
Chemical
Science

EDGE ARTICLE

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
Ju

ne
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

1/
10

/2
02

5 
11

:3
9:

46
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue
From computatio
aDepartment of Chemistry, University of Toro

harikumar@mail.utoronto.ca
bDepartment of Computer Science, Universit
cCatalonia Institute for Energy Research, Ba
dDepartment of Materials Science and Eng

Canada
eDepartment of Electrical and Computer Eng

Canada
fCenter of Hydrogen Science, Shanghai Jiao
gState Key Laboratory of Metal Matrix Com

Engineering, Shanghai Jiao Tong University
hInnovation Center for Future Materials, Z

Shanghai Jiao Tong University, Shanghai, C
iDepartment of Chemical Engineering & Ap

Canada
jVector Institute for Articial Intelligence, To
kCanadian Institute for Advanced Research
lAcceleration Consortium, University of Toro

† Electronic supplementary informa
https://doi.org/10.1039/d4sc00192c

Cite this: Chem. Sci., 2024, 15, 10556

All publication charges for this article
have been paid for by the Royal Society
of Chemistry

Received 10th January 2024
Accepted 5th June 2024

DOI: 10.1039/d4sc00192c

rsc.li/chemical-science

10556 | Chem. Sci., 2024, 15, 10556–
nal screening to the synthesis of
a promising OER catalyst†
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Chung Hsuan Shan,a Zhenpeng Yao*fgh and Alan Aspuru-Guzik*abdijkl

The search for new materials can be laborious and expensive. Given the challenges that mankind faces

today concerning the climate change crisis, the need to accelerate materials discovery for applications

like water-splitting could be very relevant for a renewable economy. In this work, we introduce

a computational framework to predict the activity of oxygen evolution reaction (OER) catalysts, in order

to accelerate the discovery of materials that can facilitate water splitting. We use this framework to

screen 6155 ternary-phase spinel oxides and have isolated 33 candidates which are predicted to have

potentially high OER activity. We have also trained a machine learning model to predict the binding

energies of the *O, *OH and *OOH intermediates calculated within this workflow to gain a deeper

understanding of the relationship between electronic structure descriptors and OER activity. Out of the

33 candidates predicted to have high OER activity, we have synthesized three compounds and

characterized them using linear sweep voltammetry to gauge their performance in OER. From these

three catalyst materials, we have identified a new material, Co2.5Ga0.5O4, that is competitive with

benchmark OER catalysts in the literature with a low overpotential of 220 mV at 10 mA cm−2 and a Tafel

slope at 56.0 mV dec−1. Given the vast size of chemical space as well as the success of this technique to

date, we believe that further application of this computational framework based on the high-throughput

virtual screening of materials can lead to the discovery of additional novel, high-performing OER catalysts.
Introduction

While hydrogen does represent a promising form of green
energy storage, the sluggish kinetics of the water splitting
reaction limits the efficiency and the practical implementation
of electrolytic water splitting and green hydrogen production on
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an industrial scale.1–3 The current state-of-the-art materials for
OER catalysis oen contain materials like IrO2 and RuO2.2,3

RuO2 for example, typically has overpotentials between 250-
350 mV at 10 mA cm−2 of current density and Tafel slopes
between 50-70 mV dec−1 in basic conditions of 1 M KOH.35,46,51

However, IrO2 and RuO2 are rare and expensive, necessitating
the development of cheaper catalysts that are comparable to
them on both metrics.

Spinels can potentially replace IrO2 and RuO2 with earth-
abundant metal oxide catalysts capable of catalysing OER.2–5

The crystal structure of spinel oxides is made up of oxygen
anions arranged within a cubic close-packed sublattice while
metallic cations are positioned within the tetrahedral and
octahedral interstitial sites between the anions.6,7 The basic
composition of a ternary-phase spinel oxide is AxB3−xO4, where
A and B are two different metals.6,7 In this structure, the
distribution of both metals across both coordination geome-
tries can be represented by the formula (Ax−3B1−x+3)Td

(A3B2−3)Oh

where Td refers to tetrahedrally coordinated cations, Oh refers to
octahedrally coordinated cations and 3 refers to the inversion
parameter (3 = 0 – x)7 (Fig. 1B). If 3 equals 0, the structure is
a normal spinel, and if 3 equals x, the structure is an inverse
spinel.7 The presence of transition metals in both the AO4 and
BO6 structural units likely allows both of them to contribute to
OER activity. This could potentially increase the structural
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (A) Scheme describing the computational workflow to identify new catalysts for OER. In this workflow, Co2.5Ga0.5O4 was discovered as
a highly-performing spinel oxide catalyst. (B) Diagram describing the structure of a spinel oxide AB2O4, where A is tetrahedrally coordinated and B
is octahedrally coordinated.
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diversity and tunability of spinel oxide catalysts for OER catal-
ysis, making them an interesting system to study.

In recent years, spinels have proven to be a rich source of
earth abundant metal oxide catalysts capable of catalyzing OER
efficiently.5 Most spinel oxides reported for OER tend to be Fe-
based or Co-based, with some examples of highly active spinel
oxides being NiFe2O4, CoFe2O4 and CuCo2O4.5 For example, Liu
and coworkers fabricated NiFe2O4 nanospindles on an Fe3Ni
foam substrate that exhibited an overpotential of 262 mV at
a current density of 10 mA cm−2, as well as a Tafel slope of
39.5 mV dec−1 in 1 M KOH.8 Lu and coworkers synthesized
CoFe2O4 nanoparticles on carbon nanorods that had an over-
potential of 240 mV at 10 mA cm−2 as well as a Tafel slope of
45 mV dec−1 in 1 M KOH.9 Yadav and coworkers synthesized 3D
CuCo2O4 nanoowers on a carbon cloth substrate that had an
overpotential of 288 mV at 10 mA cm−2 and a Tafel slope of
64.2 mV dec−1 in 1 M KOH.10 The efficacy of these catalysts
demonstrate that spinels could be a promising source of new
materials for OER catalysis. However, while considerable work
has been done so far to discover new spinel oxide catalysts for
OER, the entire possible chemical space of spinels has yet to be
explored. There could potentially be more efficient spinel oxide
catalyst compositions that haven't been discovered yet.

