical bonding analyses

Compounds 1 and 2 represent unique examples of homoleptic
mononuclear low-valent manganese compounds with all

Chem. Sci., 2024, 15, 5564-5572 | 5567
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monodentate O-donor ligands. These features are enabled by
the electronic similarities of the fluoride and teflate ligands,
together with the limited tendency of the teflate to bridge metal
centers.””?® In fact, when compared to the corresponding fluo-
ride analogues, it is the latter reason that hinders the formation
of extended structures in the solid state, contrary to [MnF,]*",
which exists as layers, or [MnF;]*~, which forms chains.*®

With the aim of comparing the bonding mode of such
electronically similar compounds, namely [Mn(OTeFs),]*~ (n =
4, 5) and the corresponding hypothetical monomeric [MnF, ]>~
(n = 4, 5), we undertook a bonding analysis by means of the
Interacting Quantum Atoms (IQA) energy decomposition
scheme,® which we have previously applied to related [CoX,]*~
complexes (X = OTeFs, F, C1).*° IQA is an orbital-invariant and
parameter-free approach that applies a scalar topological
partition to divide the space into regions associated with
chemically meaningful entities. As it is customarily performed,
we coupled IQA with the partition of space provided by the
Quantum Theory of Atoms in Molecules (QTAIM).*” This way,
the space is divided into different atoms. Within this frame-
work, the total energy is divided into intra-atomic and inter-
atomic contributions between pairs of atoms or groups of
atoms (say A and B). The latter term (Efme.) can be further
decomposed into a classical electrostatic (V') and an exchange-
correlation contribution (V¢), which is directly related to bond
covalency.®*® It should be noted that V4® has also been
proposed as a direct measure of bond strength, as the classical
(Coulomb) interaction is significantly affected by long-range
interactions between highly charged groups.”* Herein, we
considered the interaction between the manganese center and
a given group (X) that might be a single atom, as in the case of F
in [MnF,]>", or the combination of various atoms, as the teflate
ligand in [Mn(OTeFs),J>". For the latter, its interaction with the
metal is obtained by adding all the pairwise interactions
between it and each of the atoms belonging to the group.

The classical (ionic) and exchange-correlation (covalent)
interaction terms for [Mn(OTeF5),]>~ and [MnF,]*~ are provided
in Table 1. They are referred to as Vi~ and Vir\, as they account
for the interaction between the metal center (M) and the ligand
group (X). For comparison purposes, the Co analogues are also
provided.* The VAx* term for [Mn(OTeF,),]*~ (—251.0 k] mol )
is comparable to that of [MnF,]*~ (—233.1 k] mol '), which is in
line with the similar covalent character of both ligands. In this
regard, it is noticeable that, albeit they are still quite similar, the

Table 1 Calculated M—X distance (pm, M = Mn, Co), VX (kJ mol™?),
VI¥ (kd mol™), and QTAIM charges (le”|) for [MX4]°~ complexes (M =
Mn, Co; X = OTeFs, F)

MX,]>~

M X dM-X) V¥ Vier g™ X

Mn OTeF; 202.43 —705.4 —251.0 1.58 —0.90
F 203.69 —903.4 —233.1 1.54 —0.88

Co” OTeFs 196.72 —617.4 —293.3 1.44 —0.86
F 197.62 —842.8 —264.7 1.44 —0.86

% Values taken from ref. 30.
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difference between these terms (17.9 k] mol ') is smaller than
that for the Co-based compounds (28.6 k] mol™'), and that the
covalent interaction in [Mn(OTeF,),]*” is significantly weaker
than that for [Co(OTeF,),]*~ (—251.0 vs. —293.3 k] mol ).

Electrostatic interactions also deserve a special comment.
Given the lower electronegativity of Mn with respect to Co, it is
somehow evident that the charge of the Mn center should be
higher than that of Co, which is indeed an observed fact (see
Table 1). In this line, the classical electrostatic M-OTeFs inter-
action is more favorable for [Mn(OTeFs),]>~ than for
[Co(OTeF5),]*~ (—705.4 vs. —617.4 k] mol ', respectively), which
compensates for the decrease in the covalent interaction term.

We now consider the Mn(ur) anion. First, we checked if the
structure of the hypothetical monomeric [MnFs]*~ anion is the
same as for [Mn(OTeF;)s]*~. Surprisingly, the global minimum
for [MnF;]* is represented by a TBPY-5 structure instead of the
SPY-5 geometry of the [Mn(OTeF;);]*~ anion. Nonetheless, the
energy difference between both structures is, as in the case of
the teflate compound, very small. Namely, the square pyramidal
structure is, at the B3LYP-D3BJ level, 1.4 k] mol " higher in
electronic energy and exhibits an imaginary frequency of
9i ecm™' that corresponds to the transition to the TBPY-5
structure via Berry pseudorotation. Note that comparable
results were obtained for the other functionals (see Table S137
and additional explanations provided in the ESIT).