It is not feasible to explore the entire chemical space exper-
imentally, due to the immense number of permutations
possible with each element in the periodic table. According to
one estimate by Walsh and coworkers, the number of possible
© 2024 The Author(s). Published by the Royal Society of Chemistry
ternary phase inorganic materials that can be synthesized out of
103 elements in the periodic table is greater than 32 million,
even aer constraining this space by imposing charge neutrality
and electronegativity rules.11 However, it is possible to explore
a greater fraction of this space computationally, in order to
narrow down possible candidates before synthesizing them in
a lab. This approach towards materials discovery has had
a signicant impact in elds as diverse as catalysis,12,13 Li-ion
batteries,14,15 thermoelectrics,16,17 organic light-emitting
diodes,18 and transparent conducting oxides.19 Within the
eld of catalysis, there have been high-throughput computa-
tional studies that have aimed to discover new OER catalysts.
For example, Xu and coworkers utilized a bandcenter descriptor
to screen 3d spinel oxides for OER activity.13 Ulissi and
coworkers screened 2600 equimolar Ir-containing bimetallic
oxides for acid-stable OER catalysts and identied 14 possible
candidates predicted to be stable under acidic conditions.12

Nørskov and coworkers screened 47 814 nonbinary metal oxides
in the Materials Project and identied 68 possible acid-stable
OER catalysts.20 In each of these studies, computational
screening was used to predict the stability or activity of OER
catalysts. However, to the best of our knowledge, no study has
successfully utilized a high-throughput computational screen to
discover novel, highly-active OER catalysts that have been
experimentally demonstrated to compete with current bench-
mark catalysts reported in the literature. In this paper, we
Chem. Sci., 2024, 15, 10556–10570 | 10557
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discuss a high-throughput computational workow that
enabled us to achieve this goal.

In this study, we built a computational workow to screen for
new highly active spinel oxides for OER in basic pH conditions.
A computational database of ternary-phase spinel oxide mate-
rials comprised of 52 elements in the periodic table is rst
constructed. These elements include alkaline, alkaline-earth,
transition (with the exception of articial Tc), post-transition
and some lanthanide metal elements (La, Ce, Nd, Gd and Lu)
and are circled in Fig. S1.† Every possible combination of
elements that could be constructed from this list was explored,
for an overall spinel system AxB3−xO4 where A and B are two
different metallic elements. For each system AxB3−xO4, three
different values of x (x = 0.5, x = 1, x = 1.5) are chosen in order
to screen for three unique compositions A0.5B2.5O4, AB2O4 and
A1.5B1.5O4. Both normal spinel (3 = 0) and inverse spinel (3 = x)
structures for each specic composition were explored. Once
this database was created, the thermodynamic stability of these
materials was assessed to isolate materials that are likely to exist
in nature. Following that, the theoretical overpotential of OER
on the surface of these materials was computed. We used the
results of these computations to create a machine learning
model to predict OER activity using electronic structure
descriptors of bulk metal, bulk oxygen, surface metal, surface
oxygen and adsorbate oxygen atoms as features. This allowed us
to further probe the relationship between electronic structure
descriptors and OER activity. The trends observed in the results
of this high-throughput computational screen were applied to
synthesize three catalysts, Co2.5Ga0.5O4, Co1.5Ga1.5O4 and
Co1.5Al1.5O4 and characterize them for OER activity. We
discovered that Co2.5Ga0.5O4 had an overpotential of 220 mV at
a current density of 10 mA cm−2 and a Tafel slope of 56.0 mV
dec−1, making it a new highly active OER catalyst successfully
discovered using this novel computational workow. The
success of this workow at predicting a real catalyst highly
active for OER implies that it can be adapted to discover new
highly active OER materials belonging to other classes of
materials as well.
High throughput computational
workflow

A computational database of 6155 ternary-phase spinel oxides
was rst created from 52 transition, post-transition, alkaline,
alkaline earth and lanthanide metal elements. For each
combination of metal elements, three different ratios of metals
were explored: A0.5B2.5O4, AB2O4 and A1.5B1.5O4. Both normal
and inverse spinels of each permutation of materials were also
considered, leading to six different spinel structures: (A0.5-
B0.5)Td

(B2)Oh
O4, (B)Td

(A0.5B1.5)Oh
O4, (A)Td

(B2)Oh
O4, (B)Td

(AB)Oh
O4,

(A)Td
(A0.5B1.5)Oh

O4 and (B)Td
(B0.5A1.5)Oh

O4. The spinel oxide Fe3O4

belonging to the Fd3m spacegroup was used as a prototype
structure for every single combination of elements except those
utilizing Mn; for spinel oxides containing Mn in the octahedral
positions, Mn3O4 was used as a prototype structure instead in
order to account for the Jahn–Teller distortion of octahedrally
10558 | Chem. Sci., 2024, 15, 10556–10570
coordinated Mn3+ ions.21 DFT calculations were subsequently
performed to relax the structure of each compound and obtain
its ground state energy.

In the next step of the high-throughput workow, the ther-
modynamic stability of each composition was assessed. First,
the energies of the normal and the inverse spinel structures of
each composition were compared to determine the most
probable ground-state conguration of each composition, with
the more stable one being chosen for the next step. Then, we
constructed a convex hull based on the bulk energies of all
knownmaterials encompassing the phase space of the elements
that constitute each spinel oxide composition. The Open
Quantum Materials Database was used to construct the phase
space of the elements that constitute each compound.22,23 The
thermodynamic stability of each composition was subsequently
determined by calculating the distance of the bulk energy of
each composition from this convex hull. The total energy of
each compound was compared to a linear combination of
possible decomposition products that lie on the convex hull of
the phase space in order to calculate this distance from the
convex hull.15,24 If the difference between the energies was
within 0.030 eV per atom (30 meV per atom), the compound
would be considered thermodynamically stable.25

The heat maps in Fig. 2A–C show the formation energies of
the different spinel oxide compositions. The higher density of
formation energies below 0.030 eV per atom demonstrates that
the AB2O4 spinel composition is generally the most stable
composition type, followed by A0.5B2.5O4 and then A1.5B1.5O4.
This is probably because in the latter two compositions, at least
one of the cations should occupy both tetrahedral and octahe-
dral sites in the spinel oxide structure. This cation should be
able to assume both +2 and +3 oxidation states and should not
have any strong preference for tetrahedral or octahedral coor-
dination geometry. This constraint would limit the number of
possible stable compositions for both A0.5B2.5O4 and A1.5B1.5O4

compositions relative to AB2O4. It can be observed that spinel
oxides containing 3d metal cations are typically more stable
than spinel oxides containing 4d and 5d metal cations. Mn, Co
and Fe-containing spinels, in particular, are more likely than
other metal cations to have formation energies that are within
0.030 eV of their convex hulls. This makes Mn, Co and Fe-
containing spinels more likely to exist in nature.25 This obser-
vation can rst be partly rationalized by the fact that Mn, Co and
Fe are stable in the +2 and +3 oxidation states.26 Furthermore,
according to Kocevski and coworkers, Mn, Co and Fe ions do
not have a strong preference for either tetrahedral or octahedral
sites in spinels and are frequently seen in either of them.27

Therefore, Co, Mn and Fe containing spinel structures have
a greater amount of exibility in accommodating a wider variety
of other cations as a result, making them more ubiquitous than
other elements; an observation that was further corroborated by
the calculations performed in this work.27 Spinels containing
metals of higher oxidation states can be stabilized through the
engineering of oxygen vacancies into the structure.6 This study,
however, did not consider defects such as oxygen vacancies in
order to keep computational costs reasonable. Aer this step
had been performed, 290 materials were identied as being
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Heat map outlining the stability of compositions (A) AB2O4, (B) A0.5B2.5O4 and (C) A1.5B1.5O4. Stable spinels in this study are considered to
have formation energies below 0.03 eV per atom with respect to the convex hull. (D) Frequency plot of all thermodynamically stable materials
based on the calculated theoretical overpotential. Materials deemed to have a low theoretical overpotential (less than 0.5 eV) marked in dark
blue. (E) Frequency of each metallic element amongst thermodynamically stable spinels for which theoretical overpotentials for OER were also
calculated. Elements making up low overpotential compounds (less than 0.5 eV) are also labelled in dark blue.
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View Article Online
potentially thermodynamically stable. They were selected for
the nal step of this high-throughput computational screen,
where their OER activity was estimated.

In the nal step of this workow, the catalytic activity of each
of these 290 spinel oxide materials is predicted by calculating
the theoretical overpotential using the computational hydrogen
electrode method proposed by Nørskov and coworkers.28 The
computational hydrogen electrode states that the chemical
potential of the proton and electron pairs can be described as
half of the chemical potential of the H2 molecule since these
species are in chemical equilibrium at 0 V vs. the reversible
hydrogen electrode (RHE).28 We can use this model to estimate
the Gibbs free energies of the rst two reaction steps of the
adsorbate evolution mechanism (AEM) by calculating the
binding energies of the *O, *OH and *OOH intermediates of
OER. To calculate these energies, we created slabs of each
© 2024 The Author(s). Published by the Royal Society of Chemistry
material, relaxed the surface of the slabs, and then added the
relaxed *O, *OH and *OOH molecules on top of the metal sites
of the slab surface. All possible slab surfaces with a maximum
absolute Miller index of one were rst created using
Pymatgen.29–31 Higher index surfaces were not included in this
step to keep the computational cost reasonable. The surface
energies of all these slabs were calculated and the slab with the
lowest surface energy was identied. Next, *O, *OH and *OOH
molecules were xed onto the surface of the slab with the lowest
surface energy. Each of these slabs has a 50% monolayer
coverage of *O, *OH and *OOH intermediates respectively. This
assumption was made in order to limit computational cost that
could come with considering all the different permutations of
intermediates possible. We note that surface coverages can
change depending on the applied potential, and that the
potential window of the stability of surface coverage should be
Chem. Sci., 2024, 15, 10556–10570 | 10559
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taken into account in future studies where the predicted over-
potential of catalysts is computationally assessed. The adsorp-
tion energy of each of these intermediates was calculated and
used to determine the theoretical overpotential of OER on the
surface of each material.