With this in hand, we proceed to analyze the energetics of
the Mn-OTeF; interaction in the [Mn(OTeFs)s]>~ anion. The
VAPX term of the IQA framework for the SPY-5 structure is
significantly larger (in absolute value) for the bond with the
basal teflates than for the apical one (—330.3 and
—248.8 k] mol ™", respectively). This fact is somehow expected,
as the Mn-O bond length with the apical oxygen in the SPY-5
structure (201.41 pm) is much longer than that with the basal
oxygen atoms (190.76 pm av.), as can be seen in Fig. 3. In the
same line, the interaction energy for the axial Mn-O bonds in
the TBPY-5 structure is more favorable than that for the equa-
torial bonds (—352.6 and —287.4 k] mol *, respectively), as also
anticipated from the shorter Mn-O bonds (Fig. 3) in the axial
positions (188.38 pm av.) than in the equatorial ones (196.58
pm av.). When comparing the V"™ term for both ligands (X =
OTeFs, F), a similar covalent character of the interaction is
observed in both cases, yet slightly more favorable for the teflate
(about 15 kJ mol ™" at the maximum, Table 2).

Table 2 Calculated V™ (kJ mol™) and QTAIM charges (le7|) for
[MnXs]?~ complexes (X = OTeFs, F)

[MnX;]*~ Vee™

Geometry Position X =OTeFs X=F ¢ (Mn)* q (X)*

SPY-5 Basal —330.3 —315.5 1.90 (1.96) —0.76 (—0.78)
Apical —248.8  —240.4 —0.86 (—0.85)

TBPY-5  Axial —-352.6  —339.5 1.90 (1.97) —0.74 (—0.76)
Equatorial —287.4 —271.1 —0.81 (—0.82)

“ Charges correspond to [Mn(OTeF;)s]*~, while values in parentheses
are those of [MnF;]*".

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Finally, the charge of the Mn center is almost the same for
the teflate and the fluoride species within each set of
compounds, namely the Mn(u) and the Mn(ui) complex anions,
which is in agreement with the similar electronegative character
of both groups.?”?** This way, for the [MnX,]*~ anions, the
charge of the Mn is 1.58 |e” | when X = OTeF;5 and 1.54 |e” | when
X =F, similarly to what happens in the Co-based systems (Table
1). In this line, when comparing both Mn(m) species (Table 2),
the Mn has a charge of 1.90 |e | in [Mn(OTeF;)s]*~ (for both
geometries) and ca. 1.96 |e”| in [MnF;]*>". All in all, the teflate
ligand causes similar effects on the manganese center as the
fluoride, therefore allowing a similar stabilization of the
oxidation states +II and +III.

Conclusions

In this work, two unprecedented motifs in the coordination
chemistry of manganese with all identical monodentate O-
donor ligands are reported and their characterization and
properties are investigated by means of theory and experiment.
The reaction of [MnCl,]>~ with AgOTeF; results in the Mn"
anion [Mn(OTeF;),]>~, which displays a distorted tetrahedral
structure in the solid state. The nature of the Mn(u) center was
investigated by EPR spectroscopy and magnetic susceptibility
measurements, indicating a high spin d° electronic configura-
tion (S = 5/2). Additionally, DFT and SA-CASSCF/NEVPT2
calculations show a pseudo-°A;, sextet as the ground state,
which is single-reference. On the other hand, when [MnCl,]>~ or
[Mn(OTeF;),]>~ is reacted with ClOTeFs, oxidation of the
manganese center takes place to yield the Mn"™ anion
[Mn(OTeF;)s]>". This species exhibits preferentially a square
pyramidal geometry instead of a trigonal bipyramidal one and
contains a Mn(m) center with a high spin d* electronic config-
uration (S = 2), as determined experimentally and backed by
theoretical calculations. A bond analysis through the IQA energy
decomposition scheme in these [Mn(OTeFs),]*~ anions (n = 4,
5) was performed and shows that, in comparison with the
hypothetical mononuclear fluoromanganates, the Mn-OTeFs
interactions are slightly stronger than the Mn-F ones. Addi-
tionally, the charge in the Mn center is virtually the same in
both [Mn"X,]*~ analogues (X = OTeFs, F), as well as in the
[Mn""X;]>~ pair of complexes (X = OTeFs, F).

The teflate ligand is known to exhibit similar electronic
properties to fluoride, but normally leads to mononuclear
species, i.e., it is much less prone to bridge metal centers.>”*° In
fact, it is this combination of properties that has enabled the
formation of the unique compounds reported in this work. In
this regard, fluoride is only able to stabilize medium oxidation
states of manganese,”"” something also shown now to be
possible for the teflate, yet incorporating a novel homoleptic
coordination environment of all O-donor monodentate ligands.
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