The distribution of the calculated theoretical overpotentials
of the compounds is plotted in Fig. 2D. Out of the 290 materials
for which these theoretical overpotential calculations were
successfully performed, 33 compounds show potential to be
useful OER catalysts with theoretical overpotentials below
0.5 eV. Spinel oxides like CuCo2O4 and CoFe2O4 that are known
in the literature to be highly active for OER were also present
amongst these 33 compounds.5,9,10 This further conrms the
efficacy of this screen at discovering real materials that catalyze
OER efficiently. To better understand the impact of elemental
composition on catalytic activity, a frequency plot of the
elements in all calculated compounds is plotted with respect to
theoretical overpotential in Fig. 2E. It seems that Cobalt forms
the largest number of catalytically active spinel oxides for OER,
since they have the greatest number of low overpotential (<0.5
V) compounds compared to others. This insight corroborates
existing trends in the literature on the use of spinel oxides for
OER since most spinels reported for OER are either Co or Fe-
based.5

We then use the results of these OER calculations to train
a machine learning model to predict the binding energies of the
*O, *OH and *OOH intermediates of OER.
Predicting *O, *OH and *OOH binding
energies based on electronic structure
descriptors

Now that we have demonstrated that the success of this
computational workow at discovering new catalysts, we have
decided to use the database created by this workow to train
amachine learningmodel to predict the binding energies of *O,
*OH and *OOH intermediates. The objective of this task is to
use this model to identify patterns, based on DFT-calculated
electronic structure descriptors, that could aid with the swi
screening of OER catalysts. Electronic structure descriptors
have been successfully used in previous studies as a computa-
tionally inexpensive means of predicting OER activity.69–72 The
bulk 3d band center in metallic catalysts and the bulk O2p
bandcenter in perovskites have been shown to be predictive of
OER activity in previous studies.66–68 However, the main weak-
ness of solely using bulk descriptors is the likelihood that
surface effects end up getting ignored. Stoerzinger and
coworkers demonstrate this reality when they showed that OER
activity on the surface of RuO2(100) and RuO2(101) was higher
than their (110) and (111) counterparts in basic conditions due
to the higher concentration of coordinatively unsaturated
sites.73 Any comprehensive assessment of the link between OER
activity and electronic structure descriptors would have to
include electronic structure descriptors associated with both
bulk and surface atoms as well. Inspired by a recent study by
Lunger and coworkers which concluded that the Bader charge
10560 | Chem. Sci., 2024, 15, 10556–10570
and the O2p bandcenter of surface oxygen was predictive of *O,
*OH and *OOH binding energies on the surface of perovskite
slabs, we decided to use the bandcenters and Bader charges of
the atoms in each slab as features for our model.71 We rst
calculated the O2p bandcenters of the surface oxygen, bulk
oxygen and adsorbate oxygen atoms, the M3d bandcenters of
the surface metal and bulk metal atoms and the Bader charges
of the surface oxygen, bulk oxygen, adsorbate oxygen, surface
metal and bulk metal atoms. These descriptors were then used
as training data for a random-forest regression model. We used
a random-forest model since they are known to be simple to
use, accurate, and capable of dealing with small sample sizes
and high-dimensional feature spaces.75 In addition, since
random forests are also interpretable, we can also look at the
relative importance of the input features to nd electronic
structure descriptors that can correlate well with predicted OER
activity.75 This model was able to predict the binding energies of
*O, *OH and *OOH intermediates quite accurately, with an R2

score of 0.83 for the training set and 0.78 for the test set
(Fig. 3A). We also found that the outliers of our model, dened
as a prediction which differs from the calculated value by more
than 1 eV, were far more likely to contain novel elements like
Nb, Pb, Cd, and Ir. The failure of our model to predict the
theoretical overpotentials of these structures can be attributed
to the fact that these materials were underrepresented in our
dataset, since spinel oxides fabricated using these elements
were far more likely to be unstable and were therefore ltered
out by the convex hull stability screen. Such outliers, thankfully,
are rare and can only be attributed to 4% of the calculations in
our screen, further demonstrating the efficacy of our model at
predicting OER binding energies.

The relative importance of each feature for the prediction of
binding energies was then extracted from the random forest
model. The Bader charge of adsorbate oxygen was the most
important feature of all of them, with the O2p bandcenter of the
adsorbate oxygen atom coming at a distant second (Fig. 3B). The
signicance of electronic structure features associated with
adsorbate oxygen for OER is corroborated by previous work by
Nørskov and coworkers, which demonstrated a link between the
O2p bandcenter of adsorbate oxygen and the calculated theo-
retical overpotential.69 We also decided to use LASSO to predict
the binding energies of the OER intermediates, in order to
determine how universal the features we identied were with
respect to their relationship with the binding energies of OER
(Fig. S14†). Just like with the random-forest model, the Bader
charge of adsorbed oxygen was determined to be the most
important feature. The second most important feature in the
LASSO model, however, was deemed to be the Bader charge of
surface oxygen. The LASSO model performed poorly at pre-
dicting binding energies compared to the random-forest model;
with an R2 value of 0.65 for the training set, an R2 value of 0.72
for the test set and a median absolute error of 0.56 eV for both
the training and the test sets. As such, we decided to use the
results of the random-forest model for further analysis instead.

We then further examine the relationship between the two
most important features identied by our random-forest model,
the Bader charge and the O2p bandcenter of adsorbate oxygen,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (A) A graph created to illustrate the efficacy of the random forest model by comparing calculated binding energies of all the *O, *OH and
*OOH intermediates with predicted binding energies on the test set. The model has an R2 score of 0.83 for the training set and 0.78 for the test
set. It also has amedian absolute error of 0.16 eV for the training set and 0.21 eV for the test set. (B) A bar graph illustrating the relative importance
of all the features used to predict the binding energies of *O, *OH and *OOH. The Bader charge of the adsorbed oxygen was plotted against the
(C) binding energy of *O and (D) the difference in energy between O* and *OH, with the colorbar representing the bandcenter of the O2p band
of adsorbate oxygen.
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and the binding energies of *O, *OH and *OOH. We plot the
relationship between the binding energies of *O and *OH and
demonstrate that any increases in the Bader charge of adsorbate
oxygen can be associated with an increase in the binding
energies of the *O, *OH and *OOH intermediates. Furthermore,
increases in the distance between the O2p bandcenter and the
Fermi level are associated with decreases in the binding ener-
gies of *O (Fig. 3C) and *OH (Fig. S13†). We then plotDEO–DEOH
against both the oxygen bandcenter and the Bader charge of the
adsorbate oxygen in the *O intermediate (Fig. 3D). We see that
the relationship between DEO–DEOH and the Bader charge of
oxygen resembles that of a volcano plot; DEO–DEOH increases
when going from a Bader charge of −1.4e− to −0.5e− before
decreasing against from−0.5e− to−0.1e−. DEO–DEOH decreases
as the O-2p bandcenter moves further away from the Fermi
level, a relationship that can be corroborated by Nørskov and
coworkers.69 Since the optimal DEO–DEOH would be between 1.5
and 1.7 eV, the ideal catalyst is likely to have an oxygen Bader
charge between −0.3e− and −0.6e− and an O-2p bandcenter
between 2 eV and 4 eV below the Fermi level. Screening for
catalysts based on both descriptors is likely to lead to the
identication of more highly active catalysts for OER.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Synthesis and characterization of
compounds

Out of the 33 possible candidates predicted to have theoretical
overpotentials below 0.5 V, three Co-based spinel oxides,
Co1.5Al1.5O4, Co2.5Ga0.5O4, Co1.5Ga1.5O4, were selected for
synthesis and experimental characterization based on their
novelty. They were synthesized via electrodeposition onto
a carbon paper substrate. In order to obtain compounds that
have a similar composition to these predicted materials, stoi-
chiometric mixtures of the salts Co(NO3)2, Ga(NO3)3 and
Al(OH)(C2H3O2)2 were dissolved in the electrolyte solution used
for electrodeposition in all three cases. Co3O4 was also synthe-
sized for benchmarking purposes since it is well-known to be
active for OER.49 Aer synthesizing these materials, their
morphologies and chemical compositions were characterized
with SEM and energy dispersive X-ray spectroscopy (EDS)
mapping. The SEM images of all four catalysts (Fig. 4) reveal the
presence of an amorphous material evenly deposited on the
surface of the carbon substrate. EDS maps (Fig. S2–S5†) of
Co3O4 and Co–Al oxide indicate that all the constituent
elements of both materials are uniformly distributed. In
contrast, the elements in the Co–Ga oxide samples show greater
Chem. Sci., 2024, 15, 10556–10570 | 10561
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Fig. 4 SEM images of all four catalysts with two different resolutions. The four images on the top show zoomed out images of catalysts
presumed to be (a) Co3O4, (c) Co1.5Al1.5O4, (e) Co2.5Ga0.5O4 and (g) Co1.5Ga1.5O4. The images at the bottom show zoomed in images of the same
catalysts thought to be (b) Co3O4, (d) Co1.5Al1.5O4, (f) Co2.5Ga0.5O4 and (h) Co1.5Ga1.5O4.
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heterogeneity in their distribution over the surface of the
material. This seems to indicate the presence of another phase.

To further investigate the structure of the synthesized cata-
lysts, all four materials were characterized by XRD (Fig. 5A). The
major peaks corresponding to the spinel phase are found at
31.3°, 36.9°, 44.8°, 59.4° and 65.2°, which are the characteristic
peaks of Co3O4.32 The peaks at 44.8° and 55.0° found in all four
spectra can be attributed to the carbon paper substrate
(Fig. S11†). The presence of the spinel peaks in all four spectra
demonstrates that spinel oxides have been successfully
synthesized in all four cases. However, in addition to the peaks
Fig. 5 XRD and XPS spectra of all four compounds. (A) XRD spectra of a
Co2.5Ga0.5O4, Co1.5Ga1.5O4 and Co1.5Al1.5O4, the phases of Ga2O3 and Al2
Co3O4 (C) Co2.5Ga0.5O4 (D) Co1.5Ga1.5O4 (E) Co1.5Al1.5O4. In order to deter
corresponding to Co2+ and Co3+ are labelled in each XPS diagram.

10562 | Chem. Sci., 2024, 15, 10556–10570
corresponding to the spinel oxide and the carbon substrate
phases, new peaks corresponding to a different phase also
appear in the Co–Ga and Co–Al oxide spectra. These can be
attributed to b-Ga2O3 in Co–Ga oxide spectra and q-Al2O3 in the
Co–Al oxide spectrum.32,33 Since neither Ga2O3 nor Al2O3 are
redox-active, they are unlikely to make any signicant contri-
bution to OER activity.34,35

The composition of the synthesized materials was charac-
terized with XPS (Fig. S6–S9†). The high-resolution Co2p spectra
of each of these materials (Fig. 5B–E) show evidence of spin–
orbit splitting into 2p3/2 and 2p1/2 components at ∼780 eV and
ll four catalysts. The spinel phase is present in all four catalysts, and in
O3 are present as well. Co 2p XPS spectra of materials presume to be (B)
mine the composition, the Co 2p3/2 peak was deconvoluted. The peaks

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 (A) ECSA-adjusted iR-corrected LSV curves of all catalysts outlining the current density at different potentials (vs. RHE). Linear sweep
voltammetry (LSV) measurements are performed in 1 M KOH solution at pH 14. (B) iR-corrected LSV curved of all catalysts. (C) Tafel Slopes of all
catalysts shown on this semilog plot. Co2.5Ga0.5O4 has the lowest Tafel slope of all the catalysts. (D) Benchmarking catalysts in this study with
other state-of-the-art catalysts reported in the literature. Each experiment in our plot was done in 1 M KOH solution. A more detailed breakdown
of each reference catalyst can be seen in Table S5.†
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∼795 eV respectively, with shake-up satellites for each of these
components present at ∼790 eV and ∼805 eV.36 Each of these
spectra resembles the Co2p spectra of Co3O4, further corrobo-
rating the results of the XRD that have demonstrated the
successful synthesis of cobalt spinel oxide.36 In order to deter-
mine the stoichiometry of each of these catalysts, the Co2p2/3

spectra were deconvoluted based on the Co2p2/3 peak tting
parameters by Biesinger et al. and the ratio between the areas of
the peaks associated with the Co2+ and Co3+oxidation states
were calculated.36,37 Since both Ga and Al are not stable in the +2
oxidation state, they are both likely to displace Co3+ if success-
fully incorporated into the spinel oxide structure. Thus,
comparing the Co2+ and Co3+ ratio will help determine the
stoichiometry. The ratios of the peak areas of Co2+ to Co3+ are
1 : 2, 1 : 0.7, 1 : 1.5 and 1 : 1 in the Co3O4, Co–Al, and the two Co–
Ga catalysts respectively. This indicates that the exact structural
formulae of the catalysts are Co3O4, Co1.7Al1.3O4, Co2.5Ga0.5O4

and GaCo2O4.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Catalytic characterization

Aer the synthesis and structural characterization of these
catalysts, they were electrochemically characterized for OER
activity by linear sweep voltammetry (LSV) in a 1 M KOH solu-
tion (Fig. 6B). The overpotential in this report is dened as the
iR-corrected potential at 10 mA cm2

geo
−1 minus 1.23 V, where

geo represents the geometric surface area. At 10 mA cm2
geo

−1 of
current density, Co3O4 has the lowest overpotential of all the
catalysts at 170 mV, followed by Co1.7Al1.3O4 at 193 mV,
Co2.5Ga0.5O4 at 220 mV and nally GaCo2O4 at 270 mV.
However, while Co2.5Ga0.5O4 has a higher overpotential than
either Co3O4 or Co1.7Al1.3O4, it also has amuch lower Tafel slope
at 56.0 mV dec−1 than either catalyst (Fig. 6C). This allows
Co2.5Ga0.5O4 to start outcompeting the rest of the catalysts at
around 1.55 VRHE.

The LSV plot of each catalyst was further corrected using the
estimated electrochemically active surface area (ECSA) of each
catalyst in order to determine the intrinsic activity of each
Chem. Sci., 2024, 15, 10556–10570 | 10563
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material for OER (Fig. S10†). Co3O4 has the highest ECSA out of
all four catalysts, followed by Co1.7Al1.3O4, Co2.5Ga0.5O4 and
then GaCo2O4. Aer adjusting for the ECSA of all catalysts
(Fig. 6A), Co2.5Ga0.5O4 starts outcompeting Co3O4 even earlier,
at about 1.52 VRHE.
Benchmarking catalysts against state-
of-the-art materials

The catalysts explored in this report were then compared to 38
other benchmark catalysts in the literature in order to assess
their performance (Fig. 6D).8–10,38–61 The catalysts explored in
this report were compared to four families of catalysts: Non-
spinel Co catalysts (marked as Others), spinel oxide catalysts,
Ni–Fe catalysts and Ru/Ir-based catalysts. The ideal catalyst
would be one with a lower Tafel slope and a lower overpotential
than the state-of-the-art catalysts in the literature that currently
exist. While Co1.7Al1.3O4 has a low overpotential at a current
density of 10 mA cm−2, its high Tafel slope compared to the
benchmark catalysts examined makes it uncompetitive. The
performance of the GaCo2O4 catalyst with respect to its over-
potential and Tafel slope was also uncompetitive compared to
the benchmark catalysts. On the other hand, Co2.5Ga0.5O4 is as
competitive as some of the better benchmark materials within
the Ni–Fe family of catalysts on both the overpotential and Tafel
slope metrics. It has also outperformed all the Co, spinel oxide
and Ru catalysts examined in this report, with respect to both its
overpotential and its Tafel slope. The high performance of
Co2.5Ga0.5O4 demonstrates the efficacy of this high-throughput
computational workow at discovering promising OER
catalysts.
Conclusions

In this work, a high-throughput computational framework was
developed in order to screen for novel low-cost materials for
OER in basic conditions. Out of the 6155 binary spinel oxides
that were investigated for this work, 33 were predicted to have
low theoretical overpotentials below 0.5 eV. This made them
ideal candidates for further study through experiment. Based
on an analysis of the results of the overpotential screen, Ga and
Al-doped Co3O4 were investigated using LSV to determine their
OER activity. The data indicated that Ga0.5Co2.5O4 was highly
active for OER, surpassing many other state-of-the-art catalysts
that have been reported in the literature. This catalyst is, to the
best of our knowledge, novel and has not been investigated for
OER before. These results further demonstrate the strength of
this computational framework for facilitating the discovery of
novel materials for OER.
Methods
DFT calculation details

DFT calculations were performed to optimize the structure of
each spinel oxide in this database and calculate their energies.
Every DFT calculation in this study was performed with the
10564 | Chem. Sci., 2024, 15, 10556–10570
Vienna ab initio Simulation Package (VASP). The Projector-
Augmented Wave (PAW) method was used to model the core
electrons.62 The Perdew–Burke–Ernzerhof functional which
utilizes the generalized gradient approximation approach was
used to describe the exchange-correlation effects.63 For spinel
oxides containing 3d metal elements with the exception of Zn,
spin-polarized DFT calculations were performed; for all other
materials non spin-polarized calculations were performed
instead. The Hubbard U correction was employed for materials
containing 3d transition metals; the exact values used in this
study are described in ESI Table S4.† The energy cut-off used in
these calculations was 520 eV. Each and every single one of
these parameters was optimized to ensure that the right balance
between computational cost and accuracy was achieved.

In the rst step of this screen, three structural optimizations
were performed on the bulk structure of each spinel oxide
within this constructed dataset before the energy of each
structure was determined. A gamma-centered k-point mesh
with a density of 8000 k-points/number of unit cell atoms was
generated for eachmaterial using Pymatgen.29 Both the shape of
the unit cell and the positions of the atoms were allowed to
uctuate until the energy convergence criterion of 10−5 eV
between each self-consistent eld iteration step and the force
convergence criterion of 0.01 eV Å−1 were met. Once the relax-
ation steps had been concluded, the shape of the unit cell and
the positions of the atoms were xed in order to evaluate the
energy of each structure. The Brillouin zone was integrated
using the tetrahedron method with Blöchl corrections for this
energy calculation.64

Creating slabs and calculating the binding energies of the *O,
*OH and *OOH intermediates

When creating all slabs using Pymatgen, the width of each slab
was set at 6 Å and the vacuum space was set at 20 Å. The
energies of each slab were then calculated using DFT. Once the
slab energies had been calculated, the surface energy of each
slab was calculated using the following formula:31

Esurf ¼ Eslab � nEbulk

2A

where Esurf is the surface energy, Eslab is the calculated energy of
the slab, Ebulk is the energy (per atom) of the bulk structure, n is
the number of atoms in a unit cell and A is the surface area of
the slab. The slab with the lowest surface energy was then iso-
lated and utilized for the nal step of this screen.

VASP was used in the DFT calculations of slab energies. The
top two layers of atoms in each slab were allowed to relax for two
steps while the bottom layers were frozen. A gamma-centered k-
point mesh with a density of 1000 k-points/number of unit cell
atoms was generated for each material using Pymatgen.29 In
each structural optimization step, the atoms in the top two
layers were allowed to relax until the energy convergence crite-
rion of 10−5 eV and the force convergence criterion of 0.1 eV Å−1

were met. Once the relaxation steps had been concluded, the
positions of all atoms in each slab was xed in order to evaluate
the energy of the slab, where the tetrahedron method with
Blöchl corrections was used to integrate the Brillouin zone.64
© 2024 The Author(s). Published by the Royal Society of Chemistry
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The energy cutoff used in these slab calculations was 400 eV.
The slab surface with the lowest surface energy was used to
calculate the binding energies of the *O, *OH and *OOH
intermediates.

The binding energies of the *O, *OH and *OOH intermedi-
ates were then calculated by adsorbing each molecule on top of
the metal sites on the relaxed surfaces of the slab with the
lowest surface energy. Both A and B sites on the surface of the
spinel catalysts were considered. The top two layers, along with
the molecules, are allowed to relax for two steps while the
bottom layers are kept xed. The energies of each slab were
calculated based on the same parameters used to calculate the
surface energies in the previous step. The adsorption energies
of the OER intermediates on each slab are subsequently calcu-
lated using the following equations:28

DGads = DEads + DEZPE − TDSads

DEads = Eslab+OxHy − Eslab − xEO − yEH

EO = EH2O
− EH2

EH ¼ 1

2
EH2

where DGads is the adsorption energy of the adsorbate (*O, *OH
or *OOH), DEads is the electronic adsorption energy of the
adsorbate, DEZPE is the zero-point vibrational energy difference
between adsorbed and gaseous species, TDSads is the entropy
difference between the gaseous and adsorbed species, Eslab is
the energy of the clean slab, Eslab+OxHy is the energy of the slab
with the adsorbate species on the surface, EO is the energy of an
oxygen atom, EH is the energy of a hydrogen atom, EH2O is the
energy of a water molecule and EH2

is the energy of a hydrogen
molecule.
Calculating the theoretical overpotential based on binding
energies

Fig. S12† shows the different steps of the adsorbate evolution
mechanism (AEM) proposed for water oxidation and the equa-
tions necessary to calculate each step of the mechanism.
According to the computational hydrogen electrode model
proposed by Nørskov and coworkers, steps 1 and 2 are typically
the potential limiting steps of the AEM mechanism of OER.28,65

Therefore, in order to calculate the theoretical overpotential,
DG1 and DG2 must be calculated based on the binding energies
of the intermediates calculated in the previous section. 1.23 eV
shall then be subtracted from the larger of the two energies in
order to calculate the theoretical overpotential.65
Creating the machine learning model

The random forest model was created using the Python package
scikit-learn. Features such as the bandcenters of the oxygen and
metal atoms were calculated, relative to the Fermi level, based
on the formula below:
© 2024 The Author(s). Published by the Royal Society of Chemistry
3 ¼
Ð 3max

3min
3rd3

Ð 3max

3min
rd3

where 3�refers to the bandcenter, 3 refers to the energy level, r
refers to the density of states at that energy level, 3max refers to
the maximum energy level within this range of integration and
3min refers to the minimum energy level within this range of
integration.

The Bader charge was calculated using a Bader charge
analysis code provided by the Henkelman group.74 The average
bandcenters and Bader charges of all atoms were used to train
the random forest model. To train and test the models, the
dataset was split using train_test_split from scikit-learn, saving
20% as test set. The optimal model hyperparameters were
identied using a Bayesian optimization approach (Bayes-
SearchCV from scikit-optimize, on RandomForestRegressor from
scikit-learn) on the training set with a 5-fold cross validation.
The hyperparameters of the model that were optimized were the
number of trees in the random forest model, the maximum
depth of each tree, the minimum number of samples required
to split an internal node, the minimum number of samples
required to be at a leaf node and the number of features to
consider when looking for the best split. For comparison,
LASSO was also tested to predict the binding energies of the
OER intermediates (Fig. S14†). The same features used to train
the random-forest model were used to train the LASSOmodel as
well, and the hyperparameters were also optimized using
Bayesian optimization. The dataset for the LASSO model was
also split similarly to the random-forest model, with 20% of the
dataset being saved for the test set. The hyperparameter tuned
for the LASSOmodel is the alpha parameter that determines the
magnitude of the L1 regularization term.
Synthesis and characterization

Chemicals. All chemicals, including cobalt(II) nitrate hexa-
hydrate (Co(NO3)2$6H2O, 98%), gallium(III) nitrate hydrate
(Ga(NO3)3$xH2O, 99%), aluminum acetate (Al(OH)(C2H3O2)2,
99%), potassium hydroxide (KOH, 90%) were purchased from
Sigma-Aldrich. Carbon paper (AvCarb MGL 190) substrates were
purchased from the Fuel Cell Store. All chemicals were used
without further purication. Millipore water (18.2 MU cm) was
used in all experiments.

Synthesis of Co3O4 catalysts and metal cation doped Co3O4

catalysts on carbon paper substrates. These catalysts were
synthesized using an electrodeposition method in a standard
three electrode cell consisting of carbon paper as working
electrode, carbon rod as a counter electrode and saturated
calomel electrode(SCE) as reference electrode at the room
temperature. Co(NO3)2$6H2O (0.1 M) was dissolved in water as
the electrolyte. Carbon paper with the size of 0.5 cm × 0.5 cm
was then immersed into the electrolyte for the electrodeposition
of Co3O4-species. Electrodeposition was performed at a poten-
tial range of −1.0 to +0.2 V/SCE for 50 scans using an Autolab
PGSTAT302N workstation. During the deposition process, the
stirring rate was kept constant at 1000 rpm. Aer that, the
catalyst was calcined under vacuum at 250 °C for 1 hour and
Chem. Sci., 2024, 15, 10556–10570 | 10565
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then annealed in air at 350 °C for 4 hours. The loading mass is
about 1.6 mg. The Co1.5Ga1.5O4, Co2.5Ga0.5O4, and Co1.5Al1.5O4

catalysts were synthesized following a process similar to that of
the Co3O4 catalyst, with addition of Co(NO3)2$6H2O (0.05 M and
0.083 M), Ga(NO3)3$xH2O (0.05 M and 0.017 M), and
Al(OH)(C2H3O2)2 (0.05 M) precursors. The geometric surface
area of the samples was ∼0.25 cm2. In order to conrm the
identity of these compounds, they were further characterized
with XPS, XRD and SEM. SEM was performed using a Hitachi
SU7000. XRD was performed using a Bruker D8; all materials
were exposed to Cu-Ka radiation (l = 0.15406 nm) and the data
was collected with a point step of 0.02°. The XPS spectra in this
study were analysed using the ThermoAvantage soware. All
XPS spectra were calibrated based on the position of the C1s
peak in each spectrum and the Co2p peak convolution was
performed using the same soware as well. A Shirley back-
ground was used to determine the background of the XPS
spectrum.

Electrochemical characterization. Electrochemical data were
collected using a three-electrode system connected to an elec-
trochemical workstation (Autolab PGSTAT302N) SCE and
a carbon rod were used as reference and counter electrodes,
respectively. 1 M KOH without saturated O2 was used as the
electrolyte. Cyclic voltammetry (CV) measurements at 50 mV s−1

were performed for 3 cycles prior to recording linear scan vol-
tammetry (LSV) at 5 mV s−1 for each sample.

Electrochemically active surface area (ECSA) determination.
The ECSA of each catalyst was determined by measuring the
electrochemical double-layer capacitance (Cdl) of each catalyst
from the scan-rate dependence of the CV plot. Four different CV
measurements were performed at a potential window between
0.72 to 0.82 V (vs. the reversible hydrogen electrode) on each
catalyst at scan rates of 20,30, 40 and 50 mV s−1 respectively.
The Cdl was estimated at the average potential within this range
by calculating the slope of the linear t at that point. A specic
capacitance (Cs) of 40 mF cm−2 was used to calculate the ECSA of
the catalyst using the following equation:

ECSA ¼ Cdl

40 mF cm�2cm
2
ECSA

The LSV of each plot was subsequently normalized by
dividing the current density in each plot with the calculated
ECSA of each catalyst.

Potential calibration and iR correction. The potentials versus
SCE (ESCE) were calibrated versus RHE (ERHE) using the following
equation:

ERHE ¼ ESCE þ E0
SCE þ 2:30RT

zF
pH

where R is the ideal gas constant (8.314 J mol−1 K−1), T is the
temperature (298 K), F is the Faraday constant (96 485 C mol−1

electrons), z is the number of electrons (1 mol) transferred,
E0SCE is the standard potential of the SCE reference electrode
that has been calibrated versus RHE. The pH is 14.

The potentials of the LSV were corrected by subtracting iRS,
where i is the current measured at the corresponding potential
10566 | Chem. Sci., 2024, 15, 10556–10570
and RS is the bulk and solution resistances. The resistance RS

was calculated by tting electrochemical impedance data in the
0.1–1 Hz range with the Randles circuit model. The RS for each
catalyst is given in Table S6 of the ESI.†
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